1 Packages

library(car)
library(emmeans)
library(multcompView)


2 DATA

database=read.csv("D:/Armazenamento/8 - DATA R/Rumenflow/rumenflow2.csv")
str(database)
'data.frame':   80 obs. of  11 variables:
 $ fermentador: int  1 4 3 2 2 1 4 3 3 2 ...
 $ periodo    : int  1 2 3 4 1 2 3 4 1 2 ...
 $ tempo      : int  0 0 0 0 0 0 0 0 0 0 ...
 $ tratamento : chr  "T1" "T1" "T1" "T1" ...
 $ efluente   : num  NA NA NA NA NA NA NA NA NA NA ...
 $ gas_total  : num  NA NA NA NA NA NA NA NA NA NA ...
 $ ch4_effic  : num  NA NA NA NA NA NA NA NA NA NA ...
 $ ch4_24h    : num  NA NA NA NA NA NA NA NA NA NA ...
 $ ch4_48h    : num  NA NA NA NA NA NA NA NA NA NA ...
 $ dmo        : num  NA NA NA NA NA NA NA NA NA NA ...
 $ n_nh3      : num  0.0592 0.0349 0.031 0.0428 0.0632 ...
database$fermentador=as.factor(database$fermentador)
database$periodo=as.factor(database$periodo)
database$tempo=as.factor(database$tempo)
database$tratamento=as.factor(database$tratamento)
View(database)


3 Fermentador

names(database)
 [1] "fermentador" "periodo"     "tempo"       "tratamento"  "efluente"    "gas_total"   "ch4_effic"  
 [8] "ch4_24h"     "ch4_48h"     "dmo"         "n_nh3"      
# Variáveis a serem analisadas
variables = c("efluente","gas_total","ch4_effic","ch4_24h","ch4_48h","dmo", "n_nh3")
variables
[1] "efluente"  "gas_total" "ch4_effic" "ch4_24h"   "ch4_48h"   "dmo"       "n_nh3"    
# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ fermentador")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ fermentador")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ fermentador"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ fermentador)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value Pr(>F)
fermentador  3   28166    9389    0.55   0.65
Residuals   60 1023997   17067               
16 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean   SE df lower.CL upper.CL
 1              274 32.7 60      209      340
 2              289 32.7 60      224      355
 3              316 32.7 60      251      381
 4              327 32.7 60      262      393

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
       diff        lwr      upr     p adj
2-1 14.8750 -107.17765 136.9277 0.9883369
3-1 41.5625  -80.49015 163.6152 0.8049179
4-1 52.9375  -69.11515 174.9902 0.6626877
3-2 26.6875  -95.36515 148.7402 0.9383596
4-2 38.0625  -83.99015 160.1152 0.8428459
4-3 11.3750 -110.67765 133.4277 0.9946960


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE




########################### Variável: gas_total ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value Pr(>F)
fermentador  3  208575   69525   0.484  0.695
Residuals   60 8624536  143742               
16 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean   SE df lower.CL upper.CL
 1             1508 94.8 60     1319     1698
 2             1476 94.8 60     1286     1666
 3             1511 94.8 60     1321     1700
 4             1370 94.8 60     1181     1560

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr      upr     p adj
2-1  -32.4375 -386.6515 321.7765 0.9949640
3-1    2.1875 -352.0265 356.4015 0.9999984
4-1 -138.0625 -492.2765 216.1515 0.7326237
3-2   34.6250 -319.5890 388.8390 0.9938944
4-2 -105.6250 -459.8390 248.5890 0.8596229
4-3 -140.2500 -494.4640 213.9640 0.7230441


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   1   2   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
1 TRUE
2 TRUE
4 TRUE




########################### Variável: ch4_effic ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)
fermentador  3   4.06   1.353   1.167   0.34
Residuals   28  32.48   1.160               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean    SE df lower.CL upper.CL
 1             5.76 0.381 28     4.98     6.54
 2             5.52 0.381 28     4.74     6.30
 3             5.38 0.381 28     4.60     6.17
 4             4.79 0.381 28     4.01     5.57

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
        diff       lwr       upr     p adj
2-1 -0.23750 -1.707803 1.2328028 0.9707978
3-1 -0.37500 -1.845303 1.0953028 0.8976076
4-1 -0.96625 -2.436553 0.5040528 0.2971349
3-2 -0.13750 -1.607803 1.3328028 0.9940257
4-2 -0.72875 -2.199053 0.7415528 0.5380507
4-3 -0.59125 -2.061553 0.8790528 0.6936859


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
            Df  Sum Sq  Mean Sq F value Pr(>F)
fermentador  3 0.00659 0.002196   0.762  0.525
Residuals   28 0.08069 0.002882               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean    SE df lower.CL upper.CL
 1            0.146 0.019 28   0.1073    0.185
 2            0.131 0.019 28   0.0920    0.170
 3            0.124 0.019 28   0.0849    0.163
 4            0.106 0.019 28   0.0674    0.145

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
          diff         lwr        upr     p adj
2-1 -0.0153125 -0.08859921 0.05797421 0.9400438
3-1 -0.0224250 -0.09571171 0.05086171 0.8371607
4-1 -0.0399250 -0.11321171 0.03336171 0.4581960
3-2 -0.0071125 -0.08039921 0.06617421 0.9933367
4-2 -0.0246125 -0.09789921 0.04867421 0.7960282
4-3 -0.0175000 -0.09078671 0.05578671 0.9139706


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE




########################### Variável: ch4_48h ##########################
ANOVA:
            Df  Sum Sq  Mean Sq F value Pr(>F)  
fermentador  3 0.04519 0.015063    3.04 0.0388 *
Residuals   44 0.21798 0.004954                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean     SE df lower.CL upper.CL
 1            0.314 0.0203 44    0.273    0.355
 2            0.301 0.0203 44    0.260    0.342
 3            0.294 0.0203 44    0.253    0.335
 4            0.234 0.0203 44    0.193    0.275

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
            diff         lwr          upr     p adj
2-1 -0.013315833 -0.09003800  0.063406334 0.9666155
3-1 -0.019982500 -0.09670467  0.056739667 0.8982971
4-1 -0.079982500 -0.15670467 -0.003260333 0.0381130
3-2 -0.006666667 -0.08338883  0.070055501 0.9955356
4-2 -0.066666667 -0.14338883  0.010055501 0.1089177
4-3 -0.060000000 -0.13672217  0.016722167 0.1729159


Letras do Tukey:
$fermentador
   1    2    3    4 
 "a" "ab" "ab"  "b" 



########################### Variável: dmo ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)
fermentador  3   2776   925.3   0.302  0.824
Residuals   28  85839  3065.7               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean   SE df lower.CL upper.CL
 1              560 19.6 28      520      600
 2              580 19.6 28      540      620
 3              580 19.6 28      540      620
 4              584 19.6 28      544      625

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr      upr     p adj
2-1 19.301000 -56.28583 94.88783 0.8972926
3-1 19.838050 -55.74878 95.42488 0.8896671
4-1 24.094575 -51.49225 99.68140 0.8200163
3-2  0.537050 -75.04978 76.12388 0.9999973
4-2  4.793575 -70.79325 80.38040 0.9981096
4-3  4.256525 -71.33030 79.84335 0.9986730


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE




########################### Variável: n_nh3 ##########################
ANOVA:
            Df Sum Sq  Mean Sq F value Pr(>F)
fermentador  3 0.0005 0.000173   0.008  0.999
Residuals   44 0.9539 0.021678               
32 observations deleted due to missingness

Médias (emmeans):
 fermentador emmean     SE df lower.CL upper.CL
 1            0.128 0.0425 44   0.0423    0.214
 2            0.128 0.0425 44   0.0426    0.214
 3            0.135 0.0425 44   0.0496    0.221
 4            0.134 0.0425 44   0.0483    0.220

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
             diff        lwr       upr     p adj
2-1  0.0002483333 -0.1602428 0.1607395 1.0000000
3-1  0.0072995833 -0.1531916 0.1677907 0.9993497
4-1  0.0059537500 -0.1545374 0.1664449 0.9996465
3-2  0.0070512500 -0.1534399 0.1675424 0.9994136
4-2  0.0057054167 -0.1547857 0.1661966 0.9996888
4-3 -0.0013458333 -0.1618370 0.1591453 0.9999959


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   4   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
4 TRUE
2 TRUE
1 TRUE

4 Periodo

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ periodo")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ periodo")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ periodo"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ periodo)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)  
periodo      3 167360   55787   3.783 0.0149 *
Residuals   60 884803   14747                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 periodo emmean   SE df lower.CL upper.CL
 1          359 30.4 60      298      419
 2          329 30.4 60      268      389
 3          221 30.4 60      161      282
 4          298 30.4 60      238      359

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
         diff        lwr        upr     p adj
2-1  -30.1875 -143.64187  83.266872 0.8954627
3-1 -137.5000 -250.95437 -24.045628 0.0114059
4-1  -60.4375 -173.89187  53.016872 0.4995954
3-2 -107.3125 -220.76687   6.141872 0.0701973
4-2  -30.2500 -143.70437  83.204372 0.8948928
4-3   77.0625  -36.39187 190.516872 0.2858508


Letras do Tukey:
$periodo
   1    2    4    3 
 "a" "ab" "ab"  "b" 



########################### Variável: gas_total ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value Pr(>F)  
periodo      3 1035268  345089   2.655 0.0565 .
Residuals   60 7797843  129964                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 periodo emmean   SE df lower.CL upper.CL
 1         1512 90.1 60     1331     1692
 2         1487 90.1 60     1307     1667
 3         1260 90.1 60     1080     1440
 4         1606 90.1 60     1426     1787

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
         diff       lwr      upr     p adj
2-1  -24.6875 -361.4976 312.1226 0.9973962
3-1 -251.6875 -588.4976  85.1226 0.2090126
4-1   94.8125 -241.9976 431.6226 0.8789048
3-2 -227.0000 -563.8101 109.8101 0.2924601
4-2  119.5000 -217.3101 456.3101 0.7848090
4-3  346.5000    9.6899 683.3101 0.0414717


Letras do Tukey:
$periodo
   4    1    2    3 
 "a" "ab" "ab"  "b" 



########################### Variável: ch4_effic ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)
periodo      3   3.15   1.049    0.88  0.463
Residuals   28  33.39   1.193               
48 observations deleted due to missingness

Médias (emmeans):
 periodo emmean    SE df lower.CL upper.CL
 1         5.31 0.386 28     4.52     6.10
 2         5.86 0.386 28     5.07     6.65
 3         4.99 0.386 28     4.20     5.78
 4         5.31 0.386 28     4.52     6.10

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
             diff        lwr       upr     p adj
2-1  5.537500e-01 -0.9370642 2.0445642 0.7425920
3-1 -3.175000e-01 -1.8083142 1.1733142 0.9368263
4-1 -8.881784e-16 -1.4908142 1.4908142 1.0000000
3-2 -8.712500e-01 -2.3620642 0.6195642 0.3972977
4-2 -5.537500e-01 -2.0445642 0.9370642 0.7425920
4-3  3.175000e-01 -1.1733142 1.8083142 0.9368263


Letras do Tukey:
$periodo
$periodo$Letters
  2   1   4   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
2 TRUE
1 TRUE
4 TRUE
3 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
            Df  Sum Sq  Mean Sq F value Pr(>F)  
periodo      3 0.02021 0.006735   2.811 0.0576 .
Residuals   28 0.06708 0.002396                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 periodo emmean     SE df lower.CL upper.CL
 1       0.1208 0.0173 28   0.0853    0.156
 2       0.1200 0.0173 28   0.0846    0.155
 3       0.0988 0.0173 28   0.0633    0.134
 4       0.1675 0.0173 28   0.1321    0.203

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
          diff          lwr        upr     p adj
2-1 -0.0007875 -0.067604992 0.06602999 0.9999877
3-1 -0.0220375 -0.088854992 0.04477999 0.8046243
4-1  0.0467125 -0.020104992 0.11352999 0.2473722
3-2 -0.0212500 -0.088067492 0.04556749 0.8210238
4-2  0.0475000 -0.019317492 0.11431749 0.2344835
4-3  0.0687500  0.001932508 0.13556749 0.0419618


Letras do Tukey:
$periodo
   4    1    2    3 
 "a" "ab" "ab"  "b" 



########################### Variável: ch4_48h ##########################
ANOVA:
            Df  Sum Sq  Mean Sq F value   Pr(>F)    
periodo      3 0.09002 0.030007   7.625 0.000328 ***
Residuals   44 0.17315 0.003935                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 periodo emmean     SE df lower.CL upper.CL
 1        0.277 0.0181 44    0.241    0.314
 2        0.291 0.0181 44    0.254    0.327
 3        0.227 0.0181 44    0.190    0.263
 4        0.348 0.0181 44    0.312    0.385

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
           diff          lwr         upr     p adj
2-1  0.01335083 -0.055028017 0.081729684 0.9535168
3-1 -0.05081583 -0.119194684 0.017563017 0.2094358
4-1  0.07085083  0.002471983 0.139229684 0.0397113
3-2 -0.06416667 -0.132545517 0.004212184 0.0729263
4-2  0.05750000 -0.010878850 0.125878850 0.1270633
4-3  0.12166667  0.053287816 0.190045517 0.0001252


Letras do Tukey:
$periodo
   4    2    1    3 
 "a" "ab"  "b"  "b" 



########################### Variável: dmo ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)
periodo      3   3430    1143   0.376  0.771
Residuals   28  85185    3042               
48 observations deleted due to missingness

Médias (emmeans):
 periodo emmean   SE df lower.CL upper.CL
 1          573 19.5 28      533      613
 2          585 19.5 28      545      625
 3          586 19.5 28      546      626
 4          561 19.5 28      521      601

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
           diff        lwr      upr     p adj
2-1  12.7127750  -62.58548 88.01103 0.9668984
3-1  13.1073875  -62.19086 88.40564 0.9639152
4-1 -11.9710875  -87.26934 63.32716 0.9720897
3-2   0.3946125  -74.90364 75.69286 0.9999989
4-2 -24.6838625  -99.98211 50.61439 0.8074500
4-3 -25.0784750 -100.37673 50.21978 0.8000187


Letras do Tukey:
$periodo
$periodo$Letters
  3   2   1   4 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
3 TRUE
2 TRUE
1 TRUE
4 TRUE




########################### Variável: n_nh3 ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)  
periodo      3 0.2134 0.07114   4.224 0.0104 *
Residuals   44 0.7410 0.01684                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 periodo emmean     SE df lower.CL upper.CL
 1       0.2461 0.0375 44   0.1706    0.322
 2       0.0869 0.0375 44   0.0114    0.162
 3       0.0870 0.0375 44   0.0115    0.162
 4       0.1056 0.0375 44   0.0301    0.181

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
             diff        lwr           upr     p adj
2-1 -1.592404e-01 -0.3006923 -0.0177885533 0.0218530
3-1 -1.591483e-01 -0.3006002 -0.0176964699 0.0219509
4-1 -1.405546e-01 -0.2820064  0.0008972801 0.0520282
3-2  9.208333e-05 -0.1413598  0.1415439467 1.0000000
4-2  1.868583e-02 -0.1227660  0.1601376967 0.9847473
4-3  1.859375e-02 -0.1228581  0.1600456134 0.9849644


Letras do Tukey:
$periodo
   1    4    3    2 
 "a" "ab"  "b"  "b" 

5 Tempo

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ tempo")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ tempo")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ tempo"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ tempo)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
            Df Sum Sq Mean Sq F value   Pr(>F)    
tempo        3 349201  116400   9.935 2.07e-05 ***
Residuals   60 702962   11716                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 tempo emmean   SE df lower.CL upper.CL
 24       299 27.1 60      244      353
 48       190 27.1 60      136      244
 72       396 27.1 60      342      450
 96       322 27.1 60      268      377

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff         lwr        upr     p adj
48-24 -108.7500 -209.876247  -7.623753 0.0303408
72-24   97.3125   -3.813747 198.438747 0.0634442
96-24   23.8125  -77.313747 124.938747 0.9245584
72-48  206.0625  104.936253 307.188747 0.0000075
96-48  132.5625   31.436253 233.688747 0.0053235
96-72  -73.5000 -174.626247  27.626247 0.2304342


Letras do Tukey:
$tempo
 72  96  24  48 
"a" "a" "a" "b" 



########################### Variável: gas_total ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value   Pr(>F)    
tempo        3 3330824 1110275   12.11 2.68e-06 ***
Residuals   60 5502288   91705                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 tempo emmean   SE df lower.CL upper.CL
 24      1692 75.7 60     1541     1844
 48      1367 75.7 60     1216     1519
 72      1139 75.7 60      988     1290
 96      1667 75.7 60     1515     1818

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff        lwr        upr     p adj
48-24 -325.0000 -607.92381  -42.07619 0.0181433
72-24 -553.3750 -836.29881 -270.45119 0.0000167
96-24  -25.6875 -308.61131  257.23631 0.9950901
72-48 -228.3750 -511.29881   54.54881 0.1544725
96-48  299.3125   16.38869  582.23631 0.0341548
96-72  527.6875  244.76369  810.61131 0.0000400


Letras do Tukey:
$tempo
 24  96  48  72 
"a" "a" "b" "b" 



########################### Variável: ch4_effic ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)  
tempo        1  5.874   5.874   5.746  0.023 *
Residuals   30 30.666   1.022                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 tempo emmean    SE df lower.CL upper.CL
 72      4.94 0.253 30     4.42     5.45
 96      5.79 0.253 30     5.28     6.31

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
          diff       lwr      upr     p adj
96-72 0.856875 0.1268528 1.586897 0.0229551


Letras do Tukey:
$tempo
 96  72 
"a" "b" 



########################### Variável: ch4_24h ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value   Pr(>F)    
tempo        1 0.03768 0.03768   22.79 4.41e-05 ***
Residuals   30 0.04960 0.00165                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 tempo emmean     SE df lower.CL upper.CL
 72    0.0924 0.0102 30   0.0717    0.113
 96    0.1611 0.0102 30   0.1403    0.182

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
            diff        lwr        upr    p adj
96-72 0.06863125 0.03927159 0.09799091 4.41e-05


Letras do Tukey:
$tempo
 96  72 
"a" "b" 



########################### Variável: ch4_48h ##########################
ANOVA:
            Df Sum Sq  Mean Sq F value Pr(>F)
tempo        2 0.0000 0.000001       0      1
Residuals   45 0.2632 0.005848               
32 observations deleted due to missingness

Médias (emmeans):
 tempo emmean     SE df lower.CL upper.CL
 48     0.286 0.0191 45    0.247    0.324
 72     0.286 0.0191 45    0.247    0.325
 96     0.286 0.0191 45    0.247    0.324

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
            diff         lwr        upr     p adj
72-48  0.0003775 -0.06515092 0.06590592 0.9998925
96-48  0.0002325 -0.06529592 0.06576092 0.9999592
96-72 -0.0001450 -0.06567342 0.06538342 0.9999841


Letras do Tukey:
$tempo
$tempo$Letters
 72  96  48 
"a" "a" "a" 

$tempo$LetterMatrix
      a
72 TRUE
96 TRUE
48 TRUE




########################### Variável: dmo ##########################
ANOVA:
            Df Sum Sq Mean Sq F value   Pr(>F)    
tempo        1  42080   42080   27.13 1.29e-05 ***
Residuals   30  46535    1551                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 tempo emmean   SE df lower.CL upper.CL
 24       612 9.85 30      592      633
 48       540 9.85 30      520      560

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff       lwr       upr    p adj
48-24 -72.52585 -100.9639 -44.08784 1.29e-05


Letras do Tukey:
$tempo
 24  48 
"a" "b" 



########################### Variável: n_nh3 ##########################
ANOVA:
            Df Sum Sq Mean Sq F value   Pr(>F)    
tempo        2 0.5514 0.27568   30.78 3.77e-09 ***
Residuals   45 0.4030 0.00896                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 tempo emmean     SE df lower.CL upper.CL
 0     0.0411 0.0237 45 -0.00658   0.0887
 72    0.0711 0.0237 45  0.02347   0.1188
 96    0.2820 0.0237 45  0.23430   0.3296

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff         lwr       upr     p adj
72-0  0.0300475 -0.05104291 0.1111379 0.6443216
96-0  0.2408847  0.15979428 0.3219751 0.0000000
96-72 0.2108372  0.12974678 0.2919276 0.0000003


Letras do Tukey:
$tempo
 96  72   0 
"a" "b" "b" 

6 Tratamento

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ tratamento")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ tratamento")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ tratamento"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ tratamento)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value Pr(>F)
tratamento   3    4359    1453   0.083  0.969
Residuals   60 1047804   17463               
16 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean SE df lower.CL upper.CL
 T1            304 33 60      238      370
 T2            289 33 60      223      355
 T3            302 33 60      236      369
 T4            312 33 60      245      378

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
          diff       lwr      upr     p adj
T2-T1 -15.5625 -139.0258 107.9008 0.9871327
T3-T1  -1.8125 -125.2758 121.6508 0.9999788
T4-T1   7.2500 -116.2133 130.7133 0.9986541
T3-T2  13.7500 -109.7133 137.2133 0.9910406
T4-T2  22.8125 -100.6508 146.2758 0.9614211
T4-T3   9.0625 -114.4008 132.5258 0.9973852


Letras do Tukey:
$tratamento
$tratamento$Letters
 T4  T1  T3  T2 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T4 TRUE
T1 TRUE
T3 TRUE
T2 TRUE




########################### Variável: gas_total ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value Pr(>F)
tratamento   3  157390   52463   0.363   0.78
Residuals   60 8675722  144595               
16 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean   SE df lower.CL upper.CL
 T1           1407 95.1 60     1216     1597
 T2           1500 95.1 60     1309     1690
 T3           1529 95.1 60     1338     1719
 T4           1430 95.1 60     1240     1621

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
          diff       lwr      upr     p adj
T2-T1  92.9375 -262.3261 448.2011 0.9000324
T3-T1 122.0625 -233.2011 477.3261 0.8006794
T4-T1  23.9375 -331.3261 379.2011 0.9979728
T3-T2  29.1250 -326.1386 384.3886 0.9963703
T4-T2 -69.0000 -424.2636 286.2636 0.9556218
T4-T3 -98.1250 -453.3886 257.1386 0.8847309


Letras do Tukey:
$tratamento
$tratamento$Letters
 T3  T2  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T3 TRUE
T2 TRUE
T4 TRUE
T1 TRUE




########################### Variável: ch4_effic ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)
tratamento   3  5.676   1.892   1.716  0.186
Residuals   28 30.864   1.102               
48 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean    SE df lower.CL upper.CL
 T1           5.64 0.371 28     4.88     6.40
 T2           5.74 0.371 28     4.98     6.50
 T3           5.42 0.371 28     4.66     6.19
 T4           4.66 0.371 28     3.90     5.42

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
          diff       lwr       upr     p adj
T2-T1  0.10125 -1.332031 1.5345309 0.9973950
T3-T1 -0.21125 -1.644531 1.2220309 0.9775205
T4-T1 -0.97375 -2.407031 0.4595309 0.2700202
T3-T2 -0.31250 -1.745781 1.1207809 0.9326526
T4-T2 -1.07500 -2.508281 0.3582809 0.1951372
T4-T3 -0.76250 -2.195781 0.6707809 0.4785872


Letras do Tukey:
$tratamento
$tratamento$Letters
 T2  T1  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T1 TRUE
T3 TRUE
T4 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
            Df  Sum Sq  Mean Sq F value Pr(>F)
tratamento   3 0.00599 0.001997   0.688  0.567
Residuals   28 0.08129 0.002903               
48 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean     SE df lower.CL upper.CL
 T1          0.112 0.0191 28   0.0734    0.151
 T2          0.141 0.0191 28   0.1018    0.180
 T3          0.140 0.0191 28   0.1010    0.179
 T4          0.114 0.0191 28   0.0747    0.153

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
            diff         lwr        upr     p adj
T2-T1  0.0284375 -0.04511958 0.10199458 0.7186936
T3-T1  0.0275750 -0.04598208 0.10113208 0.7372256
T4-T1  0.0013250 -0.07223208 0.07488208 0.9999562
T3-T2 -0.0008625 -0.07441958 0.07269458 0.9999879
T4-T2 -0.0271125 -0.10066958 0.04644458 0.7470164
T4-T3 -0.0262500 -0.09980708 0.04730708 0.7649688


Letras do Tukey:
$tratamento
$tratamento$Letters
 T2  T3  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T4 TRUE
T1 TRUE




########################### Variável: ch4_48h ##########################
ANOVA:
            Df  Sum Sq Mean Sq F value   Pr(>F)    
tratamento   3 0.09707 0.03236   8.571 0.000136 ***
Residuals   44 0.16610 0.00378                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean     SE df lower.CL upper.CL
 T1          0.247 0.0177 44    0.212    0.283
 T2          0.336 0.0177 44    0.300    0.372
 T3          0.325 0.0177 44    0.289    0.361
 T4          0.235 0.0177 44    0.199    0.271

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
             diff         lwr         upr     p adj
T2-T1  0.08835083  0.02137769  0.15532398 0.0053853
T3-T1  0.07751750  0.01054435  0.14449065 0.0175449
T4-T1 -0.01248250 -0.07945565  0.05449065 0.9591849
T3-T2 -0.01083333 -0.07780648  0.05613981 0.9726731
T4-T2 -0.10083333 -0.16780648 -0.03386019 0.0012444
T4-T3 -0.09000000 -0.15697315 -0.02302685 0.0044635


Letras do Tukey:
$tratamento
 T2  T3  T1  T4 
"a" "a" "b" "b" 



########################### Variável: dmo ##########################
ANOVA:
            Df Sum Sq Mean Sq F value Pr(>F)
tratamento   3  16169    5390   2.083  0.125
Residuals   28  72446    2587               
48 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean SE df lower.CL upper.CL
 T1            609 18 28      572      646
 T2            581 18 28      545      618
 T3            568 18 28      531      604
 T4            547 18 28      510      584

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
           diff        lwr       upr     p adj
T2-T1 -27.35585  -96.79607 42.084370 0.7069244
T3-T1 -41.22081 -110.66103 28.219408 0.3837372
T4-T1 -61.86686 -131.30708  7.573358 0.0939294
T3-T2 -13.86496  -83.30518 55.575258 0.9470827
T4-T2 -34.51101 -103.95123 34.929208 0.5358241
T4-T3 -20.64605  -90.08627 48.794170 0.8483683


Letras do Tukey:
$tratamento
$tratamento$Letters
 T1  T2  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T1 TRUE
T2 TRUE
T3 TRUE
T4 TRUE




########################### Variável: n_nh3 ##########################
ANOVA:
            Df Sum Sq  Mean Sq F value Pr(>F)
tratamento   3 0.0022 0.000719   0.033  0.992
Residuals   44 0.9522 0.021641               
32 observations deleted due to missingness

Médias (emmeans):
 tratamento emmean     SE df lower.CL upper.CL
 T1          0.130 0.0425 44   0.0445    0.216
 T2          0.138 0.0425 44   0.0521    0.223
 T3          0.137 0.0425 44   0.0512    0.222
 T4          0.121 0.0425 44   0.0354    0.207

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tratamento
               diff        lwr       upr     p adj
T2-T1  0.0075937500 -0.1527596 0.1679471 0.9992663
T3-T1  0.0066620833 -0.1536913 0.1670154 0.9995039
T4-T1 -0.0091691667 -0.1695225 0.1511842 0.9987122
T3-T2 -0.0009316667 -0.1612850 0.1594217 0.9999986
T4-T2 -0.0167629167 -0.1771163 0.1435904 0.9923007
T4-T3 -0.0158312500 -0.1761846 0.1445221 0.9934927


Letras do Tukey:
$tratamento
$tratamento$Letters
 T2  T3  T1  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T1 TRUE
T4 TRUE

7 Fermentador x Periodo

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ fermentador * periodo")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ fermentador * periodo")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})
Warning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertosWarning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertosWarning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertos
resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ fermentador * periodo"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ fermentador * periodo)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
                    Df Sum Sq Mean Sq F value Pr(>F)  
fermentador          3  28166    9389   0.533 0.6615  
periodo              3 167360   55787   3.170 0.0326 *
fermentador:periodo  9  11923    1325   0.075 0.9999  
Residuals           48 844715   17598                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean   SE df lower.CL upper.CL
 1           1          342 66.3 48    209.1      476
 2           1          318 66.3 48    184.1      451
 3           1          373 66.3 48    239.9      507
 4           1          402 66.3 48    268.4      535
 1           2          282 66.3 48    149.1      416
 2           2          332 66.3 48    198.9      466
 3           2          336 66.3 48    202.6      469
 4           2          364 66.3 48    230.1      497
 1           3          192 66.3 48     59.1      326
 2           3          228 66.3 48     94.9      362
 3           3          232 66.3 48     98.6      365
 4           3          232 66.3 48     98.9      366
 1           4          280 66.3 48    146.6      413
 2           4          279 66.3 48    145.6      412
 3           4          322 66.3 48    189.1      456
 4           4          312 66.3 48    178.4      445

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
       diff        lwr      upr     p adj
2-1 14.8750 -109.94811 139.6981 0.9888188
3-1 41.5625  -83.26061 166.3856 0.8120200
4-1 52.9375  -71.88561 177.7606 0.6738213
3-2 26.6875  -98.13561 151.5106 0.9408072
4-2 38.0625  -86.76061 162.8856 0.8487086
4-3 11.3750 -113.44811 136.1981 0.9949168

$periodo
         diff        lwr       upr     p adj
2-1  -30.1875 -155.01061  94.63561 0.9172509
3-1 -137.5000 -262.32311 -12.67689 0.0256337
4-1  -60.4375 -185.26061  64.38561 0.5745558
3-2 -107.3125 -232.13561  17.51061 0.1151264
4-2  -30.2500 -155.07311  94.57311 0.9167904
4-3   77.0625  -47.76061 201.88561 0.3648104

$`fermentador:periodo`
           diff       lwr      upr     p adj
2:1-1:1  -25.00 -363.8834 313.8834 1.0000000
3:1-1:1   30.75 -308.1334 369.6334 1.0000000
4:1-1:1   59.25 -279.6334 398.1334 0.9999991
1:2-1:1  -60.00 -398.8834 278.8834 0.9999989
2:2-1:1  -10.25 -349.1334 328.6334 1.0000000
3:2-1:1   -6.50 -345.3834 332.3834 1.0000000
4:2-1:1   21.00 -317.8834 359.8834 1.0000000
1:3-1:1 -150.00 -488.8834 188.8834 0.9608061
2:3-1:1 -114.25 -453.1334 224.6334 0.9969474
3:3-1:1 -110.50 -449.3834 228.3834 0.9978583
4:3-1:1 -110.25 -449.1334 228.6334 0.9979098
1:4-1:1  -62.50 -401.3834 276.3834 0.9999981
2:4-1:1  -63.50 -402.3834 275.3834 0.9999976
3:4-1:1  -20.00 -358.8834 318.8834 1.0000000
4:4-1:1  -30.75 -369.6334 308.1334 1.0000000
3:1-2:1   55.75 -283.1334 394.6334 0.9999996
4:1-2:1   84.25 -254.6334 423.1334 0.9999076
1:2-2:1  -35.00 -373.8834 303.8834 1.0000000
2:2-2:1   14.75 -324.1334 353.6334 1.0000000
3:2-2:1   18.50 -320.3834 357.3834 1.0000000
4:2-2:1   46.00 -292.8834 384.8834 1.0000000
1:3-2:1 -125.00 -463.8834 213.8834 0.9923939
2:3-2:1  -89.25 -428.1334 249.6334 0.9998134
3:3-2:1  -85.50 -424.3834 253.3834 0.9998892
4:3-2:1  -85.25 -424.1334 253.6334 0.9998932
1:4-2:1  -37.50 -376.3834 301.3834 1.0000000
2:4-2:1  -38.50 -377.3834 300.3834 1.0000000
3:4-2:1    5.00 -333.8834 343.8834 1.0000000
4:4-2:1   -5.75 -344.6334 333.1334 1.0000000
4:1-3:1   28.50 -310.3834 367.3834 1.0000000
1:2-3:1  -90.75 -429.6334 248.1334 0.9997720
2:2-3:1  -41.00 -379.8834 297.8834 1.0000000
3:2-3:1  -37.25 -376.1334 301.6334 1.0000000
4:2-3:1   -9.75 -348.6334 329.1334 1.0000000
1:3-3:1 -180.75 -519.6334 158.1334 0.8505330
2:3-3:1 -145.00 -483.8834 193.8834 0.9704253
3:3-3:1 -141.25 -480.1334 197.6334 0.9763892
4:3-3:1 -141.00 -479.8834 197.8834 0.9767514
1:4-3:1  -93.25 -432.1334 245.6334 0.9996851
2:4-3:1  -94.25 -433.1334 244.6334 0.9996430
3:4-3:1  -50.75 -389.6334 288.1334 0.9999999
4:4-3:1  -61.50 -400.3834 277.3834 0.9999984
1:2-4:1 -119.25 -458.1334 219.6334 0.9952472
2:2-4:1  -69.50 -408.3834 269.3834 0.9999921
3:2-4:1  -65.75 -404.6334 273.1334 0.9999962
4:2-4:1  -38.25 -377.1334 300.6334 1.0000000
1:3-4:1 -209.25 -548.1334 129.6334 0.6723148
2:3-4:1 -173.50 -512.3834 165.3834 0.8849994
3:3-4:1 -169.75 -508.6334 169.1334 0.9007593
4:3-4:1 -169.50 -508.3834 169.3834 0.9017592
1:4-4:1 -121.75 -460.6334 217.1334 0.9941404
2:4-4:1 -122.75 -461.6334 216.1334 0.9936422
3:4-4:1  -79.25 -418.1334 259.6334 0.9999569
4:4-4:1  -90.00 -428.8834 248.8834 0.9997936
2:2-1:2   49.75 -289.1334 388.6334 0.9999999
3:2-1:2   53.50 -285.3834 392.3834 0.9999998
4:2-1:2   81.00 -257.8834 419.8834 0.9999433
1:3-1:2  -90.00 -428.8834 248.8834 0.9997936
2:3-1:2  -54.25 -393.1334 284.6334 0.9999997
3:3-1:2  -50.50 -389.3834 288.3834 0.9999999
4:3-1:2  -50.25 -389.1334 288.6334 0.9999999
1:4-1:2   -2.50 -341.3834 336.3834 1.0000000
2:4-1:2   -3.50 -342.3834 335.3834 1.0000000
3:4-1:2   40.00 -298.8834 378.8834 1.0000000
4:4-1:2   29.25 -309.6334 368.1334 1.0000000
3:2-2:2    3.75 -335.1334 342.6334 1.0000000
4:2-2:2   31.25 -307.6334 370.1334 1.0000000
1:3-2:2 -139.75 -478.6334 199.1334 0.9784992
2:3-2:2 -104.00 -442.8834 234.8834 0.9988971
3:3-2:2 -100.25 -439.1334 238.6334 0.9992709
4:3-2:2 -100.00 -438.8834 238.8834 0.9992913
1:4-2:2  -52.25 -391.1334 286.6334 0.9999998
2:4-2:2  -53.25 -392.1334 285.6334 0.9999998
3:4-2:2   -9.75 -348.6334 329.1334 1.0000000
4:4-2:2  -20.50 -359.3834 318.3834 1.0000000
4:2-3:2   27.50 -311.3834 366.3834 1.0000000
1:3-3:2 -143.50 -482.3834 195.3834 0.9729329
2:3-3:2 -107.75 -446.6334 231.1334 0.9983697
3:3-3:2 -104.00 -442.8834 234.8834 0.9988971
4:3-3:2 -103.75 -442.6334 235.1334 0.9989264
1:4-3:2  -56.00 -394.8834 282.8834 0.9999996
2:4-3:2  -57.00 -395.8834 281.8834 0.9999994
3:4-3:2  -13.50 -352.3834 325.3834 1.0000000
4:4-3:2  -24.25 -363.1334 314.6334 1.0000000
1:3-4:2 -171.00 -509.8834 167.8834 0.8956645
2:3-4:2 -135.25 -474.1334 203.6334 0.9839685
3:3-4:2 -131.50 -470.3834 207.3834 0.9876371
4:3-4:2 -131.25 -470.1334 207.6334 0.9878557
1:4-4:2  -83.50 -422.3834 255.3834 0.9999173
2:4-4:2  -84.50 -423.3834 254.3834 0.9999042
3:4-4:2  -41.00 -379.8834 297.8834 1.0000000
4:4-4:2  -51.75 -390.6334 287.1334 0.9999999
2:3-1:3   35.75 -303.1334 374.6334 1.0000000
3:3-1:3   39.50 -299.3834 378.3834 1.0000000
4:3-1:3   39.75 -299.1334 378.6334 1.0000000
1:4-1:3   87.50 -251.3834 426.3834 0.9998531
2:4-1:3   86.50 -252.3834 425.3834 0.9998723
3:4-1:3  130.00 -208.8834 468.8834 0.9889029
4:4-1:3  119.25 -219.6334 458.1334 0.9952472
3:3-2:3    3.75 -335.1334 342.6334 1.0000000
4:3-2:3    4.00 -334.8834 342.8834 1.0000000
1:4-2:3   51.75 -287.1334 390.6334 0.9999999
2:4-2:3   50.75 -288.1334 389.6334 0.9999999
3:4-2:3   94.25 -244.6334 433.1334 0.9996430
4:4-2:3   83.50 -255.3834 422.3834 0.9999173
4:3-3:3    0.25 -338.6334 339.1334 1.0000000
1:4-3:3   48.00 -290.8834 386.8834 0.9999999
2:4-3:3   47.00 -291.8834 385.8834 1.0000000
3:4-3:3   90.50 -248.3834 429.3834 0.9997794
4:4-3:3   79.75 -259.1334 418.6334 0.9999534
1:4-4:3   47.75 -291.1334 386.6334 1.0000000
2:4-4:3   46.75 -292.1334 385.6334 1.0000000
3:4-4:3   90.25 -248.6334 429.1334 0.9997866
4:4-4:3   79.50 -259.3834 418.3834 0.9999552
2:4-1:4   -1.00 -339.8834 337.8834 1.0000000
3:4-1:4   42.50 -296.3834 381.3834 1.0000000
4:4-1:4   31.75 -307.1334 370.6334 1.0000000
3:4-2:4   43.50 -295.3834 382.3834 1.0000000
4:4-2:4   32.75 -306.1334 371.6334 1.0000000
4:4-3:4  -10.75 -349.6334 328.1334 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE


$periodo
   1    2    4    3 
 "a" "ab" "ab"  "b" 

$`fermentador:periodo`
$`fermentador:periodo`$Letters
4:1 3:1 4:2 1:1 3:2 2:2 3:4 2:1 4:4 1:2 1:4 2:4 4:3 3:3 2:3 1:3 
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" 

$`fermentador:periodo`$LetterMatrix
       a
4:1 TRUE
3:1 TRUE
4:2 TRUE
1:1 TRUE
3:2 TRUE
2:2 TRUE
3:4 TRUE
2:1 TRUE
4:4 TRUE
1:2 TRUE
1:4 TRUE
2:4 TRUE
4:3 TRUE
3:3 TRUE
2:3 TRUE
1:3 TRUE




########################### Variável: gas_total ##########################
ANOVA:
                    Df  Sum Sq Mean Sq F value Pr(>F)  
fermentador          3  208575   69525   0.456 0.7145  
periodo              3 1035268  345089   2.262 0.0932 .
fermentador:periodo  9  265946   29550   0.194 0.9938  
Residuals           48 7323322  152569                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean  SE df lower.CL upper.CL
 1           1         1549 195 48     1157     1942
 2           1         1508 195 48     1115     1901
 3           1         1584 195 48     1191     1977
 4           1         1406 195 48     1013     1798
 1           2         1579 195 48     1187     1972
 2           2         1543 195 48     1151     1936
 3           2         1536 195 48     1143     1929
 4           2         1290 195 48      897     1682
 1           3         1389 195 48      996     1781
 2           3         1264 195 48      872     1657
 3           3         1199 195 48      807     1592
 4           3         1188 195 48      795     1580
 1           4         1516 195 48     1124     1909
 2           4         1588 195 48     1196     1981
 3           4         1723 195 48     1330     2116
 4           4         1598 195 48     1206     1991

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr      upr     p adj
2-1  -32.4375 -399.9686 335.0936 0.9953756
3-1    2.1875 -365.3436 369.7186 0.9999986
4-1 -138.0625 -505.5936 229.4686 0.7502508
3-2   34.6250 -332.9061 402.1561 0.9943926
4-2 -105.6250 -473.1561 261.9061 0.8698176
4-3 -140.2500 -507.7811 227.2811 0.7411645

$periodo
         diff        lwr      upr     p adj
2-1  -24.6875 -392.21859 342.8436 0.9979425
3-1 -251.6875 -619.21859 115.8436 0.2755320
4-1   94.8125 -272.71859 462.3436 0.9017234
3-2 -227.0000 -594.53109 140.5311 0.3644373
4-2  119.5000 -248.03109 487.0311 0.8226068
4-3  346.5000  -21.03109 714.0311 0.0711939

$`fermentador:periodo`
           diff        lwr       upr     p adj
2:1-1:1  -41.25 -1039.0634  956.5634 1.0000000
3:1-1:1   34.75  -963.0634 1032.5634 1.0000000
4:1-1:1 -143.75 -1141.5634  854.0634 0.9999999
1:2-1:1   30.00  -967.8134 1027.8134 1.0000000
2:2-1:1   -6.00 -1003.8134  991.8134 1.0000000
3:2-1:1  -13.25 -1011.0634  984.5634 1.0000000
4:2-1:1 -259.75 -1257.5634  738.0634 0.9998378
1:3-1:1 -160.50 -1158.3134  837.3134 0.9999997
2:3-1:1 -285.00 -1282.8134  712.8134 0.9995128
3:3-1:1 -350.00 -1347.8134  647.8134 0.9953996
4:3-1:1 -361.50 -1359.3134  636.3134 0.9936294
1:4-1:1  -33.00 -1030.8134  964.8134 1.0000000
2:4-1:1   39.00  -958.8134 1036.8134 1.0000000
3:4-1:1  173.75  -824.0634 1171.5634 0.9999991
4:4-1:1   49.25  -948.5634 1047.0634 1.0000000
3:1-2:1   76.00  -921.8134 1073.8134 1.0000000
4:1-2:1 -102.50 -1100.3134  895.3134 1.0000000
1:2-2:1   71.25  -926.5634 1069.0634 1.0000000
2:2-2:1   35.25  -962.5634 1033.0634 1.0000000
3:2-2:1   28.00  -969.8134 1025.8134 1.0000000
4:2-2:1 -218.50 -1216.3134  779.3134 0.9999814
1:3-2:1 -119.25 -1117.0634  878.5634 1.0000000
2:3-2:1 -243.75 -1241.5634  754.0634 0.9999256
3:3-2:1 -308.75 -1306.5634  689.0634 0.9987914
4:3-2:1 -320.25 -1318.0634  677.5634 0.9981946
1:4-2:1    8.25  -989.5634 1006.0634 1.0000000
2:4-2:1   80.25  -917.5634 1078.0634 1.0000000
3:4-2:1  215.00  -782.8134 1212.8134 0.9999849
4:4-2:1   90.50  -907.3134 1088.3134 1.0000000
4:1-3:1 -178.50 -1176.3134  819.3134 0.9999987
1:2-3:1   -4.75 -1002.5634  993.0634 1.0000000
2:2-3:1  -40.75 -1038.5634  957.0634 1.0000000
3:2-3:1  -48.00 -1045.8134  949.8134 1.0000000
4:2-3:1 -294.50 -1292.3134  703.3134 0.9992897
1:3-3:1 -195.25 -1193.0634  802.5634 0.9999957
2:3-3:1 -319.75 -1317.5634  678.0634 0.9982249
3:3-3:1 -384.75 -1382.5634  613.0634 0.9883500
4:3-3:1 -396.25 -1394.0634  601.5634 0.9846832
1:4-3:1  -67.75 -1065.5634  930.0634 1.0000000
2:4-3:1    4.25  -993.5634 1002.0634 1.0000000
3:4-3:1  139.00  -858.8134 1136.8134 1.0000000
4:4-3:1   14.50  -983.3134 1012.3134 1.0000000
1:2-4:1  173.75  -824.0634 1171.5634 0.9999991
2:2-4:1  137.75  -860.0634 1135.5634 1.0000000
3:2-4:1  130.50  -867.3134 1128.3134 1.0000000
4:2-4:1 -116.00 -1113.8134  881.8134 1.0000000
1:3-4:1  -16.75 -1014.5634  981.0634 1.0000000
2:3-4:1 -141.25 -1139.0634  856.5634 0.9999999
3:3-4:1 -206.25 -1204.0634  791.5634 0.9999912
4:3-4:1 -217.75 -1215.5634  780.0634 0.9999822
1:4-4:1  110.75  -887.0634 1108.5634 1.0000000
2:4-4:1  182.75  -815.0634 1180.5634 0.9999982
3:4-4:1  317.50  -680.3134 1315.3134 0.9983563
4:4-4:1  193.00  -804.8134 1190.8134 0.9999963
2:2-1:2  -36.00 -1033.8134  961.8134 1.0000000
3:2-1:2  -43.25 -1041.0634  954.5634 1.0000000
4:2-1:2 -289.75 -1287.5634  708.0634 0.9994104
1:3-1:2 -190.50 -1188.3134  807.3134 0.9999969
2:3-1:2 -315.00 -1312.8134  682.8134 0.9984924
3:3-1:2 -380.00 -1377.8134  617.8134 0.9896435
4:3-1:2 -391.50 -1389.3134  606.3134 0.9862942
1:4-1:2  -63.00 -1060.8134  934.8134 1.0000000
2:4-1:2    9.00  -988.8134 1006.8134 1.0000000
3:4-1:2  143.75  -854.0634 1141.5634 0.9999999
4:4-1:2   19.25  -978.5634 1017.0634 1.0000000
3:2-2:2   -7.25 -1005.0634  990.5634 1.0000000
4:2-2:2 -253.75 -1251.5634  744.0634 0.9998780
1:3-2:2 -154.50 -1152.3134  843.3134 0.9999998
2:3-2:2 -279.00 -1276.8134  718.8134 0.9996198
3:3-2:2 -344.00 -1341.8134  653.8134 0.9961477
4:3-2:2 -355.50 -1353.3134  642.3134 0.9946119
1:4-2:2  -27.00 -1024.8134  970.8134 1.0000000
2:4-2:2   45.00  -952.8134 1042.8134 1.0000000
3:4-2:2  179.75  -818.0634 1177.5634 0.9999986
4:4-2:2   55.25  -942.5634 1053.0634 1.0000000
4:2-3:2 -246.50 -1244.3134  751.3134 0.9999146
1:3-3:2 -147.25 -1145.0634  850.5634 0.9999999
2:3-3:2 -271.75 -1269.5634  726.0634 0.9997213
3:3-3:2 -336.75 -1334.5634  661.0634 0.9969138
4:3-3:2 -348.25 -1346.0634  649.5634 0.9956293
1:4-3:2  -19.75 -1017.5634  978.0634 1.0000000
2:4-3:2   52.25  -945.5634 1050.0634 1.0000000
3:4-3:2  187.00  -810.8134 1184.8134 0.9999976
4:4-3:2   62.50  -935.3134 1060.3134 1.0000000
1:3-4:2   99.25  -898.5634 1097.0634 1.0000000
2:3-4:2  -25.25 -1023.0634  972.5634 1.0000000
3:3-4:2  -90.25 -1088.0634  907.5634 1.0000000
4:3-4:2 -101.75 -1099.5634  896.0634 1.0000000
1:4-4:2  226.75  -771.0634 1224.5634 0.9999700
2:4-4:2  298.75  -699.0634 1296.5634 0.9991642
3:4-4:2  433.50  -564.3134 1431.3134 0.9663855
4:4-4:2  309.00  -688.8134 1306.8134 0.9987805
2:3-1:3 -124.50 -1122.3134  873.3134 1.0000000
3:3-1:3 -189.50 -1187.3134  808.3134 0.9999971
4:3-1:3 -201.00 -1198.8134  796.8134 0.9999937
1:4-1:3  127.50  -870.3134 1125.3134 1.0000000
2:4-1:3  199.50  -798.3134 1197.3134 0.9999943
3:4-1:3  334.25  -663.5634 1332.0634 0.9971465
4:4-1:3  209.75  -788.0634 1207.5634 0.9999890
3:3-2:3  -65.00 -1062.8134  932.8134 1.0000000
4:3-2:3  -76.50 -1074.3134  921.3134 1.0000000
1:4-2:3  252.00  -745.8134 1249.8134 0.9998879
2:4-2:3  324.00  -673.8134 1321.8134 0.9979525
3:4-2:3  458.75  -539.0634 1456.5634 0.9469966
4:4-2:3  334.25  -663.5634 1332.0634 0.9971465
4:3-3:3  -11.50 -1009.3134  986.3134 1.0000000
1:4-3:3  317.00  -680.8134 1314.8134 0.9983843
2:4-3:3  389.00  -608.8134 1386.8134 0.9870866
3:4-3:3  523.75  -474.0634 1521.5634 0.8648021
4:4-3:3  399.25  -598.5634 1397.0634 0.9835916
1:4-4:3  328.50  -669.3134 1326.3134 0.9976262
2:4-4:3  400.50  -597.3134 1398.3134 0.9831192
3:4-4:3  535.25  -462.5634 1533.0634 0.8451948
4:4-4:3  410.75  -587.0634 1408.5634 0.9788345
2:4-1:4   72.00  -925.8134 1069.8134 1.0000000
3:4-1:4  206.75  -791.0634 1204.5634 0.9999909
4:4-1:4   82.25  -915.5634 1080.0634 1.0000000
3:4-2:4  134.75  -863.0634 1132.5634 1.0000000
4:4-2:4   10.25  -987.5634 1008.0634 1.0000000
4:4-3:4 -124.50 -1122.3134  873.3134 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   1   2   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
1 TRUE
2 TRUE
4 TRUE


$periodo
$periodo$Letters
  4   1   2   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
4 TRUE
1 TRUE
2 TRUE
3 TRUE


$`fermentador:periodo`
$`fermentador:periodo`$Letters
3:4 4:4 2:4 3:1 1:2 1:1 2:2 3:2 1:4 2:1 4:1 1:3 4:2 2:3 3:3 4:3 
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" 

$`fermentador:periodo`$LetterMatrix
       a
3:4 TRUE
4:4 TRUE
2:4 TRUE
3:1 TRUE
1:2 TRUE
1:1 TRUE
2:2 TRUE
3:2 TRUE
1:4 TRUE
2:1 TRUE
4:1 TRUE
1:3 TRUE
4:2 TRUE
2:3 TRUE
3:3 TRUE
4:3 TRUE




########################### Variável: ch4_effic ##########################
ANOVA:
                    Df Sum Sq Mean Sq F value Pr(>F)
fermentador          3  4.060  1.3535   1.385  0.283
periodo              3  3.148  1.0493   1.074  0.388
fermentador:periodo  9 13.700  1.5223   1.558  0.210
Residuals           16 15.631  0.9769               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean    SE df lower.CL upper.CL
 1           1         5.74 0.699 16     4.26     7.22
 2           1         5.66 0.699 16     4.18     7.14
 3           1         6.04 0.699 16     4.55     7.52
 4           1         3.79 0.699 16     2.31     5.27
 1           2         6.03 0.699 16     4.55     7.51
 2           2         6.34 0.699 16     4.86     7.83
 3           2         4.70 0.699 16     3.21     6.18
 4           2         6.37 0.699 16     4.89     7.85
 1           3         5.53 0.699 16     4.05     7.01
 2           3         4.42 0.699 16     2.94     5.91
 3           3         4.78 0.699 16     3.29     6.26
 4           3         5.22 0.699 16     3.74     6.71
 1           4         5.74 0.699 16     4.26     7.22
 2           4         5.66 0.699 16     4.18     7.14
 3           4         6.04 0.699 16     4.55     7.52
 4           4         3.79 0.699 16     2.31     5.27

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
        diff       lwr       upr     p adj
2-1 -0.23750 -1.651416 1.1764159 0.9623084
3-1 -0.37500 -1.788916 1.0389159 0.8715960
4-1 -0.96625 -2.380166 0.4476659 0.2453401
3-2 -0.13750 -1.551416 1.2764159 0.9921807
4-2 -0.72875 -2.142666 0.6851659 0.4744922
4-3 -0.59125 -2.005166 0.8226659 0.6377411

$periodo
             diff        lwr       upr     p adj
2-1  5.537500e-01 -0.8601659 1.9676659 0.6826183
3-1 -3.175000e-01 -1.7314159 1.0964159 0.9166334
4-1 -8.881784e-16 -1.4139159 1.4139159 1.0000000
3-2 -8.712500e-01 -2.2851659 0.5426659 0.3258970
4-2 -5.537500e-01 -1.9676659 0.8601659 0.6826183
4-3  3.175000e-01 -1.0964159 1.7314159 0.9166334

$`fermentador:periodo`
                 diff       lwr      upr     p adj
2:1-1:1 -8.000000e-02 -4.037166 3.877166 1.0000000
3:1-1:1  2.950000e-01 -3.662166 4.252166 1.0000000
4:1-1:1 -1.950000e+00 -5.907166 2.007166 0.8093383
1:2-1:1  2.900000e-01 -3.667166 4.247166 1.0000000
2:2-1:1  6.050000e-01 -3.352166 4.562166 0.9999980
3:2-1:1 -1.045000e+00 -5.002166 2.912166 0.9986029
4:2-1:1  6.300000e-01 -3.327166 4.587166 0.9999966
1:3-1:1 -2.100000e-01 -4.167166 3.747166 1.0000000
2:3-1:1 -1.315000e+00 -5.272166 2.642166 0.9873784
3:3-1:1 -9.650000e-01 -4.922166 2.992166 0.9994041
4:3-1:1 -5.150000e-01 -4.472166 3.442166 0.9999998
1:4-1:1 -4.440892e-15 -3.957166 3.957166 1.0000000
2:4-1:1 -8.000000e-02 -4.037166 3.877166 1.0000000
3:4-1:1  2.950000e-01 -3.662166 4.252166 1.0000000
4:4-1:1 -1.950000e+00 -5.907166 2.007166 0.8093383
3:1-2:1  3.750000e-01 -3.582166 4.332166 1.0000000
4:1-2:1 -1.870000e+00 -5.827166 2.087166 0.8469659
1:2-2:1  3.700000e-01 -3.587166 4.327166 1.0000000
2:2-2:1  6.850000e-01 -3.272166 4.642166 0.9999899
3:2-2:1 -9.650000e-01 -4.922166 2.992166 0.9994041
4:2-2:1  7.100000e-01 -3.247166 4.667166 0.9999841
1:3-2:1 -1.300000e-01 -4.087166 3.827166 1.0000000
2:3-2:1 -1.235000e+00 -5.192166 2.722166 0.9927915
3:3-2:1 -8.850000e-01 -4.842166 3.072166 0.9997744
4:3-2:1 -4.350000e-01 -4.392166 3.522166 1.0000000
1:4-2:1  8.000000e-02 -3.877166 4.037166 1.0000000
2:4-2:1  8.881784e-16 -3.957166 3.957166 1.0000000
3:4-2:1  3.750000e-01 -3.582166 4.332166 1.0000000
4:4-2:1 -1.870000e+00 -5.827166 2.087166 0.8469659
4:1-3:1 -2.245000e+00 -6.202166 1.712166 0.6458700
1:2-3:1 -5.000000e-03 -3.962166 3.952166 1.0000000
2:2-3:1  3.100000e-01 -3.647166 4.267166 1.0000000
3:2-3:1 -1.340000e+00 -5.297166 2.617166 0.9851637
4:2-3:1  3.350000e-01 -3.622166 4.292166 1.0000000
1:3-3:1 -5.050000e-01 -4.462166 3.452166 0.9999998
2:3-3:1 -1.610000e+00 -5.567166 2.347166 0.9390952
3:3-3:1 -1.260000e+00 -5.217166 2.697166 0.9913494
4:3-3:1 -8.100000e-01 -4.767166 3.147166 0.9999201
1:4-3:1 -2.950000e-01 -4.252166 3.662166 1.0000000
2:4-3:1 -3.750000e-01 -4.332166 3.582166 1.0000000
3:4-3:1 -8.881784e-16 -3.957166 3.957166 1.0000000
4:4-3:1 -2.245000e+00 -6.202166 1.712166 0.6458700
1:2-4:1  2.240000e+00 -1.717166 6.197166 0.6488283
2:2-4:1  2.555000e+00 -1.402166 6.512166 0.4646140
3:2-4:1  9.050000e-01 -3.052166 4.862166 0.9997088
4:2-4:1  2.580000e+00 -1.377166 6.537166 0.4507708
1:3-4:1  1.740000e+00 -2.217166 5.697166 0.8991495
2:3-4:1  6.350000e-01 -3.322166 4.592166 0.9999962
3:3-4:1  9.850000e-01 -2.972166 4.942166 0.9992549
4:3-4:1  1.435000e+00 -2.522166 5.392166 0.9739693
1:4-4:1  1.950000e+00 -2.007166 5.907166 0.8093383
2:4-4:1  1.870000e+00 -2.087166 5.827166 0.8469659
3:4-4:1  2.245000e+00 -1.712166 6.202166 0.6458700
4:4-4:1  0.000000e+00 -3.957166 3.957166 1.0000000
2:2-1:2  3.150000e-01 -3.642166 4.272166 1.0000000
3:2-1:2 -1.335000e+00 -5.292166 2.622166 0.9856288
4:2-1:2  3.400000e-01 -3.617166 4.297166 1.0000000
1:3-1:2 -5.000000e-01 -4.457166 3.457166 0.9999998
2:3-1:2 -1.605000e+00 -5.562166 2.352166 0.9403834
3:3-1:2 -1.255000e+00 -5.212166 2.702166 0.9916546
4:3-1:2 -8.050000e-01 -4.762166 3.152166 0.9999258
1:4-1:2 -2.900000e-01 -4.247166 3.667166 1.0000000
2:4-1:2 -3.700000e-01 -4.327166 3.587166 1.0000000
3:4-1:2  5.000000e-03 -3.952166 3.962166 1.0000000
4:4-1:2 -2.240000e+00 -6.197166 1.717166 0.6488283
3:2-2:2 -1.650000e+00 -5.607166 2.307166 0.9281328
4:2-2:2  2.500000e-02 -3.932166 3.982166 1.0000000
1:3-2:2 -8.150000e-01 -4.772166 3.142166 0.9999140
2:3-2:2 -1.920000e+00 -5.877166 2.037166 0.8238969
3:3-2:2 -1.570000e+00 -5.527166 2.387166 0.9488982
4:3-2:2 -1.120000e+00 -5.077166 2.837166 0.9971694
1:4-2:2 -6.050000e-01 -4.562166 3.352166 0.9999980
2:4-2:2 -6.850000e-01 -4.642166 3.272166 0.9999899
3:4-2:2 -3.100000e-01 -4.267166 3.647166 1.0000000
4:4-2:2 -2.555000e+00 -6.512166 1.402166 0.4646140
4:2-3:2  1.675000e+00 -2.282166 5.632166 0.9206831
1:3-3:2  8.350000e-01 -3.122166 4.792166 0.9998853
2:3-3:2 -2.700000e-01 -4.227166 3.687166 1.0000000
3:3-3:2  8.000000e-02 -3.877166 4.037166 1.0000000
4:3-3:2  5.300000e-01 -3.427166 4.487166 0.9999997
1:4-3:2  1.045000e+00 -2.912166 5.002166 0.9986029
2:4-3:2  9.650000e-01 -2.992166 4.922166 0.9994041
3:4-3:2  1.340000e+00 -2.617166 5.297166 0.9851637
4:4-3:2 -9.050000e-01 -4.862166 3.052166 0.9997088
1:3-4:2 -8.400000e-01 -4.797166 3.117166 0.9998770
2:3-4:2 -1.945000e+00 -5.902166 2.012166 0.8118002
3:3-4:2 -1.595000e+00 -5.552166 2.362166 0.9429056
4:3-4:2 -1.145000e+00 -5.102166 2.812166 0.9964816
1:4-4:2 -6.300000e-01 -4.587166 3.327166 0.9999966
2:4-4:2 -7.100000e-01 -4.667166 3.247166 0.9999841
3:4-4:2 -3.350000e-01 -4.292166 3.622166 1.0000000
4:4-4:2 -2.580000e+00 -6.537166 1.377166 0.4507708
2:3-1:3 -1.105000e+00 -5.062166 2.852166 0.9975260
3:3-1:3 -7.550000e-01 -4.712166 3.202166 0.9999659
4:3-1:3 -3.050000e-01 -4.262166 3.652166 1.0000000
1:4-1:3  2.100000e-01 -3.747166 4.167166 1.0000000
2:4-1:3  1.300000e-01 -3.827166 4.087166 1.0000000
3:4-1:3  5.050000e-01 -3.452166 4.462166 0.9999998
4:4-1:3 -1.740000e+00 -5.697166 2.217166 0.8991495
3:3-2:3  3.500000e-01 -3.607166 4.307166 1.0000000
4:3-2:3  8.000000e-01 -3.157166 4.757166 0.9999311
1:4-2:3  1.315000e+00 -2.642166 5.272166 0.9873784
2:4-2:3  1.235000e+00 -2.722166 5.192166 0.9927915
3:4-2:3  1.610000e+00 -2.347166 5.567166 0.9390952
4:4-2:3 -6.350000e-01 -4.592166 3.322166 0.9999962
4:3-3:3  4.500000e-01 -3.507166 4.407166 1.0000000
1:4-3:3  9.650000e-01 -2.992166 4.922166 0.9994041
2:4-3:3  8.850000e-01 -3.072166 4.842166 0.9997744
3:4-3:3  1.260000e+00 -2.697166 5.217166 0.9913494
4:4-3:3 -9.850000e-01 -4.942166 2.972166 0.9992549
1:4-4:3  5.150000e-01 -3.442166 4.472166 0.9999998
2:4-4:3  4.350000e-01 -3.522166 4.392166 1.0000000
3:4-4:3  8.100000e-01 -3.147166 4.767166 0.9999201
4:4-4:3 -1.435000e+00 -5.392166 2.522166 0.9739693
2:4-1:4 -8.000000e-02 -4.037166 3.877166 1.0000000
3:4-1:4  2.950000e-01 -3.662166 4.252166 1.0000000
4:4-1:4 -1.950000e+00 -5.907166 2.007166 0.8093383
3:4-2:4  3.750000e-01 -3.582166 4.332166 1.0000000
4:4-2:4 -1.870000e+00 -5.827166 2.087166 0.8469659
4:4-3:4 -2.245000e+00 -6.202166 1.712166 0.6458700


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$periodo
$periodo$Letters
  2   1   4   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
2 TRUE
1 TRUE
4 TRUE
3 TRUE


$`fermentador:periodo`
$`fermentador:periodo`$Letters
4:2 2:2 3:1 3:4 1:2 1:1 1:4 2:1 2:4 1:3 4:3 3:3 3:2 2:3 4:1 4:4 
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" 

$`fermentador:periodo`$LetterMatrix
       a
4:2 TRUE
2:2 TRUE
3:1 TRUE
3:4 TRUE
1:2 TRUE
1:1 TRUE
1:4 TRUE
2:1 TRUE
2:4 TRUE
1:3 TRUE
4:3 TRUE
3:3 TRUE
3:2 TRUE
2:3 TRUE
4:1 TRUE
4:4 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
                    Df  Sum Sq  Mean Sq F value Pr(>F)
fermentador          3 0.00659 0.002196   0.710  0.560
periodo              3 0.02021 0.006735   2.177  0.131
fermentador:periodo  9 0.01099 0.001221   0.395  0.920
Residuals           16 0.04950 0.003094               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean     SE df lower.CL upper.CL
 1           1        0.120 0.0393 16  0.03632    0.203
 2           1        0.128 0.0393 16  0.04507    0.212
 3           1        0.150 0.0393 16  0.06662    0.233
 4           1        0.085 0.0393 16  0.00162    0.168
 1           2        0.145 0.0393 16  0.06162    0.228
 2           2        0.145 0.0393 16  0.06162    0.228
 3           2        0.100 0.0393 16  0.01662    0.183
 4           2        0.090 0.0393 16  0.00662    0.173
 1           3        0.130 0.0393 16  0.04662    0.213
 2           3        0.080 0.0393 16 -0.00338    0.163
 3           3        0.070 0.0393 16 -0.01338    0.153
 4           3        0.115 0.0393 16  0.03162    0.198
 1           4        0.190 0.0393 16  0.10662    0.273
 2           4        0.170 0.0393 16  0.08662    0.253
 3           4        0.175 0.0393 16  0.09162    0.258
 4           4        0.135 0.0393 16  0.05162    0.218

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
          diff         lwr        upr     p adj
2-1 -0.0153125 -0.09488082 0.06425582 0.9450419
3-1 -0.0224250 -0.10199332 0.05714332 0.8505120
4-1 -0.0399250 -0.11949332 0.03964332 0.4966663
3-2 -0.0071125 -0.08668082 0.07245582 0.9938951
4-2 -0.0246125 -0.10418082 0.05495582 0.8126063
4-3 -0.0175000 -0.09706832 0.06206832 0.9211172

$periodo
          diff         lwr        upr     p adj
2-1 -0.0007875 -0.08035582 0.07878082 0.9999915
3-1 -0.0220375 -0.10160582 0.05753082 0.8568434
4-1  0.0467125 -0.03285582 0.12628082 0.3656643
3-2 -0.0212500 -0.10081832 0.05831832 0.8693269
4-2  0.0475000 -0.03206832 0.12706832 0.3518334
4-3  0.0687500 -0.01081832 0.14831832 0.1031126

$`fermentador:periodo`
                 diff        lwr       upr     p adj
2:1-1:1  8.750000e-03 -0.2139401 0.2314401 1.0000000
3:1-1:1  3.030000e-02 -0.1923901 0.2529901 0.9999996
4:1-1:1 -3.470000e-02 -0.2573901 0.1879901 0.9999974
1:2-1:1  2.530000e-02 -0.1973901 0.2479901 1.0000000
2:2-1:1  2.530000e-02 -0.1973901 0.2479901 1.0000000
3:2-1:1 -1.970000e-02 -0.2423901 0.2029901 1.0000000
4:2-1:1 -2.970000e-02 -0.2523901 0.1929901 0.9999997
1:3-1:1  1.030000e-02 -0.2123901 0.2329901 1.0000000
2:3-1:1 -3.970000e-02 -0.2623901 0.1829901 0.9999854
3:3-1:1 -4.970000e-02 -0.2723901 0.1729901 0.9997797
4:3-1:1 -4.700000e-03 -0.2273901 0.2179901 1.0000000
1:4-1:1  7.030000e-02 -0.1523901 0.2929901 0.9919968
2:4-1:1  5.030000e-02 -0.1723901 0.2729901 0.9997472
3:4-1:1  5.530000e-02 -0.1673901 0.2779901 0.9992737
4:4-1:1  1.530000e-02 -0.2073901 0.2379901 1.0000000
3:1-2:1  2.155000e-02 -0.2011401 0.2442401 1.0000000
4:1-2:1 -4.345000e-02 -0.2661401 0.1792401 0.9999552
1:2-2:1  1.655000e-02 -0.2061401 0.2392401 1.0000000
2:2-2:1  1.655000e-02 -0.2061401 0.2392401 1.0000000
3:2-2:1 -2.845000e-02 -0.2511401 0.1942401 0.9999998
4:2-2:1 -3.845000e-02 -0.2611401 0.1842401 0.9999902
1:3-2:1  1.550000e-03 -0.2211401 0.2242401 1.0000000
2:3-2:1 -4.845000e-02 -0.2711401 0.1742401 0.9998359
3:3-2:1 -5.845000e-02 -0.2811401 0.1642401 0.9986891
4:3-2:1 -1.345000e-02 -0.2361401 0.2092401 1.0000000
1:4-2:1  6.155000e-02 -0.1611401 0.2842401 0.9977686
2:4-2:1  4.155000e-02 -0.1811401 0.2642401 0.9999741
3:4-2:1  4.655000e-02 -0.1761401 0.2692401 0.9998974
4:4-2:1  6.550000e-03 -0.2161401 0.2292401 1.0000000
4:1-3:1 -6.500000e-02 -0.2876901 0.1576901 0.9961694
1:2-3:1 -5.000000e-03 -0.2276901 0.2176901 1.0000000
2:2-3:1 -5.000000e-03 -0.2276901 0.2176901 1.0000000
3:2-3:1 -5.000000e-02 -0.2726901 0.1726901 0.9997640
4:2-3:1 -6.000000e-02 -0.2826901 0.1626901 0.9982798
1:3-3:1 -2.000000e-02 -0.2426901 0.2026901 1.0000000
2:3-3:1 -7.000000e-02 -0.2926901 0.1526901 0.9923025
3:3-3:1 -8.000000e-02 -0.3026901 0.1426901 0.9758418
4:3-3:1 -3.500000e-02 -0.2576901 0.1876901 0.9999971
1:4-3:1  4.000000e-02 -0.1826901 0.2626901 0.9999839
2:4-3:1  2.000000e-02 -0.2026901 0.2426901 1.0000000
3:4-3:1  2.500000e-02 -0.1976901 0.2476901 1.0000000
4:4-3:1 -1.500000e-02 -0.2376901 0.2076901 1.0000000
1:2-4:1  6.000000e-02 -0.1626901 0.2826901 0.9982798
2:2-4:1  6.000000e-02 -0.1626901 0.2826901 0.9982798
3:2-4:1  1.500000e-02 -0.2076901 0.2376901 1.0000000
4:2-4:1  5.000000e-03 -0.2176901 0.2276901 1.0000000
1:3-4:1  4.500000e-02 -0.1776901 0.2676901 0.9999315
2:3-4:1 -5.000000e-03 -0.2276901 0.2176901 1.0000000
3:3-4:1 -1.500000e-02 -0.2376901 0.2076901 1.0000000
4:3-4:1  3.000000e-02 -0.1926901 0.2526901 0.9999996
1:4-4:1  1.050000e-01 -0.1176901 0.3276901 0.8488176
2:4-4:1  8.500000e-02 -0.1376901 0.3076901 0.9614234
3:4-4:1  9.000000e-02 -0.1326901 0.3126901 0.9418336
4:4-4:1  5.000000e-02 -0.1726901 0.2726901 0.9997640
2:2-1:2 -5.551115e-17 -0.2226901 0.2226901 1.0000000
3:2-1:2 -4.500000e-02 -0.2676901 0.1776901 0.9999315
4:2-1:2 -5.500000e-02 -0.2776901 0.1676901 0.9993154
1:3-1:2 -1.500000e-02 -0.2376901 0.2076901 1.0000000
2:3-1:2 -6.500000e-02 -0.2876901 0.1576901 0.9961694
3:3-1:2 -7.500000e-02 -0.2976901 0.1476901 0.9858355
4:3-1:2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
1:4-1:2  4.500000e-02 -0.1776901 0.2676901 0.9999315
2:4-1:2  2.500000e-02 -0.1976901 0.2476901 1.0000000
3:4-1:2  3.000000e-02 -0.1926901 0.2526901 0.9999996
4:4-1:2 -1.000000e-02 -0.2326901 0.2126901 1.0000000
3:2-2:2 -4.500000e-02 -0.2676901 0.1776901 0.9999315
4:2-2:2 -5.500000e-02 -0.2776901 0.1676901 0.9993154
1:3-2:2 -1.500000e-02 -0.2376901 0.2076901 1.0000000
2:3-2:2 -6.500000e-02 -0.2876901 0.1576901 0.9961694
3:3-2:2 -7.500000e-02 -0.2976901 0.1476901 0.9858355
4:3-2:2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
1:4-2:2  4.500000e-02 -0.1776901 0.2676901 0.9999315
2:4-2:2  2.500000e-02 -0.1976901 0.2476901 1.0000000
3:4-2:2  3.000000e-02 -0.1926901 0.2526901 0.9999996
4:4-2:2 -1.000000e-02 -0.2326901 0.2126901 1.0000000
4:2-3:2 -1.000000e-02 -0.2326901 0.2126901 1.0000000
1:3-3:2  3.000000e-02 -0.1926901 0.2526901 0.9999996
2:3-3:2 -2.000000e-02 -0.2426901 0.2026901 1.0000000
3:3-3:2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
4:3-3:2  1.500000e-02 -0.2076901 0.2376901 1.0000000
1:4-3:2  9.000000e-02 -0.1326901 0.3126901 0.9418336
2:4-3:2  7.000000e-02 -0.1526901 0.2926901 0.9923025
3:4-3:2  7.500000e-02 -0.1476901 0.2976901 0.9858355
4:4-3:2  3.500000e-02 -0.1876901 0.2576901 0.9999971
1:3-4:2  4.000000e-02 -0.1826901 0.2626901 0.9999839
2:3-4:2 -1.000000e-02 -0.2326901 0.2126901 1.0000000
3:3-4:2 -2.000000e-02 -0.2426901 0.2026901 1.0000000
4:3-4:2  2.500000e-02 -0.1976901 0.2476901 1.0000000
1:4-4:2  1.000000e-01 -0.1226901 0.3226901 0.8855140
2:4-4:2  8.000000e-02 -0.1426901 0.3026901 0.9758418
3:4-4:2  8.500000e-02 -0.1376901 0.3076901 0.9614234
4:4-4:2  4.500000e-02 -0.1776901 0.2676901 0.9999315
2:3-1:3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
3:3-1:3 -6.000000e-02 -0.2826901 0.1626901 0.9982798
4:3-1:3 -1.500000e-02 -0.2376901 0.2076901 1.0000000
1:4-1:3  6.000000e-02 -0.1626901 0.2826901 0.9982798
2:4-1:3  4.000000e-02 -0.1826901 0.2626901 0.9999839
3:4-1:3  4.500000e-02 -0.1776901 0.2676901 0.9999315
4:4-1:3  5.000000e-03 -0.2176901 0.2276901 1.0000000
3:3-2:3 -1.000000e-02 -0.2326901 0.2126901 1.0000000
4:3-2:3  3.500000e-02 -0.1876901 0.2576901 0.9999971
1:4-2:3  1.100000e-01 -0.1126901 0.3326901 0.8070205
2:4-2:3  9.000000e-02 -0.1326901 0.3126901 0.9418336
3:4-2:3  9.500000e-02 -0.1276901 0.3176901 0.9165838
4:4-2:3  5.500000e-02 -0.1676901 0.2776901 0.9993154
4:3-3:3  4.500000e-02 -0.1776901 0.2676901 0.9999315
1:4-3:3  1.200000e-01 -0.1026901 0.3426901 0.7115193
2:4-3:3  1.000000e-01 -0.1226901 0.3226901 0.8855140
3:4-3:3  1.050000e-01 -0.1176901 0.3276901 0.8488176
4:4-3:3  6.500000e-02 -0.1576901 0.2876901 0.9961694
1:4-4:3  7.500000e-02 -0.1476901 0.2976901 0.9858355
2:4-4:3  5.500000e-02 -0.1676901 0.2776901 0.9993154
3:4-4:3  6.000000e-02 -0.1626901 0.2826901 0.9982798
4:4-4:3  2.000000e-02 -0.2026901 0.2426901 1.0000000
2:4-1:4 -2.000000e-02 -0.2426901 0.2026901 1.0000000
3:4-1:4 -1.500000e-02 -0.2376901 0.2076901 1.0000000
4:4-1:4 -5.500000e-02 -0.2776901 0.1676901 0.9993154
3:4-2:4  5.000000e-03 -0.2176901 0.2276901 1.0000000
4:4-2:4 -3.500000e-02 -0.2576901 0.1876901 0.9999971
4:4-3:4 -4.000000e-02 -0.2626901 0.1826901 0.9999839


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$periodo
$periodo$Letters
  4   1   2   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
4 TRUE
1 TRUE
2 TRUE
3 TRUE


$`fermentador:periodo`
$`fermentador:periodo`$Letters
1:4 3:4 2:4 3:1 1:2 2:2 4:4 1:3 2:1 1:1 4:3 3:2 4:2 4:1 2:3 3:3 
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" 

$`fermentador:periodo`$LetterMatrix
       a
1:4 TRUE
3:4 TRUE
2:4 TRUE
3:1 TRUE
1:2 TRUE
2:2 TRUE
4:4 TRUE
1:3 TRUE
2:1 TRUE
1:1 TRUE
4:3 TRUE
3:2 TRUE
4:2 TRUE
4:1 TRUE
2:3 TRUE
3:3 TRUE




########################### Variável: ch4_48h ##########################
ANOVA:
                    Df  Sum Sq  Mean Sq F value   Pr(>F)    
fermentador          3 0.04519 0.015063   96.40 4.14e-16 ***
periodo              3 0.09002 0.030007  192.05  < 2e-16 ***
fermentador:periodo  9 0.12296 0.013662   87.44  < 2e-16 ***
Residuals           32 0.00500 0.000156                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean      SE df lower.CL upper.CL
 1           1        0.277 0.00722 32    0.262    0.291
 2           1        0.300 0.00722 32    0.285    0.315
 3           1        0.350 0.00722 32    0.335    0.365
 4           1        0.183 0.00722 32    0.169    0.198
 1           2        0.357 0.00722 32    0.342    0.371
 2           2        0.367 0.00722 32    0.352    0.381
 3           2        0.230 0.00722 32    0.215    0.245
 4           2        0.210 0.00722 32    0.195    0.225
 1           3        0.293 0.00722 32    0.279    0.308
 2           3        0.197 0.00722 32    0.182    0.211
 3           3        0.163 0.00722 32    0.149    0.178
 4           3        0.253 0.00722 32    0.239    0.268
 1           4        0.330 0.00722 32    0.315    0.345
 2           4        0.340 0.00722 32    0.325    0.355
 3           4        0.433 0.00722 32    0.419    0.448
 4           4        0.290 0.00722 32    0.275    0.305

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
            diff         lwr           upr     p adj
2-1 -0.013315833 -0.02714185  0.0005101829 0.0624366
3-1 -0.019982500 -0.03380852 -0.0061564838 0.0023853
4-1 -0.079982500 -0.09380852 -0.0661564838 0.0000000
3-2 -0.006666667 -0.02049268  0.0071593495 0.5656958
4-2 -0.066666667 -0.08049268 -0.0528406505 0.0000000
4-3 -0.060000000 -0.07382602 -0.0461739838 0.0000000

$periodo
           diff           lwr         upr     p adj
2-1  0.01335083 -0.0004751829  0.02717685 0.0615041
3-1 -0.05081583 -0.0646418495 -0.03698982 0.0000000
4-1  0.07085083  0.0570248171  0.08467685 0.0000000
3-2 -0.06416667 -0.0779926829 -0.05034065 0.0000000
4-2  0.05750000  0.0436739838  0.07132602 0.0000000
4-3  0.12166667  0.1078406505  0.13549268 0.0000000

$`fermentador:periodo`
                diff          lwr          upr     p adj
2:1-1:1  0.023403333 -0.014441776  0.061248443 0.6308596
3:1-1:1  0.073403333  0.035558224  0.111248443 0.0000038
4:1-1:1 -0.093263333 -0.131108443 -0.055418224 0.0000000
1:2-1:1  0.080070000  0.042224891  0.117915109 0.0000006
2:2-1:1  0.090070000  0.052224891  0.127915109 0.0000000
3:2-1:1 -0.046596667 -0.084441776 -0.008751557 0.0056910
4:2-1:1 -0.066596667 -0.104441776 -0.028751557 0.0000243
1:3-1:1  0.016736667 -0.021108443  0.054581776 0.9477916
2:3-1:1 -0.079930000 -0.117775109 -0.042084891 0.0000007
3:3-1:1 -0.113263333 -0.151108443 -0.075418224 0.0000000
4:3-1:1 -0.023263333 -0.061108443  0.014581776 0.6398228
1:4-1:1  0.053403333  0.015558224  0.091248443 0.0009179
2:4-1:1  0.063403333  0.025558224  0.101248443 0.0000586
3:4-1:1  0.156736667  0.118891557  0.194581776 0.0000000
4:4-1:1  0.013403333 -0.024441776  0.051248443 0.9922893
3:1-2:1  0.050000000  0.012154891  0.087845109 0.0023062
4:1-2:1 -0.116666667 -0.154511776 -0.078821557 0.0000000
1:2-2:1  0.056666667  0.018821557  0.094511776 0.0003755
2:2-2:1  0.066666667  0.028821557  0.104511776 0.0000239
3:2-2:1 -0.070000000 -0.107845109 -0.032154891 0.0000096
4:2-2:1 -0.090000000 -0.127845109 -0.052154891 0.0000000
1:3-2:1 -0.006666667 -0.044511776  0.031178443 0.9999979
2:3-2:1 -0.103333333 -0.141178443 -0.065488224 0.0000000
3:3-2:1 -0.136666667 -0.174511776 -0.098821557 0.0000000
4:3-2:1 -0.046666667 -0.084511776 -0.008821557 0.0055876
1:4-2:1  0.030000000 -0.007845109  0.067845109 0.2503711
2:4-2:1  0.040000000  0.002154891  0.077845109 0.0300852
3:4-2:1  0.133333333  0.095488224  0.171178443 0.0000000
4:4-2:1 -0.010000000 -0.047845109  0.027845109 0.9996615
4:1-3:1 -0.166666667 -0.204511776 -0.128821557 0.0000000
1:2-3:1  0.006666667 -0.031178443  0.044511776 0.9999979
2:2-3:1  0.016666667 -0.021178443  0.054511776 0.9494264
3:2-3:1 -0.120000000 -0.157845109 -0.082154891 0.0000000
4:2-3:1 -0.140000000 -0.177845109 -0.102154891 0.0000000
1:3-3:1 -0.056666667 -0.094511776 -0.018821557 0.0003755
2:3-3:1 -0.153333333 -0.191178443 -0.115488224 0.0000000
3:3-3:1 -0.186666667 -0.224511776 -0.148821557 0.0000000
4:3-3:1 -0.096666667 -0.134511776 -0.058821557 0.0000000
1:4-3:1 -0.020000000 -0.057845109  0.017845109 0.8289662
2:4-3:1 -0.010000000 -0.047845109  0.027845109 0.9996615
3:4-3:1  0.083333333  0.045488224  0.121178443 0.0000003
4:4-3:1 -0.060000000 -0.097845109 -0.022154891 0.0001499
1:2-4:1  0.173333333  0.135488224  0.211178443 0.0000000
2:2-4:1  0.183333333  0.145488224  0.221178443 0.0000000
3:2-4:1  0.046666667  0.008821557  0.084511776 0.0055876
4:2-4:1  0.026666667 -0.011178443  0.064511776 0.4243390
1:3-4:1  0.110000000  0.072154891  0.147845109 0.0000000
2:3-4:1  0.013333333 -0.024511776  0.051178443 0.9926678
3:3-4:1 -0.020000000 -0.057845109  0.017845109 0.8289662
4:3-4:1  0.070000000  0.032154891  0.107845109 0.0000096
1:4-4:1  0.146666667  0.108821557  0.184511776 0.0000000
2:4-4:1  0.156666667  0.118821557  0.194511776 0.0000000
3:4-4:1  0.250000000  0.212154891  0.287845109 0.0000000
4:4-4:1  0.106666667  0.068821557  0.144511776 0.0000000
2:2-1:2  0.010000000 -0.027845109  0.047845109 0.9996615
3:2-1:2 -0.126666667 -0.164511776 -0.088821557 0.0000000
4:2-1:2 -0.146666667 -0.184511776 -0.108821557 0.0000000
1:3-1:2 -0.063333333 -0.101178443 -0.025488224 0.0000598
2:3-1:2 -0.160000000 -0.197845109 -0.122154891 0.0000000
3:3-1:2 -0.193333333 -0.231178443 -0.155488224 0.0000000
4:3-1:2 -0.103333333 -0.141178443 -0.065488224 0.0000000
1:4-1:2 -0.026666667 -0.064511776  0.011178443 0.4243390
2:4-1:2 -0.016666667 -0.054511776  0.021178443 0.9494264
3:4-1:2  0.076666667  0.038821557  0.114511776 0.0000016
4:4-1:2 -0.066666667 -0.104511776 -0.028821557 0.0000239
3:2-2:2 -0.136666667 -0.174511776 -0.098821557 0.0000000
4:2-2:2 -0.156666667 -0.194511776 -0.118821557 0.0000000
1:3-2:2 -0.073333333 -0.111178443 -0.035488224 0.0000039
2:3-2:2 -0.170000000 -0.207845109 -0.132154891 0.0000000
3:3-2:2 -0.203333333 -0.241178443 -0.165488224 0.0000000
4:3-2:2 -0.113333333 -0.151178443 -0.075488224 0.0000000
1:4-2:2 -0.036666667 -0.074511776  0.001178443 0.0653618
2:4-2:2 -0.026666667 -0.064511776  0.011178443 0.4243390
3:4-2:2  0.066666667  0.028821557  0.104511776 0.0000239
4:4-2:2 -0.076666667 -0.114511776 -0.038821557 0.0000016
4:2-3:2 -0.020000000 -0.057845109  0.017845109 0.8289662
1:3-3:2  0.063333333  0.025488224  0.101178443 0.0000598
2:3-3:2 -0.033333333 -0.071178443  0.004511776 0.1332726
3:3-3:2 -0.066666667 -0.104511776 -0.028821557 0.0000239
4:3-3:2  0.023333333 -0.014511776  0.061178443 0.6353449
1:4-3:2  0.100000000  0.062154891  0.137845109 0.0000000
2:4-3:2  0.110000000  0.072154891  0.147845109 0.0000000
3:4-3:2  0.203333333  0.165488224  0.241178443 0.0000000
4:4-3:2  0.060000000  0.022154891  0.097845109 0.0001499
1:3-4:2  0.083333333  0.045488224  0.121178443 0.0000003
2:3-4:2 -0.013333333 -0.051178443  0.024511776 0.9926678
3:3-4:2 -0.046666667 -0.084511776 -0.008821557 0.0055876
4:3-4:2  0.043333333  0.005488224  0.081178443 0.0131979
1:4-4:2  0.120000000  0.082154891  0.157845109 0.0000000
2:4-4:2  0.130000000  0.092154891  0.167845109 0.0000000
3:4-4:2  0.223333333  0.185488224  0.261178443 0.0000000
4:4-4:2  0.080000000  0.042154891  0.117845109 0.0000007
2:3-1:3 -0.096666667 -0.134511776 -0.058821557 0.0000000
3:3-1:3 -0.130000000 -0.167845109 -0.092154891 0.0000000
4:3-1:3 -0.040000000 -0.077845109 -0.002154891 0.0300852
1:4-1:3  0.036666667 -0.001178443  0.074511776 0.0653618
2:4-1:3  0.046666667  0.008821557  0.084511776 0.0055876
3:4-1:3  0.140000000  0.102154891  0.177845109 0.0000000
4:4-1:3 -0.003333333 -0.041178443  0.034511776 1.0000000
3:3-2:3 -0.033333333 -0.071178443  0.004511776 0.1332726
4:3-2:3  0.056666667  0.018821557  0.094511776 0.0003755
1:4-2:3  0.133333333  0.095488224  0.171178443 0.0000000
2:4-2:3  0.143333333  0.105488224  0.181178443 0.0000000
3:4-2:3  0.236666667  0.198821557  0.274511776 0.0000000
4:4-2:3  0.093333333  0.055488224  0.131178443 0.0000000
4:3-3:3  0.090000000  0.052154891  0.127845109 0.0000000
1:4-3:3  0.166666667  0.128821557  0.204511776 0.0000000
2:4-3:3  0.176666667  0.138821557  0.214511776 0.0000000
3:4-3:3  0.270000000  0.232154891  0.307845109 0.0000000
4:4-3:3  0.126666667  0.088821557  0.164511776 0.0000000
1:4-4:3  0.076666667  0.038821557  0.114511776 0.0000016
2:4-4:3  0.086666667  0.048821557  0.124511776 0.0000001
3:4-4:3  0.180000000  0.142154891  0.217845109 0.0000000
4:4-4:3  0.036666667 -0.001178443  0.074511776 0.0653618
2:4-1:4  0.010000000 -0.027845109  0.047845109 0.9996615
3:4-1:4  0.103333333  0.065488224  0.141178443 0.0000000
4:4-1:4 -0.040000000 -0.077845109 -0.002154891 0.0300852
3:4-2:4  0.093333333  0.055488224  0.131178443 0.0000000
4:4-2:4 -0.050000000 -0.087845109 -0.012154891 0.0023062
4:4-3:4 -0.143333333 -0.181178443 -0.105488224 0.0000000


Letras do Tukey:
$fermentador
   1    2    3    4 
 "a" "ab"  "b"  "c" 

$periodo
  4   2   1   3 
"a" "b" "b" "c" 

$`fermentador:periodo`
  3:4   2:2   1:2   3:1   2:4   1:4   2:1   1:3   4:4   1:1   4:3   3:2   4:2   2:3   4:1   3:3 
  "a"   "b"   "b"   "b"   "b"  "bc"  "cd"  "cd"  "de"  "de"  "ef"  "fg"  "gh" "ghi"  "hi"   "i" 



########################### Variável: dmo ##########################
ANOVA:
                    Df Sum Sq Mean Sq F value Pr(>F)
fermentador          3   2776     925   0.236  0.870
periodo              3   3430    1143   0.291  0.831
fermentador:periodo  9  19600    2178   0.555  0.814
Residuals           16  62809    3926               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean   SE df lower.CL upper.CL
 1           1          599 44.3 16      506      693
 2           1          591 44.3 16      497      685
 3           1          552 44.3 16      458      646
 4           1          549 44.3 16      455      642
 1           2          571 44.3 16      477      665
 2           2          578 44.3 16      484      672
 3           2          562 44.3 16      468      656
 4           2          630 44.3 16      536      724
 1           3          564 44.3 16      470      658
 2           3          570 44.3 16      476      664
 3           3          627 44.3 16      533      720
 4           3          582 44.3 16      488      676
 1           4          507 44.3 16      413      601
 2           4          579 44.3 16      485      673
 3           4          581 44.3 16      487      675
 4           4          577 44.3 16      483      670

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr       upr     p adj
2-1 19.301000 -70.32643 108.92843 0.9254430
3-1 19.838050 -69.78938 109.46548 0.9197694
4-1 24.094575 -65.53286 113.72201 0.8671400
3-2  0.537050 -89.09038  90.16448 0.9999981
4-2  4.793575 -84.83386  94.42101 0.9986679
4-3  4.256525 -85.37091  93.88396 0.9990653

$periodo
           diff        lwr       upr     p adj
2-1  12.7127750  -76.91466 102.34021 0.9766460
3-1  13.1073875  -76.52004 102.73482 0.9745182
4-1 -11.9710875 -101.59852  77.65634 0.9803409
3-2   0.3946125  -89.23282  90.02204 0.9999992
4-2 -24.6838625 -114.31129  64.94357 0.8588430
4-3 -25.0784750 -114.70591  64.54896 0.8531598

$`fermentador:periodo`
              diff       lwr      upr     p adj
2:1-1:1   -8.08520 -258.9280 242.7576 1.0000000
3:1-1:1  -47.83165 -298.6745 203.0112 0.9999662
4:1-1:1  -50.92575 -301.7686 199.9171 0.9999276
1:2-1:1  -28.18835 -279.0312 222.6545 1.0000000
2:2-1:1  -21.28085 -272.1237 229.5620 1.0000000
3:2-1:1  -37.49350 -288.3363 213.3493 0.9999985
4:2-1:1   30.97120 -219.8716 281.8140 0.9999999
1:3-1:1  -35.46415 -286.3070 215.3787 0.9999993
2:3-1:1  -29.02355 -279.8664 221.8193 1.0000000
3:3-1:1   27.11235 -223.7305 277.9552 1.0000000
4:3-1:1  -17.03770 -267.8805 233.8051 1.0000000
1:4-1:1  -92.57465 -343.4175 158.2682 0.9701347
2:4-1:1  -20.63355 -271.4764 230.2093 1.0000000
3:4-1:1  -18.66215 -269.5050 232.1807 1.0000000
4:4-1:1  -22.85660 -273.6994 227.9862 1.0000000
3:1-2:1  -39.74645 -290.5893 211.0964 0.9999968
4:1-2:1  -42.84055 -293.6834 208.0023 0.9999915
1:2-2:1  -20.10315 -270.9460 230.7397 1.0000000
2:2-2:1  -13.19565 -264.0385 237.6472 1.0000000
3:2-2:1  -29.40830 -280.2511 221.4345 0.9999999
4:2-2:1   39.05640 -211.7864 289.8992 0.9999974
1:3-2:1  -27.37895 -278.2218 223.4639 1.0000000
2:3-2:1  -20.93835 -271.7812 229.9045 1.0000000
3:3-2:1   35.19755 -215.6453 286.0404 0.9999994
4:3-2:1   -8.95250 -259.7953 241.8903 1.0000000
1:4-2:1  -84.48945 -335.3323 166.3534 0.9858243
2:4-2:1  -12.54835 -263.3912 238.2945 1.0000000
3:4-2:1  -10.57695 -261.4198 240.2659 1.0000000
4:4-2:1  -14.77140 -265.6142 236.0714 1.0000000
4:1-3:1   -3.09410 -253.9369 247.7487 1.0000000
1:2-3:1   19.64330 -231.1995 270.4861 1.0000000
2:2-3:1   26.55080 -224.2920 277.3936 1.0000000
3:2-3:1   10.33815 -240.5047 261.1810 1.0000000
4:2-3:1   78.80285 -172.0400 329.6457 0.9923439
1:3-3:1   12.36750 -238.4753 263.2103 1.0000000
2:3-3:1   18.80810 -232.0347 269.6509 1.0000000
3:3-3:1   74.94400 -175.8988 325.7868 0.9952071
4:3-3:1   30.79395 -220.0489 281.6368 0.9999999
1:4-3:1  -44.74300 -295.5858 206.0998 0.9999853
2:4-3:1   27.19810 -223.6447 278.0409 1.0000000
3:4-3:1   29.16950 -221.6733 280.0123 1.0000000
4:4-3:1   24.97505 -225.8678 275.8179 1.0000000
1:2-4:1   22.73740 -228.1054 273.5802 1.0000000
2:2-4:1   29.64490 -221.1979 280.4877 0.9999999
3:2-4:1   13.43225 -237.4106 264.2751 1.0000000
4:2-4:1   81.89695 -168.9459 332.7398 0.9891845
1:3-4:1   15.46160 -235.3812 266.3044 1.0000000
2:3-4:1   21.90220 -228.9406 272.7450 1.0000000
3:3-4:1   78.03810 -172.8047 328.8809 0.9929987
4:3-4:1   33.88805 -216.9548 284.7309 0.9999996
1:4-4:1  -41.64890 -292.4917 209.1939 0.9999941
2:4-4:1   30.29220 -220.5506 281.1350 0.9999999
3:4-4:1   32.26360 -218.5792 283.1064 0.9999998
4:4-4:1   28.06915 -222.7737 278.9120 1.0000000
2:2-1:2    6.90750 -243.9353 257.7503 1.0000000
3:2-1:2   -9.30515 -260.1480 241.5377 1.0000000
4:2-1:2   59.15955 -191.6833 310.0024 0.9995883
1:3-1:2   -7.27580 -258.1186 243.5670 1.0000000
2:3-1:2   -0.83520 -251.6780 250.0076 1.0000000
3:3-1:2   55.30070 -195.5421 306.1435 0.9998087
4:3-1:2   11.15065 -239.6922 261.9935 1.0000000
1:4-1:2  -64.38630 -315.2291 186.4565 0.9989641
2:4-1:2    7.55480 -243.2880 258.3976 1.0000000
3:4-1:2    9.52620 -241.3166 260.3690 1.0000000
4:4-1:2    5.33175 -245.5111 256.1746 1.0000000
3:2-2:2  -16.21265 -267.0555 234.6302 1.0000000
4:2-2:2   52.25205 -198.5908 303.0949 0.9999016
1:3-2:2  -14.18330 -265.0261 236.6595 1.0000000
2:3-2:2   -7.74270 -258.5855 243.1001 1.0000000
3:3-2:2   48.39320 -202.4496 299.2360 0.9999610
4:3-2:2    4.24315 -246.5997 255.0860 1.0000000
1:4-2:2  -71.29380 -322.1366 179.5490 0.9970495
2:4-2:2    0.64730 -250.1955 251.4901 1.0000000
3:4-2:2    2.61870 -248.2241 253.4615 1.0000000
4:4-2:2   -1.57575 -252.4186 249.2671 1.0000000
4:2-3:2   68.46470 -182.3781 319.3075 0.9980362
1:3-3:2    2.02935 -248.8135 252.8722 1.0000000
2:3-3:2    8.46995 -242.3729 259.3128 1.0000000
3:3-3:2   64.60585 -186.2370 315.4487 0.9989260
4:3-3:2   20.45580 -230.3870 271.2986 1.0000000
1:4-3:2  -55.08115 -305.9240 195.7617 0.9998173
2:4-3:2   16.85995 -233.9829 267.7028 1.0000000
3:4-3:2   18.83135 -232.0115 269.6742 1.0000000
4:4-3:2   14.63690 -236.2059 265.4797 1.0000000
1:3-4:2  -66.43535 -317.2782 184.4075 0.9985598
2:3-4:2  -59.99475 -310.8376 190.8481 0.9995189
3:3-4:2   -3.85885 -254.7017 246.9840 1.0000000
4:3-4:2  -48.00890 -298.8517 202.8339 0.9999646
1:4-4:2 -123.54585 -374.3887 127.2970 0.8098341
2:4-4:2  -51.60475 -302.4476 199.2381 0.9999151
3:4-4:2  -49.63335 -300.4762 201.2095 0.9999469
4:4-4:2  -53.82780 -304.6706 197.0150 0.9998603
2:3-1:3    6.44060 -244.4022 257.2834 1.0000000
3:3-1:3   62.57650 -188.2663 313.4193 0.9992369
4:3-1:3   18.42645 -232.4164 269.2693 1.0000000
1:4-1:3  -57.11050 -307.9533 193.7323 0.9997233
2:4-1:3   14.83060 -236.0122 265.6734 1.0000000
3:4-1:3   16.80200 -234.0408 267.6448 1.0000000
4:4-1:3   12.60755 -238.2353 263.4504 1.0000000
3:3-2:3   56.13590 -194.7069 306.9787 0.9997727
4:3-2:3   11.98585 -238.8570 262.8287 1.0000000
1:4-2:3  -63.55110 -314.3939 187.2917 0.9990988
2:4-2:3    8.39000 -242.4528 259.2328 1.0000000
3:4-2:3   10.36140 -240.4814 261.2042 1.0000000
4:4-2:3    6.16695 -244.6759 257.0098 1.0000000
4:3-3:3  -44.15005 -294.9929 206.6928 0.9999876
1:4-3:3 -119.68700 -370.5298 131.1558 0.8387851
2:4-3:3  -47.74590 -298.5887 203.0969 0.9999669
3:4-3:3  -45.77450 -296.6173 205.0683 0.9999804
4:4-3:3  -49.96895 -300.8118 200.8739 0.9999424
1:4-4:3  -75.53695 -326.3798 175.3059 0.9948346
2:4-4:3   -3.59585 -254.4387 247.2470 1.0000000
3:4-4:3   -1.62445 -252.4673 249.2184 1.0000000
4:4-4:3   -5.81890 -256.6617 245.0239 1.0000000
2:4-1:4   71.94110 -178.9017 322.7839 0.9967742
3:4-1:4   73.91250 -176.9303 324.7553 0.9958030
4:4-1:4   69.71805 -181.1248 320.5609 0.9976398
3:4-2:4    1.97140 -248.8714 252.8142 1.0000000
4:4-2:4   -2.22305 -253.0659 248.6198 1.0000000
4:4-3:4   -4.19445 -255.0373 246.6484 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE


$periodo
$periodo$Letters
  3   2   1   4 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
3 TRUE
2 TRUE
1 TRUE
4 TRUE


$`fermentador:periodo`
$`fermentador:periodo`$Letters
4:2 3:3 1:1 2:1 4:3 3:4 2:4 2:2 4:4 1:2 2:3 1:3 3:2 3:1 4:1 1:4 
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" 

$`fermentador:periodo`$LetterMatrix
       a
4:2 TRUE
3:3 TRUE
1:1 TRUE
2:1 TRUE
4:3 TRUE
3:4 TRUE
2:4 TRUE
2:2 TRUE
4:4 TRUE
1:2 TRUE
2:3 TRUE
1:3 TRUE
3:2 TRUE
3:1 TRUE
4:1 TRUE
1:4 TRUE




########################### Variável: n_nh3 ##########################
ANOVA:
                    Df Sum Sq Mean Sq F value Pr(>F)  
fermentador          3 0.0005 0.00017   0.008  0.999  
periodo              3 0.2134 0.07114   3.087  0.041 *
fermentador:periodo  9 0.0031 0.00035   0.015  1.000  
Residuals           32 0.7373 0.02304                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 fermentador periodo emmean     SE df lower.CL upper.CL
 1           1       0.2415 0.0876 32   0.0630    0.420
 2           1       0.2428 0.0876 32   0.0643    0.421
 3           1       0.2608 0.0876 32   0.0823    0.439
 4           1       0.2394 0.0876 32   0.0609    0.418
 1           2       0.0975 0.0876 32  -0.0810    0.276
 2           2       0.0830 0.0876 32  -0.0955    0.262
 3           2       0.0801 0.0876 32  -0.0984    0.259
 4           2       0.0869 0.0876 32  -0.0916    0.265
 1           3       0.0885 0.0876 32  -0.0900    0.267
 2           3       0.0798 0.0876 32  -0.0988    0.258
 3           3       0.0847 0.0876 32  -0.0938    0.263
 4           3       0.0949 0.0876 32  -0.0836    0.273
 1           4       0.0845 0.0876 32  -0.0940    0.263
 2           4       0.1074 0.0876 32  -0.0711    0.286
 3           4       0.1156 0.0876 32  -0.0629    0.294
 4           4       0.1147 0.0876 32  -0.0638    0.293

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
             diff        lwr       upr     p adj
2-1  0.0002483333 -0.1676472 0.1681439 1.0000000
3-1  0.0072995833 -0.1605960 0.1751951 0.9994027
4-1  0.0059537500 -0.1619418 0.1738493 0.9996753
3-2  0.0070512500 -0.1608443 0.1749468 0.9994614
4-2  0.0057054167 -0.1621901 0.1736010 0.9997142
4-3 -0.0013458333 -0.1692414 0.1665497 0.9999962

$periodo
             diff        lwr         upr     p adj
2-1 -1.592404e-01 -0.3271360 0.008655137 0.0680796
3-1 -1.591483e-01 -0.3270439 0.008747220 0.0682991
4-1 -1.405546e-01 -0.3084501 0.027340970 0.1270168
3-2  9.208333e-05 -0.1678035 0.167987637 1.0000000
4-2  1.868583e-02 -0.1492097 0.186581387 0.9902907
4-3  1.859375e-02 -0.1493018 0.186489304 0.9904301

$`fermentador:periodo`
                diff        lwr       upr     p adj
2:1-1:1  0.001333333 -0.4582369 0.4609036 1.0000000
3:1-1:1  0.019338333 -0.4402319 0.4789086 1.0000000
4:1-1:1 -0.002081667 -0.4616519 0.4574886 1.0000000
1:2-1:1 -0.143975000 -0.6035452 0.3155952 0.9977586
2:2-1:1 -0.158425000 -0.6179952 0.3011452 0.9940667
3:2-1:1 -0.161371667 -0.6209419 0.2981986 0.9929008
4:2-1:1 -0.154600000 -0.6141702 0.3049702 0.9953426
1:3-1:1 -0.152928333 -0.6124986 0.3066419 0.9958244
2:3-1:1 -0.161711667 -0.6212819 0.2978586 0.9927551
3:3-1:1 -0.156781667 -0.6163519 0.3027886 0.9946459
4:3-1:1 -0.146581667 -0.6061519 0.3129886 0.9972954
1:4-1:1 -0.156951667 -0.6165219 0.3026186 0.9945883
2:4-1:1 -0.134058333 -0.5936286 0.3255119 0.9989616
3:4-1:1 -0.125841667 -0.5854119 0.3337286 0.9994895
4:4-1:1 -0.126776667 -0.5863469 0.3327936 0.9994445
3:1-2:1  0.018005000 -0.4415652 0.4775752 1.0000000
4:1-2:1 -0.003415000 -0.4629852 0.4561552 1.0000000
1:2-2:1 -0.145308333 -0.6048786 0.3142619 0.9975308
2:2-2:1 -0.159758333 -0.6193286 0.2998119 0.9935601
3:2-2:1 -0.162705000 -0.6222752 0.2968652 0.9923155
4:2-2:1 -0.155933333 -0.6155036 0.3036369 0.9949263
1:3-2:1 -0.154261667 -0.6138319 0.3053086 0.9954436
2:3-2:1 -0.163045000 -0.6226152 0.2965252 0.9921602
3:3-2:1 -0.158115000 -0.6176852 0.3014552 0.9941797
4:3-2:1 -0.147915000 -0.6074852 0.3116552 0.9970291
1:4-2:1 -0.158285000 -0.6178552 0.3012852 0.9941180
2:4-2:1 -0.135391667 -0.5949619 0.3241786 0.9988423
3:4-2:1 -0.127175000 -0.5867452 0.3323952 0.9994244
4:4-2:1 -0.128110000 -0.5876802 0.3314602 0.9993745
4:1-3:1 -0.021420000 -0.4809902 0.4381502 1.0000000
1:2-3:1 -0.163313333 -0.6228836 0.2962569 0.9920358
2:2-3:1 -0.177763333 -0.6373336 0.2818069 0.9826215
3:2-3:1 -0.180710000 -0.6402802 0.2788602 0.9799294
4:2-3:1 -0.173938333 -0.6335086 0.2856319 0.9856898
1:3-3:1 -0.172266667 -0.6318369 0.2873036 0.9868897
2:3-3:1 -0.181050000 -0.6406202 0.2785202 0.9795993
3:3-3:1 -0.176120000 -0.6356902 0.2834502 0.9839965
4:3-3:1 -0.165920000 -0.6254902 0.2936502 0.9907434
1:4-3:1 -0.176290000 -0.6358602 0.2832802 0.9838583
2:4-3:1 -0.153396667 -0.6129669 0.3061736 0.9956937
3:4-3:1 -0.145180000 -0.6047502 0.3143902 0.9975535
4:4-3:1 -0.146115000 -0.6056852 0.3134552 0.9973837
1:2-4:1 -0.141893333 -0.6014636 0.3176769 0.9980788
2:2-4:1 -0.156343333 -0.6159136 0.3032269 0.9947923
3:2-4:1 -0.159290000 -0.6188602 0.3002802 0.9937419
4:2-4:1 -0.152518333 -0.6120886 0.3070519 0.9959360
1:3-4:1 -0.150846667 -0.6104169 0.3087236 0.9963661
2:3-4:1 -0.159630000 -0.6192002 0.2999402 0.9936104
3:3-4:1 -0.154700000 -0.6142702 0.3048702 0.9953124
4:3-4:1 -0.144500000 -0.6040702 0.3150702 0.9976711
1:4-4:1 -0.154870000 -0.6144402 0.3047002 0.9952606
2:4-4:1 -0.131976667 -0.5915469 0.3275936 0.9991269
3:4-4:1 -0.123760000 -0.5833302 0.3358102 0.9995784
4:4-4:1 -0.124695000 -0.5842652 0.3348752 0.9995403
2:2-1:2 -0.014450000 -0.4740202 0.4451202 1.0000000
3:2-1:2 -0.017396667 -0.4769669 0.4421736 1.0000000
4:2-1:2 -0.010625000 -0.4701952 0.4489452 1.0000000
1:3-1:2 -0.008953333 -0.4685236 0.4506169 1.0000000
2:3-1:2 -0.017736667 -0.4773069 0.4418336 1.0000000
3:3-1:2 -0.012806667 -0.4723769 0.4467636 1.0000000
4:3-1:2 -0.002606667 -0.4621769 0.4569636 1.0000000
1:4-1:2 -0.012976667 -0.4725469 0.4465936 1.0000000
2:4-1:2  0.009916667 -0.4496536 0.4694869 1.0000000
3:4-1:2  0.018133333 -0.4414369 0.4777036 1.0000000
4:4-1:2  0.017198333 -0.4423719 0.4767686 1.0000000
3:2-2:2 -0.002946667 -0.4625169 0.4566236 1.0000000
4:2-2:2  0.003825000 -0.4557452 0.4633952 1.0000000
1:3-2:2  0.005496667 -0.4540736 0.4650669 1.0000000
2:3-2:2 -0.003286667 -0.4628569 0.4562836 1.0000000
3:3-2:2  0.001643333 -0.4579269 0.4612136 1.0000000
4:3-2:2  0.011843333 -0.4477269 0.4714136 1.0000000
1:4-2:2  0.001473333 -0.4580969 0.4610436 1.0000000
2:4-2:2  0.024366667 -0.4352036 0.4839369 1.0000000
3:4-2:2  0.032583333 -0.4269869 0.4921536 1.0000000
4:4-2:2  0.031648333 -0.4279219 0.4912186 1.0000000
4:2-3:2  0.006771667 -0.4527986 0.4663419 1.0000000
1:3-3:2  0.008443333 -0.4511269 0.4680136 1.0000000
2:3-3:2 -0.000340000 -0.4599102 0.4592302 1.0000000
3:3-3:2  0.004590000 -0.4549802 0.4641602 1.0000000
4:3-3:2  0.014790000 -0.4447802 0.4743602 1.0000000
1:4-3:2  0.004420000 -0.4551502 0.4639902 1.0000000
2:4-3:2  0.027313333 -0.4322569 0.4868836 1.0000000
3:4-3:2  0.035530000 -0.4240402 0.4951002 1.0000000
4:4-3:2  0.034595000 -0.4249752 0.4941652 1.0000000
1:3-4:2  0.001671667 -0.4578986 0.4612419 1.0000000
2:3-4:2 -0.007111667 -0.4666819 0.4524586 1.0000000
3:3-4:2 -0.002181667 -0.4617519 0.4573886 1.0000000
4:3-4:2  0.008018333 -0.4515519 0.4675886 1.0000000
1:4-4:2 -0.002351667 -0.4619219 0.4572186 1.0000000
2:4-4:2  0.020541667 -0.4390286 0.4801119 1.0000000
3:4-4:2  0.028758333 -0.4308119 0.4883286 1.0000000
4:4-4:2  0.027823333 -0.4317469 0.4873936 1.0000000
2:3-1:3 -0.008783333 -0.4683536 0.4507869 1.0000000
3:3-1:3 -0.003853333 -0.4634236 0.4557169 1.0000000
4:3-1:3  0.006346667 -0.4532236 0.4659169 1.0000000
1:4-1:3 -0.004023333 -0.4635936 0.4555469 1.0000000
2:4-1:3  0.018870000 -0.4407002 0.4784402 1.0000000
3:4-1:3  0.027086667 -0.4324836 0.4866569 1.0000000
4:4-1:3  0.026151667 -0.4334186 0.4857219 1.0000000
3:3-2:3  0.004930000 -0.4546402 0.4645002 1.0000000
4:3-2:3  0.015130000 -0.4444402 0.4747002 1.0000000
1:4-2:3  0.004760000 -0.4548102 0.4643302 1.0000000
2:4-2:3  0.027653333 -0.4319169 0.4872236 1.0000000
3:4-2:3  0.035870000 -0.4237002 0.4954402 1.0000000
4:4-2:3  0.034935000 -0.4246352 0.4945052 1.0000000
4:3-3:3  0.010200000 -0.4493702 0.4697702 1.0000000
1:4-3:3 -0.000170000 -0.4597402 0.4594002 1.0000000
2:4-3:3  0.022723333 -0.4368469 0.4822936 1.0000000
3:4-3:3  0.030940000 -0.4286302 0.4905102 1.0000000
4:4-3:3  0.030005000 -0.4295652 0.4895752 1.0000000
1:4-4:3 -0.010370000 -0.4699402 0.4492002 1.0000000
2:4-4:3  0.012523333 -0.4470469 0.4720936 1.0000000
3:4-4:3  0.020740000 -0.4388302 0.4803102 1.0000000
4:4-4:3  0.019805000 -0.4397652 0.4793752 1.0000000
2:4-1:4  0.022893333 -0.4366769 0.4824636 1.0000000
3:4-1:4  0.031110000 -0.4284602 0.4906802 1.0000000
4:4-1:4  0.030175000 -0.4293952 0.4897452 1.0000000
3:4-2:4  0.008216667 -0.4513536 0.4677869 1.0000000
4:4-2:4  0.007281667 -0.4522886 0.4668519 1.0000000
4:4-3:4 -0.000935000 -0.4605052 0.4586352 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   4   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
4 TRUE
2 TRUE
1 TRUE


$periodo
$periodo$Letters
  1   4   3   2 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
1 TRUE
4 TRUE
3 TRUE
2 TRUE


$`fermentador:periodo`
$`fermentador:periodo`$Letters
3:1 2:1 1:1 4:1 3:4 4:4 2:4 1:2 4:3 1:3 4:2 3:3 1:4 2:2 3:2 2:3 
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" 

$`fermentador:periodo`$LetterMatrix
       a
3:1 TRUE
2:1 TRUE
1:1 TRUE
4:1 TRUE
3:4 TRUE
4:4 TRUE
2:4 TRUE
1:2 TRUE
4:3 TRUE
1:3 TRUE
4:2 TRUE
3:3 TRUE
1:4 TRUE
2:2 TRUE
3:2 TRUE
2:3 TRUE

8 Fermentador x Tempo

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ fermentador * tempo")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ fermentador * tempo")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ fermentador * tempo"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ fermentador * tempo)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
                  Df Sum Sq Mean Sq F value   Pr(>F)    
fermentador        3  28166    9389   0.734    0.537    
tempo              3 349201  116400   9.096 7.11e-05 ***
fermentador:tempo  9  60521    6725   0.525    0.849    
Residuals         48 614276   12797                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean   SE df lower.CL upper.CL
 1           24       271 56.6 48    157.5      385
 2           24       276 56.6 48    162.0      389
 3           24       290 56.6 48    176.3      404
 4           24       358 56.6 48    243.8      471
 1           48       210 56.6 48     96.3      324
 2           48       174 56.6 48     60.8      288
 3           48       192 56.6 48     78.8      306
 4           48       182 56.6 48     68.8      296
 1           72       395 56.6 48    281.3      509
 2           72       395 56.6 48    281.3      509
 3           72       399 56.6 48    285.0      512
 4           72       395 56.6 48    281.3      509
 1           96       221 56.6 48    107.5      335
 2           96       312 56.6 48    198.0      425
 3           96       382 56.6 48    268.8      496
 4           96       374 56.6 48    260.5      488

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
       diff       lwr      upr     p adj
2-1 14.8750 -91.56911 121.3191 0.9822353
3-1 41.5625 -64.88161 148.0066 0.7274556
4-1 52.9375 -53.50661 159.3816 0.5527514
3-2 26.6875 -79.75661 133.1316 0.9088821
4-2 38.0625 -68.38161 144.5066 0.7771733
4-3 11.3750 -95.06911 117.8191 0.9918742

$tempo
           diff         lwr        upr     p adj
48-24 -108.7500 -215.194107  -2.305893 0.0435440
72-24   97.3125   -9.131607 203.756607 0.0843646
96-24   23.8125  -82.631607 130.256607 0.9329878
72-48  206.0625   99.618393 312.506607 0.0000279
96-48  132.5625   26.118393 239.006607 0.0091909
96-72  -73.5000 -179.944107  32.944107 0.2686746

$`fermentador:tempo`
                   diff        lwr      upr     p adj
2:24-1:24  4.500000e+00 -284.48605 293.4861 1.0000000
3:24-1:24  1.875000e+01 -270.23605 307.7361 1.0000000
4:24-1:24  8.625000e+01 -202.73605 375.2361 0.9991937
1:48-1:24 -6.125000e+01 -350.23605 227.7361 0.9999878
2:48-1:24 -9.675000e+01 -385.73605 192.2361 0.9971636
3:48-1:24 -7.875000e+01 -367.73605 210.2361 0.9997194
4:48-1:24 -8.875000e+01 -377.73605 200.2361 0.9988884
1:72-1:24  1.237500e+02 -165.23605 412.7361 0.9702225
2:72-1:24  1.237500e+02 -165.23605 412.7361 0.9702225
3:72-1:24  1.275000e+02 -161.48605 416.4861 0.9618288
4:72-1:24  1.237500e+02 -165.23605 412.7361 0.9702225
1:96-1:24 -5.000000e+01 -338.98605 238.9861 0.9999992
2:96-1:24  4.050000e+01 -248.48605 329.4861 1.0000000
3:96-1:24  1.112500e+02 -177.73605 400.2361 0.9885272
4:96-1:24  1.030000e+02 -185.98605 391.9861 0.9945906
3:24-2:24  1.425000e+01 -274.73605 303.2361 1.0000000
4:24-2:24  8.175000e+01 -207.23605 370.7361 0.9995644
1:48-2:24 -6.575000e+01 -354.73605 223.2361 0.9999696
2:48-2:24 -1.012500e+02 -390.23605 187.7361 0.9954534
3:48-2:24 -8.325000e+01 -372.23605 205.7361 0.9994622
4:48-2:24 -9.325000e+01 -382.23605 195.7361 0.9980865
1:72-2:24  1.192500e+02 -169.73605 408.2361 0.9783767
2:72-2:24  1.192500e+02 -169.73605 408.2361 0.9783767
3:72-2:24  1.230000e+02 -165.98605 411.9861 0.9717207
4:72-2:24  1.192500e+02 -169.73605 408.2361 0.9783767
1:96-2:24 -5.450000e+01 -343.48605 234.4861 0.9999974
2:96-2:24  3.600000e+01 -252.98605 324.9861 1.0000000
3:96-2:24  1.067500e+02 -182.23605 395.7361 0.9922849
4:96-2:24  9.850000e+01 -190.48605 387.4861 0.9965772
4:24-3:24  6.750000e+01 -221.48605 356.4861 0.9999576
1:48-3:24 -8.000000e+01 -368.98605 208.9861 0.9996620
2:48-3:24 -1.155000e+02 -404.48605 173.4861 0.9837593
3:48-3:24 -9.750000e+01 -386.48605 191.4861 0.9969236
4:48-3:24 -1.075000e+02 -396.48605 181.4861 0.9917396
1:72-3:24  1.050000e+02 -183.98605 393.9861 0.9934442
2:72-3:24  1.050000e+02 -183.98605 393.9861 0.9934442
3:72-3:24  1.087500e+02 -180.23605 397.7361 0.9907619
4:72-3:24  1.050000e+02 -183.98605 393.9861 0.9934442
1:96-3:24 -6.875000e+01 -357.73605 220.2361 0.9999466
2:96-3:24  2.175000e+01 -267.23605 310.7361 1.0000000
3:96-3:24  9.250000e+01 -196.48605 381.4861 0.9982468
4:96-3:24  8.425000e+01 -204.73605 373.2361 0.9993829
1:48-4:24 -1.475000e+02 -436.48605 141.4861 0.8873226
2:48-4:24 -1.830000e+02 -471.98605 105.9861 0.6338385
3:48-4:24 -1.650000e+02 -453.98605 123.9861 0.7781268
4:48-4:24 -1.750000e+02 -463.98605 113.9861 0.7006700
1:72-4:24  3.750000e+01 -251.48605 326.4861 1.0000000
2:72-4:24  3.750000e+01 -251.48605 326.4861 1.0000000
3:72-4:24  4.125000e+01 -247.73605 330.2361 0.9999999
4:72-4:24  3.750000e+01 -251.48605 326.4861 1.0000000
1:96-4:24 -1.362500e+02 -425.23605 152.7361 0.9357699
2:96-4:24 -4.575000e+01 -334.73605 243.2361 0.9999998
3:96-4:24  2.500000e+01 -263.98605 313.9861 1.0000000
4:96-4:24  1.675000e+01 -272.23605 305.7361 1.0000000
2:48-1:48 -3.550000e+01 -324.48605 253.4861 1.0000000
3:48-1:48 -1.750000e+01 -306.48605 271.4861 1.0000000
4:48-1:48 -2.750000e+01 -316.48605 261.4861 1.0000000
1:72-1:48  1.850000e+02 -103.98605 473.9861 0.6167395
2:72-1:48  1.850000e+02 -103.98605 473.9861 0.6167395
3:72-1:48  1.887500e+02 -100.23605 477.7361 0.5844734
4:72-1:48  1.850000e+02 -103.98605 473.9861 0.6167395
1:96-1:48  1.125000e+01 -277.73605 300.2361 1.0000000
2:96-1:48  1.017500e+02 -187.23605 390.7361 0.9952194
3:96-1:48  1.725000e+02 -116.48605 461.4861 0.7208037
4:96-1:48  1.642500e+02 -124.73605 453.2361 0.7835630
3:48-2:48  1.800000e+01 -270.98605 306.9861 1.0000000
4:48-2:48  8.000000e+00 -280.98605 296.9861 1.0000000
1:72-2:48  2.205000e+02  -68.48605 509.4861 0.3274972
2:72-2:48  2.205000e+02  -68.48605 509.4861 0.3274972
3:72-2:48  2.242500e+02  -64.73605 513.2361 0.3016210
4:72-2:48  2.205000e+02  -68.48605 509.4861 0.3274972
1:96-2:48  4.675000e+01 -242.23605 335.7361 0.9999997
2:96-2:48  1.372500e+02 -151.73605 426.2361 0.9321666
3:96-2:48  2.080000e+02  -80.98605 496.9861 0.4221282
4:96-2:48  1.997500e+02  -89.23605 488.7361 0.4901825
4:48-3:48 -1.000000e+01 -298.98605 278.9861 1.0000000
1:72-3:48  2.025000e+02  -86.48605 491.4861 0.4671243
2:72-3:48  2.025000e+02  -86.48605 491.4861 0.4671243
3:72-3:48  2.062500e+02  -82.73605 495.2361 0.4362615
4:72-3:48  2.025000e+02  -86.48605 491.4861 0.4671243
1:96-3:48  2.875000e+01 -260.23605 317.7361 1.0000000
2:96-3:48  1.192500e+02 -169.73605 408.2361 0.9783767
3:96-3:48  1.900000e+02  -98.98605 478.9861 0.5736899
4:96-3:48  1.817500e+02 -107.23605 470.7361 0.6444660
1:72-4:48  2.125000e+02  -76.48605 501.4861 0.3866998
2:72-4:48  2.125000e+02  -76.48605 501.4861 0.3866998
3:72-4:48  2.162500e+02  -72.73605 505.2361 0.3583029
4:72-4:48  2.125000e+02  -76.48605 501.4861 0.3866998
1:96-4:48  3.875000e+01 -250.23605 327.7361 1.0000000
2:96-4:48  1.292500e+02 -159.73605 418.2361 0.9573693
3:96-4:48  2.000000e+02  -88.98605 488.9861 0.4880735
4:96-4:48  1.917500e+02  -97.23605 480.7361 0.5585945
2:72-1:72 -5.684342e-14 -288.98605 288.9861 1.0000000
3:72-1:72  3.750000e+00 -285.23605 292.7361 1.0000000
4:72-1:72 -1.136868e-13 -288.98605 288.9861 1.0000000
1:96-1:72 -1.737500e+02 -462.73605 115.2361 0.7107918
2:96-1:72 -8.325000e+01 -372.23605 205.7361 0.9994622
3:96-1:72 -1.250000e+01 -301.48605 276.4861 1.0000000
4:96-1:72 -2.075000e+01 -309.73605 268.2361 1.0000000
3:72-2:72  3.750000e+00 -285.23605 292.7361 1.0000000
4:72-2:72 -5.684342e-14 -288.98605 288.9861 1.0000000
1:96-2:72 -1.737500e+02 -462.73605 115.2361 0.7107918
2:96-2:72 -8.325000e+01 -372.23605 205.7361 0.9994622
3:96-2:72 -1.250000e+01 -301.48605 276.4861 1.0000000
4:96-2:72 -2.075000e+01 -309.73605 268.2361 1.0000000
4:72-3:72 -3.750000e+00 -292.73605 285.2361 1.0000000
1:96-3:72 -1.775000e+02 -466.48605 111.4861 0.6801293
2:96-3:72 -8.700000e+01 -375.98605 201.9861 0.9991108
3:96-3:72 -1.625000e+01 -305.23605 272.7361 1.0000000
4:96-3:72 -2.450000e+01 -313.48605 264.4861 1.0000000
1:96-4:72 -1.737500e+02 -462.73605 115.2361 0.7107918
2:96-4:72 -8.325000e+01 -372.23605 205.7361 0.9994622
3:96-4:72 -1.250000e+01 -301.48605 276.4861 1.0000000
4:96-4:72 -2.075000e+01 -309.73605 268.2361 1.0000000
2:96-1:96  9.050000e+01 -198.48605 379.4861 0.9986198
3:96-1:96  1.612500e+02 -127.73605 450.2361 0.8046969
4:96-1:96  1.530000e+02 -135.98605 441.9861 0.8572556
3:96-2:96  7.075000e+01 -218.23605 359.7361 0.9999236
4:96-2:96  6.250000e+01 -226.48605 351.4861 0.9999841
4:96-3:96 -8.250000e+00 -297.23605 280.7361 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE


$tempo
 72  96  24  48 
"a" "a" "a" "b" 

$`fermentador:tempo`
$`fermentador:tempo`$Letters
3:72 1:72 2:72 4:72 3:96 4:96 4:24 2:96 3:24 2:24 1:24 1:96 1:48 3:48 4:48 2:48 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tempo`$LetterMatrix
        a
3:72 TRUE
1:72 TRUE
2:72 TRUE
4:72 TRUE
3:96 TRUE
4:96 TRUE
4:24 TRUE
2:96 TRUE
3:24 TRUE
2:24 TRUE
1:24 TRUE
1:96 TRUE
1:48 TRUE
3:48 TRUE
4:48 TRUE
2:48 TRUE




########################### Variável: gas_total ##########################
ANOVA:
                  Df  Sum Sq Mean Sq F value   Pr(>F)    
fermentador        3  208575   69525   0.691    0.562    
tempo              3 3330824 1110275  11.038 1.25e-05 ***
fermentador:tempo  9  465419   51713   0.514    0.857    
Residuals         48 4828294  100589                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean  SE df lower.CL upper.CL
 1           24      1782 159 48     1464     2101
 2           24      1788 159 48     1469     2107
 3           24      1784 159 48     1465     2103
 4           24      1414 159 48     1096     1733
 1           48      1368 159 48     1049     1687
 2           48      1258 159 48      940     1577
 3           48      1446 159 48     1127     1765
 4           48      1396 159 48     1077     1715
 1           72      1224 159 48      905     1543
 2           72      1222 159 48      903     1541
 3           72      1144 159 48      825     1463
 4           72       966 159 48      647     1285
 1           96      1659 159 48     1340     1978
 2           96      1635 159 48     1316     1954
 3           96      1668 159 48     1349     1987
 4           96      1705 159 48     1386     2024

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr      upr     p adj
2-1  -32.4375 -330.8636 265.9886 0.9914586
3-1    2.1875 -296.2386 300.6136 0.9999973
4-1 -138.0625 -436.4886 160.3636 0.6103741
3-2   34.6250 -263.8011 333.0511 0.9896591
4-2 -105.6250 -404.0511 192.8011 0.7824702
4-3 -140.2500 -438.6761 158.1761 0.5981948

$tempo
           diff          lwr        upr     p adj
48-24 -325.0000 -623.4261449  -26.57386 0.0279074
72-24 -553.3750 -851.8011449 -254.94886 0.0000581
96-24  -25.6875 -324.1136449  272.73864 0.9957055
72-48 -228.3750 -526.8011449   70.05114 0.1890690
96-48  299.3125    0.8863551  597.73864 0.0490681
96-72  527.6875  229.2613551  826.11364 0.0001250

$`fermentador:tempo`
             diff         lwr        upr     p adj
2:24-1:24    5.50  -804.69979  815.69979 1.0000000
3:24-1:24    1.75  -808.44979  811.94979 1.0000000
4:24-1:24 -368.00 -1178.19979  442.19979 0.9517970
1:48-1:24 -414.25 -1224.44979  395.94979 0.8860118
2:48-1:24 -524.00 -1334.19979  286.19979 0.6003899
3:48-1:24 -336.25 -1146.44979  473.94979 0.9772602
4:48-1:24 -386.25 -1196.44979  423.94979 0.9302415
1:72-1:24 -558.75 -1368.94979  251.44979 0.4940039
2:72-1:24 -560.25 -1370.44979  249.94979 0.4894844
3:72-1:24 -638.50 -1448.69979  171.69979 0.2786722
4:72-1:24 -816.75 -1626.94979   -6.55021 0.0463407
1:96-1:24 -123.50  -933.69979  686.69979 0.9999999
2:96-1:24 -147.50  -957.69979  662.69979 0.9999984
3:96-1:24 -114.75  -924.94979  695.44979 0.9999999
4:96-1:24  -77.75  -887.94979  732.44979 1.0000000
3:24-2:24   -3.75  -813.94979  806.44979 1.0000000
4:24-2:24 -373.50 -1183.69979  436.69979 0.9458771
1:48-2:24 -419.75 -1229.94979  390.44979 0.8756938
2:48-2:24 -529.50 -1339.69979  280.69979 0.5834844
3:48-2:24 -341.75 -1151.94979  468.44979 0.9738201
4:48-2:24 -391.75 -1201.94979  418.44979 0.9226426
1:72-2:24 -564.25 -1374.44979  245.94979 0.4774864
2:72-2:24 -565.75 -1375.94979  244.44979 0.4730089
3:72-2:24 -644.00 -1454.19979  166.19979 0.2662871
4:72-2:24 -822.25 -1632.44979  -12.05021 0.0434543
1:96-2:24 -129.00  -939.19979  681.19979 0.9999997
2:96-2:24 -153.00  -963.19979  657.19979 0.9999973
3:96-2:24 -120.25  -930.44979  689.94979 0.9999999
4:96-2:24  -83.25  -893.44979  726.94979 1.0000000
4:24-3:24 -369.75 -1179.94979  440.44979 0.9499658
1:48-3:24 -416.00 -1226.19979  394.19979 0.8827866
2:48-3:24 -525.75 -1335.94979  284.44979 0.5950149
3:48-3:24 -338.00 -1148.19979  472.19979 0.9762054
4:48-3:24 -388.00 -1198.19979  422.19979 0.9278805
1:72-3:24 -560.50 -1370.69979  249.69979 0.4887321
2:72-3:24 -562.00 -1372.19979  248.19979 0.4842252
3:72-3:24 -640.25 -1450.44979  169.94979 0.2746920
4:72-3:24 -818.50 -1628.69979   -8.30021 0.0454043
1:96-3:24 -125.25  -935.44979  684.94979 0.9999998
2:96-3:24 -149.25  -959.44979  660.94979 0.9999981
3:96-3:24 -116.50  -926.69979  693.69979 0.9999999
4:96-3:24  -79.50  -889.69979  730.69979 1.0000000
1:48-4:24  -46.25  -856.44979  763.94979 1.0000000
2:48-4:24 -156.00  -966.19979  654.19979 0.9999966
3:48-4:24   31.75  -778.44979  841.94979 1.0000000
4:48-4:24  -18.25  -828.44979  791.94979 1.0000000
1:72-4:24 -190.75 -1000.94979  619.44979 0.9999531
2:72-4:24 -192.25 -1002.44979  617.94979 0.9999483
3:72-4:24 -270.50 -1080.69979  539.69979 0.9972451
4:72-4:24 -448.75 -1258.94979  361.44979 0.8127807
1:96-4:24  244.50  -565.69979 1054.69979 0.9990864
2:96-4:24  220.50  -589.69979 1030.69979 0.9997236
3:96-4:24  253.25  -556.94979 1063.44979 0.9986480
4:96-4:24  290.25  -519.94979 1100.44979 0.9943054
2:48-1:48 -109.75  -919.94979  700.44979 1.0000000
3:48-1:48   78.00  -732.19979  888.19979 1.0000000
4:48-1:48   28.00  -782.19979  838.19979 1.0000000
1:72-1:48 -144.50  -954.69979  665.69979 0.9999988
2:72-1:48 -146.00  -956.19979  664.19979 0.9999986
3:72-1:48 -224.25 -1034.44979  585.94979 0.9996626
4:72-1:48 -402.50 -1212.69979  407.69979 0.9062606
1:96-1:48  290.75  -519.44979 1100.94979 0.9942063
2:96-1:48  266.75  -543.44979 1076.94979 0.9976247
3:96-1:48  299.50  -510.69979 1109.69979 0.9922302
4:96-1:48  336.50  -473.69979 1146.69979 0.9771118
3:48-2:48  187.75  -622.44979  997.94979 0.9999616
4:48-2:48  137.75  -672.44979  947.94979 0.9999994
1:72-2:48  -34.75  -844.94979  775.44979 1.0000000
2:72-2:48  -36.25  -846.44979  773.94979 1.0000000
3:72-2:48 -114.50  -924.69979  695.69979 1.0000000
4:72-2:48 -292.75 -1102.94979  517.44979 0.9937957
1:96-2:48  400.50  -409.69979 1210.69979 0.9094630
2:96-2:48  376.50  -433.69979 1186.69979 0.9424420
3:96-2:48  409.25  -400.94979 1219.44979 0.8949280
4:96-2:48  446.25  -363.94979 1256.44979 0.8187405
4:48-3:48  -50.00  -860.19979  760.19979 1.0000000
1:72-3:48 -222.50 -1032.69979  587.69979 0.9996924
2:72-3:48 -224.00 -1034.19979  586.19979 0.9996670
3:72-3:48 -302.25 -1112.44979  507.94979 0.9915068
4:72-3:48 -480.50 -1290.69979  329.69979 0.7296183
1:96-3:48  212.75  -597.44979 1022.94979 0.9998199
2:96-3:48  188.75  -621.44979  998.94979 0.9999589
3:96-3:48  221.50  -588.69979 1031.69979 0.9997084
4:96-3:48  258.50  -551.69979 1068.69979 0.9983071
1:72-4:48 -172.50  -982.69979  637.69979 0.9999870
2:72-4:48 -174.00  -984.19979  636.19979 0.9999855
3:72-4:48 -252.25 -1062.44979  557.94979 0.9987058
4:72-4:48 -430.50 -1240.69979  379.69979 0.8540062
1:96-4:48  262.75  -547.44979 1072.94979 0.9979800
2:96-4:48  238.75  -571.44979 1048.94979 0.9993024
3:96-4:48  271.50  -538.69979 1081.69979 0.9971357
4:96-4:48  308.50  -501.69979 1118.69979 0.9896596
2:72-1:72   -1.50  -811.69979  808.69979 1.0000000
3:72-1:72  -79.75  -889.94979  730.44979 1.0000000
4:72-1:72 -258.00 -1068.19979  552.19979 0.9983424
1:96-1:72  435.25  -374.94979 1245.44979 0.8437968
2:96-1:72  411.25  -398.94979 1221.44979 0.8914147
3:96-1:72  444.00  -366.19979 1254.19979 0.8240220
4:96-1:72  481.00  -329.19979 1291.19979 0.7282123
3:72-2:72  -78.25  -888.44979  731.94979 1.0000000
4:72-2:72 -256.50 -1066.69979  553.69979 0.9984447
1:96-2:72  436.75  -373.44979 1246.94979 0.8404949
2:96-2:72  412.75  -397.44979 1222.94979 0.8887332
3:96-2:72  445.50  -364.69979 1255.69979 0.8205097
4:96-2:72  482.50  -327.69979 1292.69979 0.7239792
4:72-3:72 -178.25  -988.44979  631.94979 0.9999802
1:96-3:72  515.00  -295.19979 1325.19979 0.6279279
2:96-3:72  491.00  -319.19979 1301.19979 0.6995926
3:96-3:72  523.75  -286.44979 1333.94979 0.6011574
4:96-3:72  560.75  -249.44979 1370.94979 0.4879802
1:96-4:72  693.25  -116.94979 1503.44979 0.1718093
2:96-4:72  669.25  -140.94979 1479.44979 0.2141628
3:96-4:72  702.00  -108.19979 1512.19979 0.1580609
4:96-4:72  739.00   -71.19979 1549.19979 0.1092074
2:96-1:96  -24.00  -834.19979  786.19979 1.0000000
3:96-1:96    8.75  -801.44979  818.94979 1.0000000
4:96-1:96   45.75  -764.44979  855.94979 1.0000000
3:96-2:96   32.75  -777.44979  842.94979 1.0000000
4:96-2:96   69.75  -740.44979  879.94979 1.0000000
4:96-3:96   37.00  -773.19979  847.19979 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   1   2   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
1 TRUE
2 TRUE
4 TRUE


$tempo
 24  96  48  72 
"a" "a" "b" "b" 

$`fermentador:tempo`
2:24 3:24 1:24 4:96 3:96 1:96 2:96 3:48 4:24 4:48 1:48 2:48 1:72 2:72 3:72 4:72 
 "a"  "a"  "a" "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab"  "b" 



########################### Variável: ch4_effic ##########################
ANOVA:
                  Df Sum Sq Mean Sq F value Pr(>F)  
fermentador        3  4.060   1.353   1.512 0.2369  
tempo              1  5.874   5.874   6.561 0.0171 *
fermentador:tempo  3  5.118   1.706   1.906 0.1556  
Residuals         24 21.487   0.895                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean    SE df lower.CL upper.CL
 1           72      5.47 0.473 24     4.50     6.45
 2           72      4.94 0.473 24     3.96     5.92
 3           72      5.51 0.473 24     4.53     6.48
 4           72      3.83 0.473 24     2.85     4.80
 1           96      6.04 0.473 24     5.07     7.02
 2           96      6.11 0.473 24     5.13     7.08
 3           96      5.26 0.473 24     4.29     6.24
 4           96      5.76 0.473 24     4.79     6.74

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
        diff       lwr       upr     p adj
2-1 -0.23750 -1.542603 1.0676026 0.9578105
3-1 -0.37500 -1.680103 0.9301026 0.8570666
4-1 -0.96625 -2.271353 0.3388526 0.2008910
3-2 -0.13750 -1.442603 1.1676026 0.9912267
4-2 -0.72875 -2.033853 0.5763526 0.4302327
4-3 -0.59125 -1.896353 0.7138526 0.6024459

$tempo
          diff       lwr      upr     p adj
96-72 0.856875 0.1664319 1.547318 0.0171319

$`fermentador:tempo`
             diff          lwr       upr     p adj
2:72-1:72 -0.5350 -2.750891247 1.6808912 0.9915147
3:72-1:72  0.0325 -2.183391247 2.2483912 1.0000000
4:72-1:72 -1.6500 -3.865891247 0.5658912 0.2564991
1:96-1:72  0.5700 -1.645891247 2.7858912 0.9877168
2:96-1:72  0.6300 -1.585891247 2.8458912 0.9783728
3:96-1:72 -0.2125 -2.428391247 2.0033912 0.9999786
4:96-1:72  0.2875 -1.928391247 2.5033912 0.9998357
3:72-2:72  0.5675 -1.648391247 2.7833912 0.9880246
4:72-2:72 -1.1150 -3.330891247 1.1008912 0.7072398
1:96-2:72  1.1050 -1.110891247 3.3208912 0.7160504
2:96-2:72  1.1650 -1.050891247 3.3808912 0.6622104
3:96-2:72  0.3225 -1.893391247 2.5383912 0.9996484
4:96-2:72  0.8225 -1.393391247 3.0383912 0.9149297
4:72-3:72 -1.6825 -3.898391247 0.5333912 0.2365052
1:96-3:72  0.5375 -1.678391247 2.7533912 0.9912781
2:96-3:72  0.5975 -1.618391247 2.8133912 0.9839204
3:96-3:72 -0.2450 -2.460891247 1.9708912 0.9999438
4:96-3:72  0.2550 -1.960891247 2.4708912 0.9999264
1:96-4:72  2.2200  0.004108753 4.4358912 0.0493415
2:96-4:72  2.2800  0.064108753 4.4958912 0.0405873
3:96-4:72  1.4375 -0.778391247 3.6533912 0.4146562
4:96-4:72  1.9375 -0.278391247 4.1533912 0.1178690
2:96-1:96  0.0600 -2.155891247 2.2758912 1.0000000
3:96-1:96 -0.7825 -2.998391247 1.4333912 0.9329802
4:96-1:96 -0.2825 -2.498391247 1.9333912 0.9998538
3:96-2:96 -0.8425 -3.058391247 1.3733912 0.9048796
4:96-2:96 -0.3425 -2.558391247 1.8733912 0.9994785
4:96-3:96  0.5000 -1.715891247 2.7158912 0.9943335


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$tempo
 96  72 
"a" "b" 

$`fermentador:tempo`
2:96 1:96 4:96 3:72 1:72 3:96 2:72 4:72 
 "a"  "a" "ab" "ab" "ab" "ab" "ab"  "b" 



########################### Variável: ch4_24h ##########################
ANOVA:
                  Df  Sum Sq Mean Sq F value   Pr(>F)    
fermentador        3 0.00659 0.00220   1.373    0.275    
tempo              1 0.03768 0.03768  23.561 6.02e-05 ***
fermentador:tempo  3 0.00463 0.00154   0.965    0.425    
Residuals         24 0.03838 0.00160                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean   SE df lower.CL upper.CL
 1           72    0.1173 0.02 24   0.0760   0.1585
 2           72    0.0975 0.02 24   0.0562   0.1388
 3           72    0.1025 0.02 24   0.0612   0.1438
 4           72    0.0525 0.02 24   0.0112   0.0938
 1           96    0.1751 0.02 24   0.1338   0.2163
 2           96    0.1642 0.02 24   0.1230   0.2055
 3           96    0.1450 0.02 24   0.1037   0.1863
 4           96    0.1600 0.02 24   0.1187   0.2013

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
          diff         lwr        upr     p adj
2-1 -0.0153125 -0.07047274 0.03984774 0.8689827
3-1 -0.0224250 -0.07758524 0.03273524 0.6801404
4-1 -0.0399250 -0.09508524 0.01523524 0.2171202
3-2 -0.0071125 -0.06227274 0.04804774 0.9841957
4-2 -0.0246125 -0.07977274 0.03054774 0.6139378
4-3 -0.0175000 -0.07266024 0.03766024 0.8175559

$tempo
            diff        lwr        upr    p adj
96-72 0.06863125 0.03944964 0.09781286 6.02e-05

$`fermentador:tempo`
               diff          lwr        upr     p adj
2:72-1:72 -0.019775 -0.113429769 0.07387977 0.9962175
3:72-1:72 -0.014775 -0.108429769 0.07887977 0.9994041
4:72-1:72 -0.064775 -0.158429769 0.02887977 0.3382617
1:96-1:72  0.057800 -0.035854769 0.15145477 0.4755851
2:96-1:72  0.046950 -0.046704769 0.14060477 0.7109082
3:96-1:72  0.027725 -0.065929769 0.12137977 0.9730160
4:96-1:72  0.042725 -0.050929769 0.13637977 0.7943989
3:72-2:72  0.005000 -0.088654769 0.09865477 0.9999996
4:72-2:72 -0.045000 -0.138654769 0.04865477 0.7507001
1:96-2:72  0.077575 -0.016079769 0.17122977 0.1576119
2:96-2:72  0.066725 -0.026929769 0.16037977 0.3043799
3:96-2:72  0.047500 -0.046154769 0.14115477 0.6993728
4:96-2:72  0.062500 -0.031154769 0.15615477 0.3804876
4:72-3:72 -0.050000 -0.143654769 0.04365477 0.6456829
1:96-3:72  0.072575 -0.021079769 0.16622977 0.2164645
2:96-3:72  0.061725 -0.031929769 0.15537977 0.3954902
3:96-3:72  0.042500 -0.051154769 0.13615477 0.7985334
4:96-3:72  0.057500 -0.036154769 0.15115477 0.4819458
1:96-4:72  0.122575  0.028920231 0.21622977 0.0047165
2:96-4:72  0.111725  0.018070231 0.20537977 0.0117652
3:96-4:72  0.092500 -0.001154769 0.18615477 0.0545868
4:96-4:72  0.107500  0.013845231 0.20115477 0.0166713
2:96-1:96 -0.010850 -0.104504769 0.08280477 0.9999230
3:96-1:96 -0.030075 -0.123729769 0.06357977 0.9584493
4:96-1:96 -0.015075 -0.108729769 0.07857977 0.9993210
3:96-2:96 -0.019225 -0.112879769 0.07442977 0.9968213
4:96-2:96 -0.004225 -0.097879769 0.08942977 0.9999999
4:96-3:96  0.015000 -0.078654769 0.10865477 0.9993426


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$tempo
 96  72 
"a" "b" 

$`fermentador:tempo`
1:96 2:96 4:96 3:96 1:72 3:72 2:72 4:72 
 "a"  "a"  "a" "ab" "ab" "ab" "ab"  "b" 



########################### Variável: ch4_48h ##########################
ANOVA:
                  Df  Sum Sq  Mean Sq F value Pr(>F)  
fermentador        3 0.04519 0.015063   2.492 0.0757 .
tempo              2 0.00000 0.000001   0.000 0.9999  
fermentador:tempo  6 0.00036 0.000061   0.010 1.0000  
Residuals         36 0.21762 0.006045                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean     SE df lower.CL upper.CL
 1           48     0.310 0.0389 36    0.231    0.389
 2           48     0.305 0.0389 36    0.226    0.384
 3           48     0.295 0.0389 36    0.216    0.374
 4           48     0.233 0.0389 36    0.154    0.311
 1           72     0.319 0.0389 36    0.240    0.398
 2           72     0.297 0.0389 36    0.219    0.376
 3           72     0.295 0.0389 36    0.216    0.374
 4           72     0.233 0.0389 36    0.154    0.311
 1           96     0.313 0.0389 36    0.235    0.392
 2           96     0.300 0.0389 36    0.221    0.379
 3           96     0.292 0.0389 36    0.214    0.371
 4           96     0.237 0.0389 36    0.159    0.316

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
            diff         lwr        upr     p adj
2-1 -0.013315833 -0.09880132 0.07216966 0.9747832
3-1 -0.019982500 -0.10546799 0.06550299 0.9218566
4-1 -0.079982500 -0.16546799 0.00550299 0.0736837
3-2 -0.006666667 -0.09215216 0.07881882 0.9966635
4-2 -0.066666667 -0.15215216 0.01881882 0.1723756
4-3 -0.060000000 -0.14548549 0.02548549 0.2501038

$tempo
            diff         lwr        upr     p adj
72-48  0.0003775 -0.06681241 0.06756741 0.9998960
96-48  0.0002325 -0.06695741 0.06742241 0.9999606
96-72 -0.0001450 -0.06733491 0.06704491 0.9999847

$`fermentador:tempo`
                   diff        lwr       upr     p adj
2:48-1:48 -5.002500e-03 -0.1968895 0.1868845 1.0000000
3:48-1:48 -1.500250e-02 -0.2068895 0.1768845 1.0000000
4:48-1:48 -7.750250e-02 -0.2693895 0.1143845 0.9539361
1:72-1:48  9.010000e-03 -0.1828770 0.2008970 1.0000000
2:72-1:48 -1.250250e-02 -0.2043895 0.1793845 1.0000000
3:72-1:48 -1.500250e-02 -0.2068895 0.1768845 1.0000000
4:72-1:48 -7.750250e-02 -0.2693895 0.1143845 0.9539361
1:96-1:48  3.430000e-03 -0.1884570 0.1953170 1.0000000
2:96-1:48 -1.000250e-02 -0.2018895 0.1818845 1.0000000
3:96-1:48 -1.750250e-02 -0.2093895 0.1743845 1.0000000
4:96-1:48 -7.250250e-02 -0.2643895 0.1193845 0.9709852
3:48-2:48 -1.000000e-02 -0.2018870 0.1818870 1.0000000
4:48-2:48 -7.250000e-02 -0.2643870 0.1193870 0.9709923
1:72-2:48  1.401250e-02 -0.1778745 0.2058995 1.0000000
2:72-2:48 -7.500000e-03 -0.1993870 0.1843870 1.0000000
3:72-2:48 -1.000000e-02 -0.2018870 0.1818870 1.0000000
4:72-2:48 -7.250000e-02 -0.2643870 0.1193870 0.9709923
1:96-2:48  8.432500e-03 -0.1834545 0.2003195 1.0000000
2:96-2:48 -5.000000e-03 -0.1968870 0.1868870 1.0000000
3:96-2:48 -1.250000e-02 -0.2043870 0.1793870 1.0000000
4:96-2:48 -6.750000e-02 -0.2593870 0.1243870 0.9828468
4:48-3:48 -6.250000e-02 -0.2543870 0.1293870 0.9905653
1:72-3:48  2.401250e-02 -0.1678745 0.2158995 0.9999990
2:72-3:48  2.500000e-03 -0.1893870 0.1943870 1.0000000
3:72-3:48  0.000000e+00 -0.1918870 0.1918870 1.0000000
4:72-3:48 -6.250000e-02 -0.2543870 0.1293870 0.9905653
1:96-3:48  1.843250e-02 -0.1734545 0.2103195 0.9999999
2:96-3:48  5.000000e-03 -0.1868870 0.1968870 1.0000000
3:96-3:48 -2.500000e-03 -0.1943870 0.1893870 1.0000000
4:96-3:48 -5.750000e-02 -0.2493870 0.1343870 0.9952274
1:72-4:48  8.651250e-02 -0.1053745 0.2783995 0.9074607
2:72-4:48  6.500000e-02 -0.1268870 0.2568870 0.9871545
3:72-4:48  6.250000e-02 -0.1293870 0.2543870 0.9905653
4:72-4:48 -5.551115e-17 -0.1918870 0.1918870 1.0000000
1:96-4:48  8.093250e-02 -0.1109545 0.2728195 0.9387675
2:96-4:48  6.750000e-02 -0.1243870 0.2593870 0.9828468
3:96-4:48  6.000000e-02 -0.1318870 0.2518870 0.9932137
4:96-4:48  5.000000e-03 -0.1868870 0.1968870 1.0000000
2:72-1:72 -2.151250e-02 -0.2133995 0.1703745 0.9999997
3:72-1:72 -2.401250e-02 -0.2158995 0.1678745 0.9999990
4:72-1:72 -8.651250e-02 -0.2783995 0.1053745 0.9074607
1:96-1:72 -5.580000e-03 -0.1974670 0.1863070 1.0000000
2:96-1:72 -1.901250e-02 -0.2108995 0.1728745 0.9999999
3:96-1:72 -2.651250e-02 -0.2183995 0.1653745 0.9999971
4:96-1:72 -8.151250e-02 -0.2733995 0.1103745 0.9359031
3:72-2:72 -2.500000e-03 -0.1943870 0.1893870 1.0000000
4:72-2:72 -6.500000e-02 -0.2568870 0.1268870 0.9871545
1:96-2:72  1.593250e-02 -0.1759545 0.2078195 1.0000000
2:96-2:72  2.500000e-03 -0.1893870 0.1943870 1.0000000
3:96-2:72 -5.000000e-03 -0.1968870 0.1868870 1.0000000
4:96-2:72 -6.000000e-02 -0.2518870 0.1318870 0.9932137
4:72-3:72 -6.250000e-02 -0.2543870 0.1293870 0.9905653
1:96-3:72  1.843250e-02 -0.1734545 0.2103195 0.9999999
2:96-3:72  5.000000e-03 -0.1868870 0.1968870 1.0000000
3:96-3:72 -2.500000e-03 -0.1943870 0.1893870 1.0000000
4:96-3:72 -5.750000e-02 -0.2493870 0.1343870 0.9952274
1:96-4:72  8.093250e-02 -0.1109545 0.2728195 0.9387675
2:96-4:72  6.750000e-02 -0.1243870 0.2593870 0.9828468
3:96-4:72  6.000000e-02 -0.1318870 0.2518870 0.9932137
4:96-4:72  5.000000e-03 -0.1868870 0.1968870 1.0000000
2:96-1:96 -1.343250e-02 -0.2053195 0.1784545 1.0000000
3:96-1:96 -2.093250e-02 -0.2128195 0.1709545 0.9999998
4:96-1:96 -7.593250e-02 -0.2678195 0.1159545 0.9599073
3:96-2:96 -7.500000e-03 -0.1993870 0.1843870 1.0000000
4:96-2:96 -6.250000e-02 -0.2543870 0.1293870 0.9905653
4:96-3:96 -5.500000e-02 -0.2468870 0.1368870 0.9967245


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$tempo
$tempo$Letters
 72  96  48 
"a" "a" "a" 

$tempo$LetterMatrix
      a
72 TRUE
96 TRUE
48 TRUE


$`fermentador:tempo`
$`fermentador:tempo`$Letters
1:72 1:96 1:48 2:48 2:96 2:72 3:48 3:72 3:96 4:96 4:48 4:72 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tempo`$LetterMatrix
        a
1:72 TRUE
1:96 TRUE
1:48 TRUE
2:48 TRUE
2:96 TRUE
2:72 TRUE
3:48 TRUE
3:72 TRUE
3:96 TRUE
4:96 TRUE
4:48 TRUE
4:72 TRUE




########################### Variável: dmo ##########################
ANOVA:
                  Df Sum Sq Mean Sq F value   Pr(>F)    
fermentador        3   2776     925   0.552    0.652    
tempo              1  42080   42080  25.113 4.04e-05 ***
fermentador:tempo  3   3544    1181   0.705    0.558    
Residuals         24  40216    1676                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean   SE df lower.CL upper.CL
 1           24       584 20.5 24      541      626
 2           24       617 20.5 24      574      659
 3           24       633 20.5 24      590      675
 4           24       617 20.5 24      575      659
 1           48       537 20.5 24      495      579
 2           48       543 20.5 24      501      585
 3           48       528 20.5 24      486      570
 4           48       552 20.5 24      510      594

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr      upr     p adj
2-1 19.301000 -37.16049 75.76249 0.7822083
3-1 19.838050 -36.62344 76.29954 0.7679323
4-1 24.094575 -32.36691 80.55606 0.6465844
3-2  0.537050 -55.92444 56.99854 0.9999933
4-2  4.793575 -51.66791 61.25506 0.9953518
4-3  4.256525 -52.20496 60.71801 0.9967297

$tempo
           diff       lwr       upr    p adj
48-24 -72.52585 -102.3959 -42.65583 4.04e-05

$`fermentador:tempo`
                 diff        lwr         upr     p adj
2:24-1:24   32.923900  -62.94022 128.7880217 0.9415536
3:24-1:24   48.964425  -46.89970 144.8285467 0.6922694
4:24-1:24   33.420850  -62.44327 129.2849717 0.9370616
1:48-1:24  -46.488075 -142.35220  49.3760467 0.7423585
2:48-1:24  -40.809975 -136.67410  55.0541467 0.8439938
3:48-1:24  -55.776400 -151.64052  40.0877217 0.5470144
4:48-1:24  -31.719775 -127.58390  64.1443467 0.9515419
3:24-2:24   16.040525  -79.82360 111.9046467 0.9991275
4:24-2:24    0.496950  -95.36717  96.3610717 1.0000000
1:48-2:24  -79.411975 -175.27610  16.4521467 0.1575417
2:48-2:24  -73.733875 -169.59800  22.1302467 0.2237106
3:48-2:24  -88.700300 -184.56442   7.1638217 0.0841450
4:48-2:24  -64.643675 -160.50780  31.2204467 0.3680676
4:24-3:24  -15.543575 -111.40770  80.3205467 0.9992881
1:48-3:24  -95.452500 -191.31662   0.4116217 0.0515559
2:48-3:24  -89.774400 -185.63852   6.0897217 0.0779707
3:48-3:24 -104.740825 -200.60495  -8.8767033 0.0253528
4:48-3:24  -80.684200 -176.54832  15.1799217 0.1451067
1:48-4:24  -79.908925 -175.77305  15.9551967 0.1525853
2:48-4:24  -74.230825 -170.09495  21.6332967 0.2171932
3:48-4:24  -89.197250 -185.06137   6.6668717 0.0812368
4:48-4:24  -65.140625 -161.00475  30.7234967 0.3589912
2:48-1:48    5.678100  -90.18602 101.5422217 0.9999992
3:48-1:48   -9.288325 -105.15245  86.5757967 0.9999770
4:48-1:48   14.768300  -81.09582 110.6324217 0.9994896
3:48-2:48  -14.966425 -110.83055  80.8976967 0.9994433
4:48-2:48    9.090200  -86.77392 104.9543217 0.9999802
4:48-3:48   24.056625  -71.80750 119.9207467 0.9893582


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE


$tempo
 24  48 
"a" "b" 

$`fermentador:tempo`
3:24 4:24 2:24 1:24 4:48 2:48 1:48 3:48 
 "a" "ab" "ab" "ab" "ab" "ab" "ab"  "b" 



########################### Variável: n_nh3 ##########################
ANOVA:
                  Df Sum Sq Mean Sq F value   Pr(>F)    
fermentador        3 0.0005 0.00017   0.016    0.997    
tempo              2 0.5514 0.27568  24.721 1.75e-07 ***
fermentador:tempo  6 0.0010 0.00017   0.015    1.000    
Residuals         36 0.4015 0.01115                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 fermentador tempo emmean     SE df lower.CL upper.CL
 1           0     0.0386 0.0528 36  -0.0685    0.146
 2           0     0.0417 0.0528 36  -0.0653    0.149
 3           0     0.0418 0.0528 36  -0.0653    0.149
 4           0     0.0421 0.0528 36  -0.0650    0.149
 1           72    0.0692 0.0528 36  -0.0379    0.176
 2           72    0.0706 0.0528 36  -0.0365    0.178
 3           72    0.0791 0.0528 36  -0.0280    0.186
 4           72    0.0656 0.0528 36  -0.0415    0.173
 1           96    0.2762 0.0528 36   0.1691    0.383
 2           96    0.2724 0.0528 36   0.1654    0.380
 3           96    0.2850 0.0528 36   0.1779    0.392
 4           96    0.2942 0.0528 36   0.1871    0.401

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
             diff        lwr       upr     p adj
2-1  0.0002483333 -0.1158605 0.1163571 0.9999999
3-1  0.0072995833 -0.1088092 0.1234084 0.9982410
4-1  0.0059537500 -0.1101550 0.1220625 0.9990419
3-2  0.0070512500 -0.1090575 0.1231600 0.9984133
4-2  0.0057054167 -0.1104034 0.1218142 0.9991563
4-3 -0.0013458333 -0.1174546 0.1147630 0.9999889

$tempo
           diff         lwr       upr     p adj
72-0  0.0300475 -0.06121171 0.1213067 0.7025028
96-0  0.2408847  0.14962547 0.3321439 0.0000005
96-72 0.2108372  0.11957797 0.3020964 0.0000061

$`fermentador:tempo`
                 diff          lwr       upr     p adj
2:0-1:0    0.00312500 -0.257501255 0.2637513 1.0000000
3:0-1:0    0.00317750 -0.257448755 0.2638038 1.0000000
4:0-1:0    0.00349625 -0.257130005 0.2641225 1.0000000
1:72-1:0   0.03059000 -0.230036255 0.2912163 0.9999995
2:72-1:0   0.03195000 -0.228676255 0.2925763 0.9999992
3:72-1:0   0.04047125 -0.220155005 0.3010975 0.9999905
4:72-1:0   0.02697750 -0.233648755 0.2876038 0.9999999
1:96-1:0   0.23756500 -0.023061255 0.4981913 0.1020790
2:96-1:0   0.23382500 -0.026801255 0.4944513 0.1138646
3:96-1:0   0.24640500 -0.014221255 0.5070313 0.0782548
4:96-1:0   0.25554250 -0.005083755 0.5161688 0.0588432
3:0-2:0    0.00005250 -0.260573755 0.2606788 1.0000000
4:0-2:0    0.00037125 -0.260255005 0.2609975 1.0000000
1:72-2:0   0.02746500 -0.233161255 0.2880913 0.9999998
2:72-2:0   0.02882500 -0.231801255 0.2894513 0.9999997
3:72-2:0   0.03734625 -0.223280005 0.2979725 0.9999958
4:72-2:0   0.02385250 -0.236773755 0.2844788 1.0000000
1:96-2:0   0.23444000 -0.026186255 0.4950663 0.1118521
2:96-2:0   0.23070000 -0.029926255 0.4913263 0.1245596
3:96-2:0   0.24328000 -0.017346255 0.5039063 0.0860644
4:96-2:0   0.25241750 -0.008208755 0.5130438 0.0649429
4:0-3:0    0.00031875 -0.260307505 0.2609450 1.0000000
1:72-3:0   0.02741250 -0.233213755 0.2880388 0.9999998
2:72-3:0   0.02877250 -0.231853755 0.2893988 0.9999997
3:72-3:0   0.03729375 -0.223332505 0.2979200 0.9999959
4:72-3:0   0.02380000 -0.236826255 0.2844263 1.0000000
1:96-3:0   0.23438750 -0.026238755 0.4950138 0.1120228
2:96-3:0   0.23064750 -0.029978755 0.4912738 0.1247461
3:96-3:0   0.24322750 -0.017398755 0.5038538 0.0862012
4:96-3:0   0.25236500 -0.008261255 0.5129913 0.0650500
1:72-4:0   0.02709375 -0.233532505 0.2877200 0.9999999
2:72-4:0   0.02845375 -0.232172505 0.2890800 0.9999998
3:72-4:0   0.03697500 -0.223651255 0.2976013 0.9999962
4:72-4:0   0.02348125 -0.237145005 0.2841075 1.0000000
1:96-4:0   0.23406875 -0.026557505 0.4946950 0.1130634
2:96-4:0   0.23032875 -0.030297505 0.4909550 0.1258833
3:96-4:0   0.24290875 -0.017717505 0.5035350 0.0870353
4:96-4:0   0.25204625 -0.008580005 0.5126725 0.0657033
2:72-1:72  0.00136000 -0.259266255 0.2619863 1.0000000
3:72-1:72  0.00988125 -0.250745005 0.2705075 1.0000000
4:72-1:72 -0.00361250 -0.264238755 0.2570138 1.0000000
1:96-1:72  0.20697500 -0.053651255 0.4676013 0.2343455
2:96-1:72  0.20323500 -0.057391255 0.4638613 0.2566491
3:96-1:72  0.21581500 -0.044811255 0.4764413 0.1871827
4:96-1:72  0.22495250 -0.035673755 0.4855788 0.1463700
3:72-2:72  0.00852125 -0.252105005 0.2691475 1.0000000
4:72-2:72 -0.00497250 -0.265598755 0.2556538 1.0000000
1:96-2:72  0.20561500 -0.055011255 0.4662413 0.2422935
2:96-2:72  0.20187500 -0.058751255 0.4625013 0.2651069
3:96-2:72  0.21445500 -0.046171255 0.4750813 0.1939360
4:96-2:72  0.22359250 -0.037033755 0.4842188 0.1519549
4:72-3:72 -0.01349375 -0.274120005 0.2471325 1.0000000
1:96-3:72  0.19709375 -0.063532505 0.4577200 0.2962969
2:96-3:72  0.19335375 -0.067272505 0.4539800 0.3222401
3:96-3:72  0.20593375 -0.054692505 0.4665600 0.2404140
4:96-3:72  0.21507125 -0.045555005 0.4756975 0.1908536
1:96-4:72  0.21058750 -0.050038755 0.4712138 0.2141342
2:96-4:72  0.20684750 -0.053778755 0.4674738 0.2350827
3:96-4:72  0.21942750 -0.041198755 0.4800538 0.1701114
4:96-4:72  0.22856500 -0.032061255 0.4891913 0.1323300
2:96-1:96 -0.00374000 -0.264366255 0.2568863 1.0000000
3:96-1:96  0.00884000 -0.251786255 0.2694663 1.0000000
4:96-1:96  0.01797750 -0.242648755 0.2786038 1.0000000
3:96-2:96  0.01258000 -0.248046255 0.2732063 1.0000000
4:96-2:96  0.02171750 -0.238908755 0.2823438 1.0000000
4:96-3:96  0.00913750 -0.251488755 0.2697638 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   4   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
4 TRUE
2 TRUE
1 TRUE


$tempo
 96  72   0 
"a" "b" "b" 

$`fermentador:tempo`
$`fermentador:tempo`$Letters
4:96 3:96 1:96 2:96 3:72 2:72 1:72 4:72  4:0  3:0  2:0  1:0 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tempo`$LetterMatrix
        a
4:96 TRUE
3:96 TRUE
1:96 TRUE
2:96 TRUE
3:72 TRUE
2:72 TRUE
1:72 TRUE
4:72 TRUE
4:0  TRUE
3:0  TRUE
2:0  TRUE
1:0  TRUE

9 Periodo x Tempo

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ periodo * tempo")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ periodo * tempo")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ periodo * tempo"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ periodo * tempo)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
              Df Sum Sq Mean Sq F value   Pr(>F)    
periodo        3 167360   55787   18.07 5.53e-08 ***
tempo          3 349201  116400   37.69 1.14e-12 ***
periodo:tempo  9 387377   43042   13.94 1.10e-10 ***
Residuals     48 148225    3088                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean   SE df lower.CL upper.CL
 1       24     475.0 27.8 48   419.13      531
 2       24     352.5 27.8 48   296.63      408
 3       24     288.8 27.8 48   232.88      345
 4       24      78.2 27.8 48    22.38      134
 1       48     230.0 27.8 48   174.13      286
 2       48     181.2 27.8 48   125.38      237
 3       48      49.5 27.8 48    -6.37      105
 4       48     298.8 27.8 48   242.88      355
 1       72     407.5 27.8 48   351.63      463
 2       72     417.5 27.8 48   361.63      473
 3       72     296.2 27.8 48   240.38      352
 4       72     462.5 27.8 48   406.63      518
 1       96     322.5 27.8 48   266.63      378
 2       96     363.0 27.8 48   307.13      419
 3       96     250.5 27.8 48   194.63      306
 4       96     353.8 27.8 48   297.88      410

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
         diff        lwr        upr     p adj
2-1  -30.1875  -82.47543  22.100435 0.4242093
3-1 -137.5000 -189.78793 -85.212065 0.0000000
4-1  -60.4375 -112.72543  -8.149565 0.0175826
3-2 -107.3125 -159.60043 -55.024565 0.0000096
4-2  -30.2500  -82.53793  22.037935 0.4223772
4-3   77.0625   24.77457 129.350435 0.0015398

$tempo
           diff        lwr       upr     p adj
48-24 -108.7500 -161.03793 -56.46207 0.0000075
72-24   97.3125   45.02457 149.60043 0.0000547
96-24   23.8125  -28.47543  76.10043 0.6223591
72-48  206.0625  153.77457 258.35043 0.0000000
96-48  132.5625   80.27457 184.85043 0.0000001
96-72  -73.5000 -125.78793 -21.21207 0.0026700

$`periodo:tempo`
             diff          lwr         upr     p adj
2:24-1:24 -122.50 -264.4569782   19.456978 0.1624394
3:24-1:24 -186.25 -328.2069782  -44.293022 0.0018389
4:24-1:24 -396.75 -538.7069782 -254.793022 0.0000000
1:48-1:24 -245.00 -386.9569782 -103.043022 0.0000120
2:48-1:24 -293.75 -435.7069782 -151.793022 0.0000002
3:48-1:24 -425.50 -567.4569782 -283.543022 0.0000000
4:48-1:24 -176.25 -318.2069782  -34.293022 0.0040928
1:72-1:24  -67.50 -209.4569782   74.456978 0.9315711
2:72-1:24  -57.50 -199.4569782   84.456978 0.9816721
3:72-1:24 -178.75 -320.7069782  -36.793022 0.0033587
4:72-1:24  -12.50 -154.4569782  129.456978 1.0000000
1:96-1:24 -152.50 -294.4569782  -10.543022 0.0243091
2:96-1:24 -112.00 -253.9569782   29.956978 0.2770200
3:96-1:24 -224.50 -366.4569782  -82.543022 0.0000725
4:96-1:24 -121.25 -263.2069782   20.706978 0.1738171
3:24-2:24  -63.75 -205.7069782   78.206978 0.9559535
4:24-2:24 -274.25 -416.2069782 -132.293022 0.0000009
1:48-2:24 -122.50 -264.4569782   19.456978 0.1624394
2:48-2:24 -171.25 -313.2069782  -29.293022 0.0060463
3:48-2:24 -303.00 -444.9569782 -161.043022 0.0000001
4:48-2:24  -53.75 -195.7069782   88.206978 0.9902002
1:72-2:24   55.00  -86.9569782  196.956978 0.9878145
2:72-2:24   65.00  -76.9569782  206.956978 0.9486512
3:72-2:24  -56.25 -198.2069782   85.706978 0.9849887
4:72-2:24  110.00  -31.9569782  251.956978 0.3037777
1:96-2:24  -30.00 -171.9569782  111.956978 0.9999882
2:96-2:24   10.50 -131.4569782  152.456978 1.0000000
3:96-2:24 -102.00 -243.9569782   39.956978 0.4249847
4:96-2:24    1.25 -140.7069782  143.206978 1.0000000
4:24-3:24 -210.50 -352.4569782  -68.543022 0.0002428
1:48-3:24  -58.75 -200.7069782   83.206978 0.9778133
2:48-3:24 -107.50 -249.4569782   34.456978 0.3393409
3:48-3:24 -239.25 -381.2069782  -97.293022 0.0000199
4:48-3:24   10.00 -131.9569782  151.956978 1.0000000
1:72-3:24  118.75  -23.2069782  260.706978 0.1983719
2:72-3:24  128.75  -13.2069782  270.706978 0.1140139
3:72-3:24    7.50 -134.4569782  149.456978 1.0000000
4:72-3:24  173.75   31.7930218  315.706978 0.0049789
1:96-3:24   33.75 -108.2069782  175.706978 0.9999470
2:96-3:24   74.25  -67.7069782  216.206978 0.8678139
3:96-3:24  -38.25 -180.2069782  103.706978 0.9997546
4:96-3:24   65.00  -76.9569782  206.956978 0.9486512
1:48-4:24  151.75    9.7930218  293.706978 0.0256303
2:48-4:24  103.00  -38.9569782  244.956978 0.4087394
3:48-4:24  -28.75 -170.7069782  113.206978 0.9999933
4:48-4:24  220.50   78.5430218  362.456978 0.0001027
1:72-4:24  329.25  187.2930218  471.206978 0.0000000
2:72-4:24  339.25  197.2930218  481.206978 0.0000000
3:72-4:24  218.00   76.0430218  359.956978 0.0001275
4:72-4:24  384.25  242.2930218  526.206978 0.0000000
1:96-4:24  244.25  102.2930218  386.206978 0.0000128
2:96-4:24  284.75  142.7930218  426.706978 0.0000004
3:96-4:24  172.25   30.2930218  314.206978 0.0055956
4:96-4:24  275.50  133.5430218  417.456978 0.0000008
2:48-1:48  -48.75 -190.7069782   93.206978 0.9962998
3:48-1:48 -180.50 -322.4569782  -38.543022 0.0029218
4:48-1:48   68.75  -73.2069782  210.706978 0.9217371
1:72-1:48  177.50   35.5430218  319.456978 0.0037084
2:72-1:48  187.50   45.5430218  329.456978 0.0016611
3:72-1:48   66.25  -75.7069782  208.206978 0.9405341
4:72-1:48  232.50   90.5430218  374.456978 0.0000361
1:96-1:48   92.50  -49.4569782  234.456978 0.5883106
2:96-1:48  133.00   -8.9569782  274.956978 0.0883877
3:96-1:48   20.50 -121.4569782  162.456978 0.9999999
4:96-1:48  123.75  -18.2069782  265.706978 0.1516457
3:48-2:48 -131.75 -273.7069782   10.206978 0.0953659
4:48-2:48  117.50  -24.4569782  259.456978 0.2115675
1:72-2:48  226.25   84.2930218  368.206978 0.0000623
2:72-2:48  236.25   94.2930218  378.206978 0.0000259
3:72-2:48  115.00  -26.9569782  256.956978 0.2398239
4:72-2:48  281.25  139.2930218  423.206978 0.0000005
1:96-2:48  141.25   -0.7069782  283.206978 0.0523796
2:96-2:48  181.75   39.7930218  323.706978 0.0026438
3:96-2:48   69.25  -72.7069782  211.206978 0.9175552
4:96-2:48  172.50   30.5430218  314.456978 0.0054880
4:48-3:48  249.25  107.2930218  391.206978 0.0000082
1:72-3:48  358.00  216.0430218  499.956978 0.0000000
2:72-3:48  368.00  226.0430218  509.956978 0.0000000
3:72-3:48  246.75  104.7930218  388.706978 0.0000103
4:72-3:48  413.00  271.0430218  554.956978 0.0000000
1:96-3:48  273.00  131.0430218  414.956978 0.0000010
2:96-3:48  313.50  171.5430218  455.456978 0.0000000
3:96-3:48  201.00   59.0430218  342.956978 0.0005431
4:96-3:48  304.25  162.2930218  446.206978 0.0000001
1:72-4:48  108.75  -33.2069782  250.706978 0.3212730
2:72-4:48  118.75  -23.2069782  260.706978 0.1983719
3:72-4:48   -2.50 -144.4569782  139.456978 1.0000000
4:72-4:48  163.75   21.7930218  305.706978 0.0107046
1:96-4:48   23.75 -118.2069782  165.706978 0.9999995
2:96-4:48   64.25  -77.7069782  206.206978 0.9531281
3:96-4:48  -48.25 -190.2069782   93.706978 0.9966759
4:96-4:48   55.00  -86.9569782  196.956978 0.9878145
2:72-1:72   10.00 -131.9569782  151.956978 1.0000000
3:72-1:72 -111.25 -253.2069782   30.706978 0.2868732
4:72-1:72   55.00  -86.9569782  196.956978 0.9878145
1:96-1:72  -85.00 -226.9569782   56.956978 0.7165163
2:96-1:72  -44.50 -186.4569782   97.456978 0.9986046
3:96-1:72 -157.00 -298.9569782  -15.043022 0.0176109
4:96-1:72  -53.75 -195.7069782   88.206978 0.9902002
3:72-2:72 -121.25 -263.2069782   20.706978 0.1738171
4:72-2:72   45.00  -96.9569782  186.956978 0.9984226
1:96-2:72  -95.00 -236.9569782   46.956978 0.5444298
2:96-2:72  -54.50 -196.4569782   87.456978 0.9888188
3:96-2:72 -167.00 -308.9569782  -25.043022 0.0083757
4:96-2:72  -63.75 -205.7069782   78.206978 0.9559535
4:72-3:72  166.25   24.2930218  308.206978 0.0088663
1:96-3:72   26.25 -115.7069782  168.206978 0.9999980
2:96-3:72   66.75  -75.2069782  208.706978 0.9370520
3:96-3:72  -45.75 -187.7069782   96.206978 0.9981119
4:96-3:72   57.50  -84.4569782  199.456978 0.9816721
1:96-4:72 -140.00 -281.9569782    1.956978 0.0568323
2:96-4:72  -99.50 -241.4569782   42.456978 0.4666656
3:96-4:72 -212.00 -353.9569782  -70.043022 0.0002135
4:96-4:72 -108.75 -250.7069782   33.206978 0.3212730
2:96-1:96   40.50 -101.4569782  182.456978 0.9995192
3:96-1:96  -72.00 -213.9569782   69.956978 0.8919815
4:96-1:96   31.25 -110.7069782  173.206978 0.9999801
3:96-2:96 -112.50 -254.4569782   29.456978 0.2705733
4:96-2:96   -9.25 -151.2069782  132.706978 1.0000000
4:96-3:96  103.25  -38.7069782  245.206978 0.4047207


Letras do Tukey:
$periodo
   1    2    4    3 
 "a" "ab"  "b"  "c" 

$tempo
 72  96  24  48 
"a" "b" "b" "c" 

$`periodo:tempo`
  1:24   4:72   2:72   1:72   2:96   4:96   2:24   1:96   4:48   3:72   3:24   3:96   1:48   2:48   4:24 
   "a"   "ab"  "abc"  "abc" "abcd" "abcd" "abcd" "bcde"  "cde"  "cde"  "cde"   "de"   "de"   "ef"    "f" 
  3:48 
   "f" 



########################### Variável: gas_total ##########################
ANOVA:
              Df  Sum Sq Mean Sq F value   Pr(>F)    
periodo        3 1035268  345089   5.890  0.00166 ** 
tempo          3 3330824 1110275  18.951 3.02e-08 ***
periodo:tempo  9 1654805  183867   3.138  0.00473 ** 
Residuals     48 2812214   58588                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean  SE df lower.CL upper.CL
 1       24      1878 121 48     1635     2121
 2       24      1960 121 48     1717     2203
 3       24      1436 121 48     1193     1679
 4       24      1495 121 48     1252     1739
 1       48      1516 121 48     1273     1760
 2       48      1378 121 48     1135     1621
 3       48      1208 121 48      965     1451
 4       48      1367 121 48     1123     1610
 1       72      1115 121 48      872     1359
 2       72      1024 121 48      781     1268
 3       72       949 121 48      705     1192
 4       72      1468 121 48     1224     1711
 1       96      1537 121 48     1294     1780
 2       96      1586 121 48     1342     1829
 3       96      1447 121 48     1204     1691
 4       96      2096 121 48     1853     2340

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
         diff       lwr         upr     p adj
2-1  -24.6875 -252.4406 203.0655643 0.9915274
3-1 -251.6875 -479.4406 -23.9344357 0.0250230
4-1   94.8125 -132.9406 322.5655643 0.6864580
3-2 -227.0000 -454.7531   0.7530643 0.0510555
4-2  119.5000 -108.2531 347.2530643 0.5077448
4-3  346.5000  118.7469 574.2530643 0.0010404

$tempo
           diff        lwr          upr     p adj
48-24 -325.0000 -552.75306  -97.2469357 0.0022511
72-24 -553.3750 -781.12806 -325.6219357 0.0000003
96-24  -25.6875 -253.44056  202.0655643 0.9904815
72-48 -228.3750 -456.12806   -0.6219357 0.0491427
96-48  299.3125   71.55944  527.0655643 0.0054650
96-72  527.6875  299.93444  755.4405643 0.0000008

$`periodo:tempo`
              diff         lwr        upr     p adj
2:24-1:24    82.00  -536.32882  700.32882 1.0000000
3:24-1:24  -442.00 -1060.32882  176.32882 0.4336156
4:24-1:24  -382.75 -1001.07882  235.57882 0.6686036
1:48-1:24  -361.50  -979.82882  256.82882 0.7485450
2:48-1:24  -500.00 -1118.32882  118.32882 0.2423010
3:48-1:24  -670.00 -1288.32882  -51.67118 0.0221349
4:48-1:24  -511.25 -1129.57882  107.07882 0.2129358
1:72-1:24  -762.75 -1381.07882 -144.42118 0.0044752
2:72-1:24  -853.75 -1472.07882 -235.42118 0.0008246
3:72-1:24  -929.25 -1547.57882 -310.92118 0.0001904
4:72-1:24  -410.50 -1028.82882  207.82882 0.5576990
1:96-1:24  -341.00  -959.32882  277.32882 0.8174037
2:96-1:24  -292.25  -910.57882  326.07882 0.9345676
3:96-1:24  -430.75 -1049.07882  187.57882 0.4769957
4:96-1:24   218.50  -399.82882  836.82882 0.9950401
3:24-2:24  -524.00 -1142.32882   94.32882 0.1828546
4:24-2:24  -464.75 -1083.07882  153.57882 0.3512234
1:48-2:24  -443.50 -1061.82882  174.82882 0.4279452
2:48-2:24  -582.00 -1200.32882   36.32882 0.0851079
3:48-2:24  -752.00 -1370.32882 -133.67118 0.0054263
4:48-2:24  -593.25 -1211.57882   25.07882 0.0724715
1:72-2:24  -844.75 -1463.07882 -226.42118 0.0009788
2:72-2:24  -935.75 -1554.07882 -317.42118 0.0001675
3:72-2:24 -1011.25 -1629.57882 -392.92118 0.0000371
4:72-2:24  -492.50 -1110.82882  125.82882 0.2633569
1:96-2:24  -423.00 -1041.32882  195.32882 0.5075938
2:96-2:24  -374.25  -992.57882  244.07882 0.7013873
3:96-2:24  -512.75 -1131.07882  105.57882 0.2092215
4:96-2:24   136.50  -481.82882  754.82882 0.9999793
4:24-3:24    59.25  -559.07882  677.57882 1.0000000
1:48-3:24    80.50  -537.82882  698.82882 1.0000000
2:48-3:24   -58.00  -676.32882  560.32882 1.0000000
3:48-3:24  -228.00  -846.32882  390.32882 0.9924186
4:48-3:24   -69.25  -687.57882  549.07882 1.0000000
1:72-3:24  -320.75  -939.07882  297.57882 0.8746704
2:72-3:24  -411.75 -1030.07882  206.57882 0.5526638
3:72-3:24  -487.25 -1105.57882  131.07882 0.2787946
4:72-3:24    31.50  -586.82882  649.82882 1.0000000
1:96-3:24   101.00  -517.32882  719.32882 0.9999996
2:96-3:24   149.75  -468.57882  768.07882 0.9999332
3:96-3:24    11.25  -607.07882  629.57882 1.0000000
4:96-3:24   660.50    42.17118 1278.82882 0.0258319
1:48-4:24    21.25  -597.07882  639.57882 1.0000000
2:48-4:24  -117.25  -735.57882  501.07882 0.9999972
3:48-4:24  -287.25  -905.57882  331.07882 0.9425760
4:48-4:24  -128.50  -746.82882  489.82882 0.9999906
1:72-4:24  -380.00  -998.32882  238.32882 0.6793068
2:72-4:24  -471.00 -1089.32882  147.32882 0.3301213
3:72-4:24  -546.50 -1164.82882   71.82882 0.1377507
4:72-4:24   -27.75  -646.07882  590.57882 1.0000000
1:96-4:24    41.75  -576.57882  660.07882 1.0000000
2:96-4:24    90.50  -527.82882  708.82882 0.9999999
3:96-4:24   -48.00  -666.32882  570.32882 1.0000000
4:96-4:24   601.25   -17.07882 1219.57882 0.0645007
2:48-1:48  -138.50  -756.82882  479.82882 0.9999751
3:48-1:48  -308.50  -926.82882  309.82882 0.9034344
4:48-1:48  -149.75  -768.07882  468.57882 0.9999332
1:72-1:48  -401.25 -1019.57882  217.07882 0.5949837
2:72-1:48  -492.25 -1110.57882  126.07882 0.2640790
3:72-1:48  -567.75 -1186.07882   50.57882 0.1037555
4:72-1:48   -49.00  -667.32882  569.32882 1.0000000
1:96-1:48    20.50  -597.82882  638.82882 1.0000000
2:96-1:48    69.25  -549.07882  687.57882 1.0000000
3:96-1:48   -69.25  -687.57882  549.07882 1.0000000
4:96-1:48   580.00   -38.32882 1198.32882 0.0875405
3:48-2:48  -170.00  -788.32882  448.32882 0.9996883
4:48-2:48   -11.25  -629.57882  607.07882 1.0000000
1:72-2:48  -262.75  -881.07882  355.57882 0.9721095
2:72-2:48  -353.75  -972.07882  264.57882 0.7757102
3:72-2:48  -429.25 -1047.57882  189.07882 0.4828791
4:72-2:48    89.50  -528.82882  707.82882 0.9999999
1:96-2:48   159.00  -459.32882  777.32882 0.9998603
2:96-2:48   207.75  -410.57882  826.07882 0.9970551
3:96-2:48    69.25  -549.07882  687.57882 1.0000000
4:96-2:48   718.50   100.17118 1336.82882 0.0097782
4:48-3:48   158.75  -459.57882  777.07882 0.9998629
1:72-3:48   -92.75  -711.07882  525.57882 0.9999999
2:72-3:48  -183.75  -802.07882  434.57882 0.9992322
3:72-3:48  -259.25  -877.57882  359.07882 0.9751475
4:72-3:48   259.50  -358.82882  877.82882 0.9749393
1:96-3:48   329.00  -289.32882  947.32882 0.8527574
2:96-3:48   377.75  -240.57882  996.07882 0.6879981
3:96-3:48   239.25  -379.07882  857.57882 0.9879645
4:96-3:48   888.50   270.17118 1506.82882 0.0004224
1:72-4:48  -251.50  -869.82882  366.82882 0.9809755
2:72-4:48  -342.50  -960.82882  275.82882 0.8127093
3:72-4:48  -418.00 -1036.32882  200.32882 0.5275547
4:72-4:48   100.75  -517.57882  719.07882 0.9999996
1:96-4:48   170.25  -448.07882  788.57882 0.9996828
2:96-4:48   219.00  -399.32882  837.32882 0.9949239
3:96-4:48    80.50  -537.82882  698.82882 1.0000000
4:96-4:48   729.75   111.42118 1348.07882 0.0080402
2:72-1:72   -91.00  -709.32882  527.32882 0.9999999
3:72-1:72  -166.50  -784.82882  451.82882 0.9997565
4:72-1:72   352.25  -266.07882  970.57882 0.7808176
1:96-1:72   421.75  -196.57882 1040.07882 0.5125704
2:96-1:72   470.50  -147.82882 1088.82882 0.3317827
3:96-1:72   332.00  -286.32882  950.32882 0.8442965
4:96-1:72   981.25   362.92118 1599.57882 0.0000678
3:72-2:72   -75.50  -693.82882  542.82882 1.0000000
4:72-2:72   443.25  -175.07882 1061.57882 0.4288882
1:96-2:72   512.75  -105.57882 1131.07882 0.2092215
2:96-2:72   561.50   -56.82882 1179.82882 0.1129478
3:96-2:72   423.00  -195.32882 1041.32882 0.5075938
4:96-2:72  1072.25   453.92118 1690.57882 0.0000108
4:72-3:72   518.75   -99.57882 1137.07882 0.1948333
1:96-3:72   588.25   -30.07882 1206.57882 0.0778735
2:96-3:72   637.00    18.67118 1255.32882 0.0375219
3:96-3:72   498.50  -119.82882 1116.82882 0.2464177
4:96-3:72  1147.75   529.42118 1766.07882 0.0000023
1:96-4:72    69.50  -548.82882  687.82882 1.0000000
2:96-4:72   118.25  -500.07882  736.57882 0.9999969
3:96-4:72   -20.25  -638.57882  598.07882 1.0000000
4:96-4:72   629.00    10.67118 1247.32882 0.0424790
2:96-1:96    48.75  -569.57882  667.07882 1.0000000
3:96-1:96   -89.75  -708.07882  528.57882 0.9999999
4:96-1:96   559.50   -58.82882 1177.82882 0.1160271
3:96-2:96  -138.50  -756.82882  479.82882 0.9999751
4:96-2:96   510.75  -107.57882 1129.07882 0.2141844
4:96-3:96   649.25    30.92118 1267.57882 0.0309360


Letras do Tukey:
$periodo
   4    1    2    3 
 "a"  "a" "ab"  "b" 

$tempo
 24  96  48  72 
"a" "a" "b" "c" 

$`periodo:tempo`
  4:96   2:24   1:24   2:96   1:96   1:48   4:24   4:72   3:96   3:24   2:48   4:48   3:48   1:72   2:72 
   "a"   "ab"   "ab"  "abc" "abcd" "abcd" "abcd"  "bcd"  "bcd"  "bcd"  "bcd"  "bcd"   "cd"   "cd"   "cd" 
  3:72 
   "d" 



########################### Variável: ch4_effic ##########################
ANOVA:
              Df Sum Sq Mean Sq F value Pr(>F)  
periodo        3  3.148   1.049   1.026 0.3985  
tempo          1  5.874   5.874   5.745 0.0247 *
periodo:tempo  3  2.979   0.993   0.971 0.4225  
Residuals     24 24.539   1.022                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean    SE df lower.CL upper.CL
 1       72      4.58 0.506 24     3.53     5.62
 2       72      5.79 0.506 24     4.74     6.83
 3       72      4.81 0.506 24     3.77     5.85
 4       72      4.58 0.506 24     3.53     5.62
 1       96      6.04 0.506 24     4.99     7.08
 2       96      5.93 0.506 24     4.89     6.98
 3       96      5.17 0.506 24     4.12     6.21
 4       96      6.04 0.506 24     4.99     7.08

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
             diff        lwr       upr     p adj
2-1  5.537500e-01 -0.8409448 1.9484448 0.6957319
3-1 -3.175000e-01 -1.7121948 1.0771948 0.9220323
4-1 -8.881784e-16 -1.3946948 1.3946948 1.0000000
3-2 -8.712500e-01 -2.2659448 0.5234448 0.3340933
4-2 -5.537500e-01 -1.9484448 0.8409448 0.6957319
4-3  3.175000e-01 -1.0771948 1.7121948 0.9220323

$tempo
          diff       lwr      upr     p adj
96-72 0.856875 0.1190347 1.594715 0.0246787

$`periodo:tempo`
                   diff        lwr      upr     p adj
2:72-1:72  1.212500e+00 -1.1555068 3.580507 0.6897549
3:72-1:72  2.350000e-01 -2.1330068 2.603007 0.9999730
4:72-1:72 -8.881784e-16 -2.3680068 2.368007 1.0000000
1:96-1:72  1.462500e+00 -0.9055068 3.830507 0.4746982
2:96-1:72  1.357500e+00 -1.0105068 3.725507 0.5646171
3:96-1:72  5.925000e-01 -1.7755068 2.960507 0.9895385
4:96-1:72  1.462500e+00 -0.9055068 3.830507 0.4746982
3:72-2:72 -9.775000e-01 -3.3455068 1.390507 0.8629596
4:72-2:72 -1.212500e+00 -3.5805068 1.155507 0.6897549
1:96-2:72  2.500000e-01 -2.1180068 2.618007 0.9999589
2:96-2:72  1.450000e-01 -2.2230068 2.513007 0.9999990
3:96-2:72 -6.200000e-01 -2.9880068 1.748007 0.9864018
4:96-2:72  2.500000e-01 -2.1180068 2.618007 0.9999589
4:72-3:72 -2.350000e-01 -2.6030068 2.133007 0.9999730
1:96-3:72  1.227500e+00 -1.1405068 3.595507 0.6770929
2:96-3:72  1.122500e+00 -1.2455068 3.490507 0.7626386
3:96-3:72  3.575000e-01 -2.0105068 2.725507 0.9995528
4:96-3:72  1.227500e+00 -1.1405068 3.595507 0.6770929
1:96-4:72  1.462500e+00 -0.9055068 3.830507 0.4746982
2:96-4:72  1.357500e+00 -1.0105068 3.725507 0.5646171
3:96-4:72  5.925000e-01 -1.7755068 2.960507 0.9895385
4:96-4:72  1.462500e+00 -0.9055068 3.830507 0.4746982
2:96-1:96 -1.050000e-01 -2.4730068 2.263007 0.9999999
3:96-1:96 -8.700000e-01 -3.2380068 1.498007 0.9189404
4:96-1:96  0.000000e+00 -2.3680068 2.368007 1.0000000
3:96-2:96 -7.650000e-01 -3.1330068 1.603007 0.9571402
4:96-2:96  1.050000e-01 -2.2630068 2.473007 0.9999999
4:96-3:96  8.700000e-01 -1.4980068 3.238007 0.9189404


Letras do Tukey:
$periodo
$periodo$Letters
  2   1   4   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
2 TRUE
1 TRUE
4 TRUE
3 TRUE


$tempo
 96  72 
"a" "b" 

$`periodo:tempo`
$`periodo:tempo`$Letters
1:96 4:96 2:96 2:72 3:96 3:72 1:72 4:72 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tempo`$LetterMatrix
        a
1:96 TRUE
4:96 TRUE
2:96 TRUE
2:72 TRUE
3:96 TRUE
3:72 TRUE
1:72 TRUE
4:72 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
              Df  Sum Sq Mean Sq F value   Pr(>F)    
periodo        3 0.02021 0.00674   6.344  0.00254 ** 
tempo          1 0.03768 0.03768  35.493 3.78e-06 ***
periodo:tempo  3 0.00392 0.00131   1.229  0.32077    
Residuals     24 0.02548 0.00106                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean     SE df lower.CL upper.CL
 1       72    0.0873 0.0163 24   0.0537    0.121
 2       72    0.0925 0.0163 24   0.0589    0.126
 3       72    0.0750 0.0163 24   0.0414    0.109
 4       72    0.1150 0.0163 24   0.0814    0.149
 1       96    0.1543 0.0163 24   0.1207    0.188
 2       96    0.1475 0.0163 24   0.1139    0.181
 3       96    0.1225 0.0163 24   0.0889    0.156
 4       96    0.2200 0.0163 24   0.1864    0.254

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
          diff          lwr        upr     p adj
2-1 -0.0007875 -0.045729553 0.04415455 0.9999582
3-1 -0.0220375 -0.066979553 0.02290455 0.5398594
4-1  0.0467125  0.001770447 0.09165455 0.0395553
3-2 -0.0212500 -0.066192053 0.02369205 0.5691518
4-2  0.0475000  0.002557947 0.09244205 0.0355841
4-3  0.0687500  0.023807947 0.11369205 0.0016087

$tempo
            diff       lwr       upr   p adj
96-72 0.06863125 0.0448554 0.0924071 3.8e-06

$`periodo:tempo`
               diff          lwr        upr     p adj
2:72-1:72  0.005225 -0.071080649 0.08153065 0.9999979
3:72-1:72 -0.012275 -0.088580649 0.06403065 0.9993236
4:72-1:72  0.027725 -0.048580649 0.10403065 0.9231051
1:96-1:72  0.067025 -0.009280649 0.14333065 0.1148476
2:96-1:72  0.060225 -0.016080649 0.13653065 0.1992207
3:96-1:72  0.035225 -0.041080649 0.11153065 0.7849167
4:96-1:72  0.132725  0.056419351 0.20903065 0.0001453
3:72-2:72 -0.017500 -0.093805649 0.05880565 0.9937514
4:72-2:72  0.022500 -0.053805649 0.09880565 0.9735884
1:96-2:72  0.061800 -0.014505649 0.13810565 0.1762724
2:96-2:72  0.055000 -0.021305649 0.13130565 0.2914548
3:96-2:72  0.030000 -0.046305649 0.10630565 0.8892702
4:96-2:72  0.127500  0.051194351 0.20380565 0.0002524
4:72-3:72  0.040000 -0.036305649 0.11630565 0.6653273
1:96-3:72  0.079300  0.002994351 0.15560565 0.0376482
2:96-3:72  0.072500 -0.003805649 0.14880565 0.0709920
3:96-3:72  0.047500 -0.028805649 0.12380565 0.4650535
4:96-3:72  0.145000  0.068694351 0.22130565 0.0000402
1:96-4:72  0.039300 -0.037005649 0.11560565 0.6837724
2:96-4:72  0.032500 -0.043805649 0.10880565 0.8436715
3:96-4:72  0.007500 -0.068805649 0.08380565 0.9999747
4:96-4:72  0.105000  0.028694351 0.18130565 0.0027504
2:96-1:96 -0.006800 -0.083105649 0.06950565 0.9999870
3:96-1:96 -0.031800 -0.108105649 0.04450565 0.8572936
4:96-1:96  0.065700 -0.010605649 0.14200565 0.1284210
3:96-2:96 -0.025000 -0.101305649 0.05130565 0.9539260
4:96-2:96  0.072500 -0.003805649 0.14880565 0.0709920
4:96-3:96  0.097500  0.021194351 0.17380565 0.0060386


Letras do Tukey:
$periodo
  4   1   2   3 
"a" "b" "b" "b" 

$tempo
 96  72 
"a" "b" 

$`periodo:tempo`
 4:96  1:96  2:96  3:96  4:72  2:72  1:72  3:72 
  "a"  "ab" "abc"  "bc"  "bc"  "bc"  "bc"   "c" 



########################### Variável: ch4_48h ##########################
ANOVA:
              Df  Sum Sq  Mean Sq F value  Pr(>F)   
periodo        3 0.09002 0.030007   6.314 0.00149 **
tempo          2 0.00000 0.000001   0.000 0.99988   
periodo:tempo  6 0.00206 0.000343   0.072 0.99836   
Residuals     36 0.17109 0.004753                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean     SE df lower.CL upper.CL
 1       48     0.278 0.0345 36    0.208    0.347
 2       48     0.300 0.0345 36    0.230    0.370
 3       48     0.230 0.0345 36    0.160    0.300
 4       48     0.335 0.0345 36    0.265    0.405
 1       72     0.277 0.0345 36    0.207    0.346
 2       72     0.287 0.0345 36    0.218    0.357
 3       72     0.220 0.0345 36    0.150    0.290
 4       72     0.360 0.0345 36    0.290    0.430
 1       96     0.278 0.0345 36    0.209    0.348
 2       96     0.285 0.0345 36    0.215    0.355
 3       96     0.230 0.0345 36    0.160    0.300
 4       96     0.350 0.0345 36    0.280    0.420

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
           diff          lwr        upr     p adj
2-1  0.01335083 -0.062447924 0.08914959 0.9642445
3-1 -0.05081583 -0.126614591 0.02498292 0.2874134
4-1  0.07085083 -0.004947924 0.14664959 0.0740754
3-2 -0.06416667 -0.139965424 0.01163209 0.1217800
4-2  0.05750000 -0.018298758 0.13329876 0.1915173
4-3  0.12166667  0.045867909 0.19746542 0.0006464

$tempo
            diff         lwr        upr     p adj
72-48  0.0003775 -0.05919883 0.05995383 0.9998678
96-48  0.0002325 -0.05934383 0.05980883 0.9999498
96-72 -0.0001450 -0.05972133 0.05943133 0.9999805

$`periodo:tempo`
                   diff         lwr        upr     p adj
2:48-1:48  2.249750e-02 -0.14764592 0.19264092 0.9999982
3:48-1:48 -4.750250e-02 -0.21764592 0.12264092 0.9973886
4:48-1:48  5.749750e-02 -0.11264592 0.22764092 0.9873900
1:72-1:48 -9.900000e-04 -0.17113342 0.16915342 1.0000000
2:72-1:48  9.997500e-03 -0.16014592 0.18014092 1.0000000
3:72-1:48 -5.750250e-02 -0.22764592 0.11264092 0.9873815
4:72-1:48  8.249750e-02 -0.08764592 0.25264092 0.8600468
1:96-1:48  9.300000e-04 -0.16921342 0.17107342 1.0000000
2:96-1:48  7.497500e-03 -0.16264592 0.17764092 1.0000000
3:96-1:48 -4.750250e-02 -0.21764592 0.12264092 0.9973886
4:96-1:48  7.249750e-02 -0.09764592 0.24264092 0.9346419
3:48-2:48 -7.000000e-02 -0.24014342 0.10014342 0.9479170
4:48-2:48  3.500000e-02 -0.13514342 0.20514342 0.9998432
1:72-2:48 -2.348750e-02 -0.19363092 0.14665592 0.9999972
2:72-2:48 -1.250000e-02 -0.18264342 0.15764342 1.0000000
3:72-2:48 -8.000000e-02 -0.25014342 0.09014342 0.8819250
4:72-2:48  6.000000e-02 -0.11014342 0.23014342 0.9825223
1:96-2:48 -2.156750e-02 -0.19171092 0.14857592 0.9999988
2:96-2:48 -1.500000e-02 -0.18514342 0.15514342 1.0000000
3:96-2:48 -7.000000e-02 -0.24014342 0.10014342 0.9479170
4:96-2:48  5.000000e-02 -0.12014342 0.22014342 0.9959495
4:48-3:48  1.050000e-01 -0.06514342 0.27514342 0.5903862
1:72-3:48  4.651250e-02 -0.12363092 0.21665592 0.9978265
2:72-3:48  5.750000e-02 -0.11264342 0.22764342 0.9873857
3:72-3:48 -1.000000e-02 -0.18014342 0.16014342 1.0000000
4:72-3:48  1.300000e-01 -0.04014342 0.30014342 0.2827095
1:96-3:48  4.843250e-02 -0.12171092 0.21857592 0.9969127
2:96-3:48  5.500000e-02 -0.11514342 0.22514342 0.9911188
3:96-3:48  2.775558e-17 -0.17014342 0.17014342 1.0000000
4:96-3:48  1.200000e-01 -0.05014342 0.29014342 0.3941017
1:72-4:48 -5.848750e-02 -0.22863092 0.11165592 0.9856107
2:72-4:48 -4.750000e-02 -0.21764342 0.12264342 0.9973898
3:72-4:48 -1.150000e-01 -0.28514342 0.05514342 0.4568797
4:72-4:48  2.500000e-02 -0.14514342 0.19514342 0.9999946
1:96-4:48 -5.656750e-02 -0.22671092 0.11357592 0.9888999
2:96-4:48 -5.000000e-02 -0.22014342 0.12014342 0.9959495
3:96-4:48 -1.050000e-01 -0.27514342 0.06514342 0.5903862
4:96-4:48  1.500000e-02 -0.15514342 0.18514342 1.0000000
2:72-1:72  1.098750e-02 -0.15915592 0.18113092 1.0000000
3:72-1:72 -5.651250e-02 -0.22665592 0.11363092 0.9889845
4:72-1:72  8.348750e-02 -0.08665592 0.25363092 0.8507939
1:96-1:72  1.920000e-03 -0.16822342 0.17206342 1.0000000
2:96-1:72  8.487500e-03 -0.16165592 0.17863092 1.0000000
3:96-1:72 -4.651250e-02 -0.21665592 0.12363092 0.9978265
4:96-1:72  7.348750e-02 -0.09665592 0.24363092 0.9288024
3:72-2:72 -6.750000e-02 -0.23764342 0.10264342 0.9592023
4:72-2:72  7.250000e-02 -0.09764342 0.24264342 0.9346275
1:96-2:72 -9.067500e-03 -0.17921092 0.16107592 1.0000000
2:96-2:72 -2.500000e-03 -0.17264342 0.16764342 1.0000000
3:96-2:72 -5.750000e-02 -0.22764342 0.11264342 0.9873857
4:96-2:72  6.250000e-02 -0.10764342 0.23264342 0.9763316
4:72-3:72  1.400000e-01 -0.03014342 0.31014342 0.1939488
1:96-3:72  5.843250e-02 -0.11171092 0.22857592 0.9857144
2:96-3:72  6.500000e-02 -0.10514342 0.23514342 0.9686194
3:96-3:72  1.000000e-02 -0.16014342 0.18014342 1.0000000
4:96-3:72  1.300000e-01 -0.04014342 0.30014342 0.2827095
1:96-4:72 -8.156750e-02 -0.25171092 0.08857592 0.8684413
2:96-4:72 -7.500000e-02 -0.24514342 0.09514342 0.9192325
3:96-4:72 -1.300000e-01 -0.30014342 0.04014342 0.2827095
4:96-4:72 -1.000000e-02 -0.18014342 0.16014342 1.0000000
2:96-1:96  6.567500e-03 -0.16357592 0.17671092 1.0000000
3:96-1:96 -4.843250e-02 -0.21857592 0.12171092 0.9969127
4:96-1:96  7.156750e-02 -0.09857592 0.24171092 0.9398261
3:96-2:96 -5.500000e-02 -0.22514342 0.11514342 0.9911188
4:96-2:96  6.500000e-02 -0.10514342 0.23514342 0.9686194
4:96-3:96  1.200000e-01 -0.05014342 0.29014342 0.3941017


Letras do Tukey:
$periodo
   4    2    1    3 
 "a" "ab" "ab"  "b" 

$tempo
$tempo$Letters
 72  96  48 
"a" "a" "a" 

$tempo$LetterMatrix
      a
72 TRUE
96 TRUE
48 TRUE


$`periodo:tempo`
$`periodo:tempo`$Letters
4:72 4:96 4:48 2:48 2:72 2:96 1:96 1:48 1:72 3:96 3:48 3:72 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tempo`$LetterMatrix
        a
4:72 TRUE
4:96 TRUE
4:48 TRUE
2:48 TRUE
2:72 TRUE
2:96 TRUE
1:96 TRUE
1:48 TRUE
1:72 TRUE
3:96 TRUE
3:48 TRUE
3:72 TRUE




########################### Variável: dmo ##########################
ANOVA:
              Df Sum Sq Mean Sq F value   Pr(>F)    
periodo        3   3430    1143   0.790    0.511    
tempo          1  42080   42080  29.089 1.54e-05 ***
periodo:tempo  3   8387    2796   1.932    0.151    
Residuals     24  34718    1447                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean SE df lower.CL upper.CL
 1       24       612 19 24      572      651
 2       24       637 19 24      598      676
 3       24       631 19 24      592      671
 4       24       570 19 24      531      609
 1       48       534 19 24      495      573
 2       48       534 19 24      495      573
 3       48       540 19 24      501      580
 4       48       551 19 24      512      591

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
           diff       lwr      upr     p adj
2-1  12.7127750 -39.74799 65.17354 0.9079080
3-1  13.1073875 -39.35337 65.56815 0.9001880
4-1 -11.9710875 -64.43185 40.48967 0.9215325
3-2   0.3946125 -52.06615 52.85537 0.9999967
4-2 -24.6838625 -77.14462 27.77690 0.5730300
4-3 -25.0784750 -77.53924 27.38229 0.5604158

$tempo
           diff       lwr       upr    p adj
48-24 -72.52585 -100.2794 -44.77235 1.54e-05

$`periodo:tempo`
                 diff        lwr        upr     p adj
2:24-1:24   25.202400  -63.86902 114.273819 0.9789409
3:24-1:24   19.638200  -69.43322 108.709619 0.9950745
4:24-1:24  -41.599025 -130.67044  47.472394 0.7753196
1:48-1:24  -77.829600 -166.90102  11.241819 0.1183095
2:48-1:24  -77.606450 -166.67787  11.464969 0.1202374
3:48-1:24  -71.253025 -160.32444  17.818394 0.1870591
4:48-1:24  -60.172750 -149.24417  28.898669 0.3659024
3:24-2:24   -5.564200  -94.63562  83.507219 0.9999989
4:24-2:24  -66.801425 -155.87284  22.269994 0.2490656
1:48-2:24 -103.032000 -192.10342 -13.960581 0.0155695
2:48-2:24 -102.808850 -191.88027 -13.737431 0.0158723
3:48-2:24  -96.455425 -185.52684  -7.384006 0.0272621
4:48-2:24  -85.375150 -174.44657   3.696269 0.0669905
4:24-3:24  -61.237225 -150.30864  27.834194 0.3452398
1:48-3:24  -97.467800 -186.53922  -8.396381 0.0250371
2:48-3:24  -97.244650 -186.31607  -8.173231 0.0255123
3:48-3:24  -90.891225 -179.96264  -1.819806 0.0431682
4:48-3:24  -79.810950 -168.88237   9.260469 0.1023128
1:48-4:24  -36.230575 -125.30199  52.840844 0.8713777
2:48-4:24  -36.007425 -125.07884  53.063994 0.8747863
3:48-4:24  -29.654000 -118.72542  59.417419 0.9500038
4:48-4:24  -18.573725 -107.64514  70.497694 0.9964974
2:48-1:48    0.223150  -88.84827  89.294569 1.0000000
3:48-1:48    6.576575  -82.49484  95.647994 0.9999964
4:48-1:48   17.656850  -71.41457 106.728269 0.9974410
3:48-2:48    6.353425  -82.71799  95.424844 0.9999972
4:48-2:48   17.433700  -71.63772 106.505119 0.9976365
4:48-3:48   11.080275  -77.99114 100.151694 0.9998759


Letras do Tukey:
$periodo
$periodo$Letters
  3   2   1   4 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
3 TRUE
2 TRUE
1 TRUE
4 TRUE


$tempo
 24  48 
"a" "b" 

$`periodo:tempo`
2:24 3:24 1:24 4:24 4:48 3:48 2:48 1:48 
 "a"  "a" "ab" "ab" "ab"  "b"  "b"  "b" 



########################### Variável: n_nh3 ##########################
ANOVA:
              Df Sum Sq Mean Sq F value Pr(>F)    
periodo        3 0.2134 0.07114   319.0 <2e-16 ***
tempo          2 0.5514 0.27568  1236.3 <2e-16 ***
periodo:tempo  6 0.1816 0.03026   135.7 <2e-16 ***
Residuals     36 0.0080 0.00022                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 periodo tempo emmean      SE df lower.CL upper.CL
 1       0     0.0614 0.00747 36   0.0463   0.0766
 2       0     0.0336 0.00747 36   0.0184   0.0487
 3       0     0.0267 0.00747 36   0.0116   0.0419
 4       0     0.0425 0.00747 36   0.0274   0.0577
 1       72    0.1319 0.00747 36   0.1168   0.1471
 2       72    0.0497 0.00747 36   0.0346   0.0649
 3       72    0.0453 0.00747 36   0.0302   0.0605
 4       72    0.0575 0.00747 36   0.0423   0.0726
 1       96    0.5450 0.00747 36   0.5298   0.5601
 2       96    0.1773 0.00747 36   0.1622   0.1925
 3       96    0.1888 0.00747 36   0.1737   0.2040
 4       96    0.2167 0.00747 36   0.2015   0.2318

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
             diff          lwr         upr     p adj
2-1 -1.592404e-01 -0.175658860 -0.14282197 0.0000000
3-1 -1.591483e-01 -0.175566777 -0.14272989 0.0000000
4-1 -1.405546e-01 -0.156973027 -0.12413614 0.0000000
3-2  9.208333e-05 -0.016326360  0.01651053 0.9999987
4-2  1.868583e-02  0.002267390  0.03510428 0.0204749
4-3  1.859375e-02  0.002175306  0.03501219 0.0212621

$tempo
           diff        lwr        upr   p adj
72-0  0.0300475 0.01714293 0.04295207 5.3e-06
96-0  0.2408847 0.22798011 0.25378926 0.0e+00
96-72 0.2108372 0.19793261 0.22374176 0.0e+00

$`periodo:tempo`
                 diff          lwr          upr     p adj
2:0-1:0   -0.02785875 -0.064712787  0.008995287 0.2968434
3:0-1:0   -0.03470125 -0.071555287  0.002152787 0.0806918
4:0-1:0   -0.01889125 -0.055745287  0.017962787 0.8131493
1:72-1:0   0.07050750  0.033653463  0.107361537 0.0000052
2:72-1:0  -0.01170875 -0.048562787  0.025145287 0.9922748
3:72-1:0  -0.01610750 -0.052961537  0.020746537 0.9233577
4:72-1:0  -0.00395250 -0.040806537  0.032901537 0.9999998
1:96-1:0   0.48354375  0.446689713  0.520397787 0.0000000
2:96-1:0   0.11589750  0.079043463  0.152751537 0.0000000
3:96-1:0   0.12741500  0.090560963  0.164269037 0.0000000
4:96-1:0   0.15523125  0.118377213  0.192085287 0.0000000
3:0-2:0   -0.00684250 -0.043696537  0.030011537 0.9999425
4:0-2:0    0.00896750 -0.027886537  0.045821537 0.9992356
1:72-2:0   0.09836625  0.061512213  0.135220287 0.0000000
2:72-2:0   0.01615000 -0.020704037  0.053004037 0.9221016
3:72-2:0   0.01175125 -0.025102787  0.048605287 0.9920451
4:72-2:0   0.02390625 -0.012947787  0.060760287 0.5179259
1:96-2:0   0.51140250  0.474548463  0.548256537 0.0000000
2:96-2:0   0.14375625  0.106902213  0.180610287 0.0000000
3:96-2:0   0.15527375  0.118419713  0.192127787 0.0000000
4:96-2:0   0.18309000  0.146235963  0.219944037 0.0000000
4:0-3:0    0.01581000 -0.021044037  0.052664037 0.9317799
1:72-3:0   0.10520875  0.068354713  0.142062787 0.0000000
2:72-3:0   0.02299250 -0.013861537  0.059846537 0.5748242
3:72-3:0   0.01859375 -0.018260287  0.055447787 0.8275209
4:72-3:0   0.03074875 -0.006105287  0.067602787 0.1792987
1:96-3:0   0.51824500  0.481390963  0.555099037 0.0000000
2:96-3:0   0.15059875  0.113744713  0.187452787 0.0000000
3:96-3:0   0.16211625  0.125262213  0.198970287 0.0000000
4:96-3:0   0.18993250  0.153078463  0.226786537 0.0000000
1:72-4:0   0.08939875  0.052544713  0.126252787 0.0000000
2:72-4:0   0.00718250 -0.029671537  0.044036537 0.9999073
3:72-4:0   0.00278375 -0.034070287  0.039637787 1.0000000
4:72-4:0   0.01493875 -0.021915287  0.051792787 0.9528138
1:96-4:0   0.50243500  0.465580963  0.539289037 0.0000000
2:96-4:0   0.13478875  0.097934713  0.171642787 0.0000000
3:96-4:0   0.14630625  0.109452213  0.183160287 0.0000000
4:96-4:0   0.17412250  0.137268463  0.210976537 0.0000000
2:72-1:72 -0.08221625 -0.119070287 -0.045362213 0.0000002
3:72-1:72 -0.08661500 -0.123469037 -0.049760963 0.0000001
4:72-1:72 -0.07446000 -0.111314037 -0.037605963 0.0000017
1:96-1:72  0.41303625  0.376182213  0.449890287 0.0000000
2:96-1:72  0.04539000  0.008535963  0.082244037 0.0060296
3:96-1:72  0.05690750  0.020053463  0.093761537 0.0002535
4:96-1:72  0.08472375  0.047869713  0.121577787 0.0000001
3:72-2:72 -0.00439875 -0.041252787  0.032455287 0.9999994
4:72-2:72  0.00775625 -0.029097787  0.044610287 0.9998046
1:96-2:72  0.49525250  0.458398463  0.532106537 0.0000000
2:96-2:72  0.12760625  0.090752213  0.164460287 0.0000000
3:96-2:72  0.13912375  0.102269713  0.175977787 0.0000000
4:96-2:72  0.16694000  0.130085963  0.203794037 0.0000000
4:72-3:72  0.01215500 -0.024699037  0.049009037 0.9895799
1:96-3:72  0.49965125  0.462797213  0.536505287 0.0000000
2:96-3:72  0.13200500  0.095150963  0.168859037 0.0000000
3:96-3:72  0.14352250  0.106668463  0.180376537 0.0000000
4:96-3:72  0.17133875  0.134484713  0.208192787 0.0000000
1:96-4:72  0.48749625  0.450642213  0.524350287 0.0000000
2:96-4:72  0.11985000  0.082995963  0.156704037 0.0000000
3:96-4:72  0.13136750  0.094513463  0.168221537 0.0000000
4:96-4:72  0.15918375  0.122329713  0.196037787 0.0000000
2:96-1:96 -0.36764625 -0.404500287 -0.330792213 0.0000000
3:96-1:96 -0.35612875 -0.392982787 -0.319274713 0.0000000
4:96-1:96 -0.32831250 -0.365166537 -0.291458463 0.0000000
3:96-2:96  0.01151750 -0.025336537  0.048371537 0.9932433
4:96-2:96  0.03933375  0.002479713  0.076187787 0.0279194
4:96-3:96  0.02781625 -0.009037787  0.064670287 0.2988811


Letras do Tukey:
$periodo
  1   4   3   2 
"a" "b" "c" "c" 

$tempo
 96  72   0 
"a" "b" "c" 

$`periodo:tempo`
1:96 4:96 3:96 2:96 1:72  1:0 4:72 2:72 3:72  4:0  2:0  3:0 
 "a"  "b" "bc"  "c"  "d"  "e"  "e"  "e"  "e"  "e"  "e"  "e" 

10 Fermentador x Tratamento

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ fermentador * tratamento")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ fermentador * tratamento")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})
Warning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertosWarning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertosWarning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertos
resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ fermentador * tratamento"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ fermentador * tratamento)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
                       Df Sum Sq Mean Sq F value Pr(>F)
fermentador             3  28166    9389   0.533  0.662
tratamento              3   4359    1453   0.083  0.969
fermentador:tratamento  9 174924   19436   1.104  0.378
Residuals              48 844715   17598               
16 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean   SE df lower.CL upper.CL
 1           T1            342 66.3 48    209.1      476
 2           T1            279 66.3 48    145.6      412
 3           T1            232 66.3 48     98.6      365
 4           T1            364 66.3 48    230.1      497
 1           T2            282 66.3 48    149.1      416
 2           T2            318 66.3 48    184.1      451
 3           T2            322 66.3 48    189.1      456
 4           T2            232 66.3 48     98.9      366
 1           T3            192 66.3 48     59.1      326
 2           T3            332 66.3 48    198.9      466
 3           T3            373 66.3 48    239.9      507
 4           T3            312 66.3 48    178.4      445
 1           T4            280 66.3 48    146.6      413
 2           T4            228 66.3 48     94.9      362
 3           T4            336 66.3 48    202.6      469
 4           T4            402 66.3 48    268.4      535

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
       diff        lwr      upr     p adj
2-1 14.8750 -109.94811 139.6981 0.9888188
3-1 41.5625  -83.26061 166.3856 0.8120200
4-1 52.9375  -71.88561 177.7606 0.6738213
3-2 26.6875  -98.13561 151.5106 0.9408072
4-2 38.0625  -86.76061 162.8856 0.8487086
4-3 11.3750 -113.44811 136.1981 0.9949168

$tratamento
          diff       lwr      upr     p adj
T2-T1 -15.5625 -140.3856 109.2606 0.9872437
T3-T1  -1.8125 -126.6356 123.0106 0.9999790
T4-T1   7.2500 -117.5731 132.0731 0.9986655
T3-T2  13.7500 -111.0731 138.5731 0.9911175
T4-T2  22.8125 -102.0106 147.6356 0.9617602
T4-T3   9.0625 -115.7606 133.8856 0.9974075

$`fermentador:tratamento`
             diff       lwr      upr     p adj
2:T1-1:T1  -63.50 -402.3834 275.3834 0.9999976
3:T1-1:T1 -110.50 -449.3834 228.3834 0.9978583
4:T1-1:T1   21.00 -317.8834 359.8834 1.0000000
1:T2-1:T1  -60.00 -398.8834 278.8834 0.9999989
2:T2-1:T1  -25.00 -363.8834 313.8834 1.0000000
3:T2-1:T1  -20.00 -358.8834 318.8834 1.0000000
4:T2-1:T1 -110.25 -449.1334 228.6334 0.9979098
1:T3-1:T1 -150.00 -488.8834 188.8834 0.9608061
2:T3-1:T1  -10.25 -349.1334 328.6334 1.0000000
3:T3-1:T1   30.75 -308.1334 369.6334 1.0000000
4:T3-1:T1  -30.75 -369.6334 308.1334 1.0000000
1:T4-1:T1  -62.50 -401.3834 276.3834 0.9999981
2:T4-1:T1 -114.25 -453.1334 224.6334 0.9969474
3:T4-1:T1   -6.50 -345.3834 332.3834 1.0000000
4:T4-1:T1   59.25 -279.6334 398.1334 0.9999991
3:T1-2:T1  -47.00 -385.8834 291.8834 1.0000000
4:T1-2:T1   84.50 -254.3834 423.3834 0.9999042
1:T2-2:T1    3.50 -335.3834 342.3834 1.0000000
2:T2-2:T1   38.50 -300.3834 377.3834 1.0000000
3:T2-2:T1   43.50 -295.3834 382.3834 1.0000000
4:T2-2:T1  -46.75 -385.6334 292.1334 1.0000000
1:T3-2:T1  -86.50 -425.3834 252.3834 0.9998723
2:T3-2:T1   53.25 -285.6334 392.1334 0.9999998
3:T3-2:T1   94.25 -244.6334 433.1334 0.9996430
4:T3-2:T1   32.75 -306.1334 371.6334 1.0000000
1:T4-2:T1    1.00 -337.8834 339.8834 1.0000000
2:T4-2:T1  -50.75 -389.6334 288.1334 0.9999999
3:T4-2:T1   57.00 -281.8834 395.8834 0.9999994
4:T4-2:T1  122.75 -216.1334 461.6334 0.9936422
4:T1-3:T1  131.50 -207.3834 470.3834 0.9876371
1:T2-3:T1   50.50 -288.3834 389.3834 0.9999999
2:T2-3:T1   85.50 -253.3834 424.3834 0.9998892
3:T2-3:T1   90.50 -248.3834 429.3834 0.9997794
4:T2-3:T1    0.25 -338.6334 339.1334 1.0000000
1:T3-3:T1  -39.50 -378.3834 299.3834 1.0000000
2:T3-3:T1  100.25 -238.6334 439.1334 0.9992709
3:T3-3:T1  141.25 -197.6334 480.1334 0.9763892
4:T3-3:T1   79.75 -259.1334 418.6334 0.9999534
1:T4-3:T1   48.00 -290.8834 386.8834 0.9999999
2:T4-3:T1   -3.75 -342.6334 335.1334 1.0000000
3:T4-3:T1  104.00 -234.8834 442.8834 0.9988971
4:T4-3:T1  169.75 -169.1334 508.6334 0.9007593
1:T2-4:T1  -81.00 -419.8834 257.8834 0.9999433
2:T2-4:T1  -46.00 -384.8834 292.8834 1.0000000
3:T2-4:T1  -41.00 -379.8834 297.8834 1.0000000
4:T2-4:T1 -131.25 -470.1334 207.6334 0.9878557
1:T3-4:T1 -171.00 -509.8834 167.8834 0.8956645
2:T3-4:T1  -31.25 -370.1334 307.6334 1.0000000
3:T3-4:T1    9.75 -329.1334 348.6334 1.0000000
4:T3-4:T1  -51.75 -390.6334 287.1334 0.9999999
1:T4-4:T1  -83.50 -422.3834 255.3834 0.9999173
2:T4-4:T1 -135.25 -474.1334 203.6334 0.9839685
3:T4-4:T1  -27.50 -366.3834 311.3834 1.0000000
4:T4-4:T1   38.25 -300.6334 377.1334 1.0000000
2:T2-1:T2   35.00 -303.8834 373.8834 1.0000000
3:T2-1:T2   40.00 -298.8834 378.8834 1.0000000
4:T2-1:T2  -50.25 -389.1334 288.6334 0.9999999
1:T3-1:T2  -90.00 -428.8834 248.8834 0.9997936
2:T3-1:T2   49.75 -289.1334 388.6334 0.9999999
3:T3-1:T2   90.75 -248.1334 429.6334 0.9997720
4:T3-1:T2   29.25 -309.6334 368.1334 1.0000000
1:T4-1:T2   -2.50 -341.3834 336.3834 1.0000000
2:T4-1:T2  -54.25 -393.1334 284.6334 0.9999997
3:T4-1:T2   53.50 -285.3834 392.3834 0.9999998
4:T4-1:T2  119.25 -219.6334 458.1334 0.9952472
3:T2-2:T2    5.00 -333.8834 343.8834 1.0000000
4:T2-2:T2  -85.25 -424.1334 253.6334 0.9998932
1:T3-2:T2 -125.00 -463.8834 213.8834 0.9923939
2:T3-2:T2   14.75 -324.1334 353.6334 1.0000000
3:T3-2:T2   55.75 -283.1334 394.6334 0.9999996
4:T3-2:T2   -5.75 -344.6334 333.1334 1.0000000
1:T4-2:T2  -37.50 -376.3834 301.3834 1.0000000
2:T4-2:T2  -89.25 -428.1334 249.6334 0.9998134
3:T4-2:T2   18.50 -320.3834 357.3834 1.0000000
4:T4-2:T2   84.25 -254.6334 423.1334 0.9999076
4:T2-3:T2  -90.25 -429.1334 248.6334 0.9997866
1:T3-3:T2 -130.00 -468.8834 208.8834 0.9889029
2:T3-3:T2    9.75 -329.1334 348.6334 1.0000000
3:T3-3:T2   50.75 -288.1334 389.6334 0.9999999
4:T3-3:T2  -10.75 -349.6334 328.1334 1.0000000
1:T4-3:T2  -42.50 -381.3834 296.3834 1.0000000
2:T4-3:T2  -94.25 -433.1334 244.6334 0.9996430
3:T4-3:T2   13.50 -325.3834 352.3834 1.0000000
4:T4-3:T2   79.25 -259.6334 418.1334 0.9999569
1:T3-4:T2  -39.75 -378.6334 299.1334 1.0000000
2:T3-4:T2  100.00 -238.8834 438.8834 0.9992913
3:T3-4:T2  141.00 -197.8834 479.8834 0.9767514
4:T3-4:T2   79.50 -259.3834 418.3834 0.9999552
1:T4-4:T2   47.75 -291.1334 386.6334 1.0000000
2:T4-4:T2   -4.00 -342.8834 334.8834 1.0000000
3:T4-4:T2  103.75 -235.1334 442.6334 0.9989264
4:T4-4:T2  169.50 -169.3834 508.3834 0.9017592
2:T3-1:T3  139.75 -199.1334 478.6334 0.9784992
3:T3-1:T3  180.75 -158.1334 519.6334 0.8505330
4:T3-1:T3  119.25 -219.6334 458.1334 0.9952472
1:T4-1:T3   87.50 -251.3834 426.3834 0.9998531
2:T4-1:T3   35.75 -303.1334 374.6334 1.0000000
3:T4-1:T3  143.50 -195.3834 482.3834 0.9729329
4:T4-1:T3  209.25 -129.6334 548.1334 0.6723148
3:T3-2:T3   41.00 -297.8834 379.8834 1.0000000
4:T3-2:T3  -20.50 -359.3834 318.3834 1.0000000
1:T4-2:T3  -52.25 -391.1334 286.6334 0.9999998
2:T4-2:T3 -104.00 -442.8834 234.8834 0.9988971
3:T4-2:T3    3.75 -335.1334 342.6334 1.0000000
4:T4-2:T3   69.50 -269.3834 408.3834 0.9999921
4:T3-3:T3  -61.50 -400.3834 277.3834 0.9999984
1:T4-3:T3  -93.25 -432.1334 245.6334 0.9996851
2:T4-3:T3 -145.00 -483.8834 193.8834 0.9704253
3:T4-3:T3  -37.25 -376.1334 301.6334 1.0000000
4:T4-3:T3   28.50 -310.3834 367.3834 1.0000000
1:T4-4:T3  -31.75 -370.6334 307.1334 1.0000000
2:T4-4:T3  -83.50 -422.3834 255.3834 0.9999173
3:T4-4:T3   24.25 -314.6334 363.1334 1.0000000
4:T4-4:T3   90.00 -248.8834 428.8834 0.9997936
2:T4-1:T4  -51.75 -390.6334 287.1334 0.9999999
3:T4-1:T4   56.00 -282.8834 394.8834 0.9999996
4:T4-1:T4  121.75 -217.1334 460.6334 0.9941404
3:T4-2:T4  107.75 -231.1334 446.6334 0.9983697
4:T4-2:T4  173.50 -165.3834 512.3834 0.8849994
4:T4-3:T4   65.75 -273.1334 404.6334 0.9999962


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE


$tratamento
$tratamento$Letters
 T4  T1  T3  T2 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T4 TRUE
T1 TRUE
T3 TRUE
T2 TRUE


$`fermentador:tratamento`
$`fermentador:tratamento`$Letters
4:T4 3:T3 4:T1 1:T1 3:T4 2:T3 3:T2 2:T2 4:T3 1:T2 1:T4 2:T1 4:T2 3:T1 2:T4 1:T3 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tratamento`$LetterMatrix
        a
4:T4 TRUE
3:T3 TRUE
4:T1 TRUE
1:T1 TRUE
3:T4 TRUE
2:T3 TRUE
3:T2 TRUE
2:T2 TRUE
4:T3 TRUE
1:T2 TRUE
1:T4 TRUE
2:T1 TRUE
4:T2 TRUE
3:T1 TRUE
2:T4 TRUE
1:T3 TRUE




########################### Variável: gas_total ##########################
ANOVA:
                       Df  Sum Sq Mean Sq F value Pr(>F)
fermentador             3  208575   69525   0.456  0.714
tratamento              3  157390   52463   0.344  0.794
fermentador:tratamento  9 1143825  127092   0.833  0.589
Residuals              48 7323322  152569               
16 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean  SE df lower.CL upper.CL
 1           T1           1549 195 48     1157     1942
 2           T1           1588 195 48     1196     1981
 3           T1           1199 195 48      807     1592
 4           T1           1290 195 48      897     1682
 1           T2           1579 195 48     1187     1972
 2           T2           1508 195 48     1115     1901
 3           T2           1723 195 48     1330     2116
 4           T2           1188 195 48      795     1580
 1           T3           1389 195 48      996     1781
 2           T3           1543 195 48     1151     1936
 3           T3           1584 195 48     1191     1977
 4           T3           1598 195 48     1206     1991
 1           T4           1516 195 48     1124     1909
 2           T4           1264 195 48      872     1657
 3           T4           1536 195 48     1143     1929
 4           T4           1406 195 48     1013     1798

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr      upr     p adj
2-1  -32.4375 -399.9686 335.0936 0.9953756
3-1    2.1875 -365.3436 369.7186 0.9999986
4-1 -138.0625 -505.5936 229.4686 0.7502508
3-2   34.6250 -332.9061 402.1561 0.9943926
4-2 -105.6250 -473.1561 261.9061 0.8698176
4-3 -140.2500 -507.7811 227.2811 0.7411645

$tratamento
          diff       lwr      upr     p adj
T2-T1  92.9375 -274.5936 460.4686 0.9067886
T3-T1 122.0625 -245.4686 489.5936 0.8131906
T4-T1  23.9375 -343.5936 391.4686 0.9981229
T3-T2  29.1250 -338.4061 396.6561 0.9966384
T4-T2 -69.0000 -436.5311 298.5311 0.9587578
T4-T3 -98.1250 -465.6561 269.4061 0.8924319

$`fermentador:tratamento`
             diff        lwr       upr     p adj
2:T1-1:T1   39.00  -958.8134 1036.8134 1.0000000
3:T1-1:T1 -350.00 -1347.8134  647.8134 0.9953996
4:T1-1:T1 -259.75 -1257.5634  738.0634 0.9998378
1:T2-1:T1   30.00  -967.8134 1027.8134 1.0000000
2:T2-1:T1  -41.25 -1039.0634  956.5634 1.0000000
3:T2-1:T1  173.75  -824.0634 1171.5634 0.9999991
4:T2-1:T1 -361.50 -1359.3134  636.3134 0.9936294
1:T3-1:T1 -160.50 -1158.3134  837.3134 0.9999997
2:T3-1:T1   -6.00 -1003.8134  991.8134 1.0000000
3:T3-1:T1   34.75  -963.0634 1032.5634 1.0000000
4:T3-1:T1   49.25  -948.5634 1047.0634 1.0000000
1:T4-1:T1  -33.00 -1030.8134  964.8134 1.0000000
2:T4-1:T1 -285.00 -1282.8134  712.8134 0.9995128
3:T4-1:T1  -13.25 -1011.0634  984.5634 1.0000000
4:T4-1:T1 -143.75 -1141.5634  854.0634 0.9999999
3:T1-2:T1 -389.00 -1386.8134  608.8134 0.9870866
4:T1-2:T1 -298.75 -1296.5634  699.0634 0.9991642
1:T2-2:T1   -9.00 -1006.8134  988.8134 1.0000000
2:T2-2:T1  -80.25 -1078.0634  917.5634 1.0000000
3:T2-2:T1  134.75  -863.0634 1132.5634 1.0000000
4:T2-2:T1 -400.50 -1398.3134  597.3134 0.9831192
1:T3-2:T1 -199.50 -1197.3134  798.3134 0.9999943
2:T3-2:T1  -45.00 -1042.8134  952.8134 1.0000000
3:T3-2:T1   -4.25 -1002.0634  993.5634 1.0000000
4:T3-2:T1   10.25  -987.5634 1008.0634 1.0000000
1:T4-2:T1  -72.00 -1069.8134  925.8134 1.0000000
2:T4-2:T1 -324.00 -1321.8134  673.8134 0.9979525
3:T4-2:T1  -52.25 -1050.0634  945.5634 1.0000000
4:T4-2:T1 -182.75 -1180.5634  815.0634 0.9999982
4:T1-3:T1   90.25  -907.5634 1088.0634 1.0000000
1:T2-3:T1  380.00  -617.8134 1377.8134 0.9896435
2:T2-3:T1  308.75  -689.0634 1306.5634 0.9987914
3:T2-3:T1  523.75  -474.0634 1521.5634 0.8648021
4:T2-3:T1  -11.50 -1009.3134  986.3134 1.0000000
1:T3-3:T1  189.50  -808.3134 1187.3134 0.9999971
2:T3-3:T1  344.00  -653.8134 1341.8134 0.9961477
3:T3-3:T1  384.75  -613.0634 1382.5634 0.9883500
4:T3-3:T1  399.25  -598.5634 1397.0634 0.9835916
1:T4-3:T1  317.00  -680.8134 1314.8134 0.9983843
2:T4-3:T1   65.00  -932.8134 1062.8134 1.0000000
3:T4-3:T1  336.75  -661.0634 1334.5634 0.9969138
4:T4-3:T1  206.25  -791.5634 1204.0634 0.9999912
1:T2-4:T1  289.75  -708.0634 1287.5634 0.9994104
2:T2-4:T1  218.50  -779.3134 1216.3134 0.9999814
3:T2-4:T1  433.50  -564.3134 1431.3134 0.9663855
4:T2-4:T1 -101.75 -1099.5634  896.0634 1.0000000
1:T3-4:T1   99.25  -898.5634 1097.0634 1.0000000
2:T3-4:T1  253.75  -744.0634 1251.5634 0.9998780
3:T3-4:T1  294.50  -703.3134 1292.3134 0.9992897
4:T3-4:T1  309.00  -688.8134 1306.8134 0.9987805
1:T4-4:T1  226.75  -771.0634 1224.5634 0.9999700
2:T4-4:T1  -25.25 -1023.0634  972.5634 1.0000000
3:T4-4:T1  246.50  -751.3134 1244.3134 0.9999146
4:T4-4:T1  116.00  -881.8134 1113.8134 1.0000000
2:T2-1:T2  -71.25 -1069.0634  926.5634 1.0000000
3:T2-1:T2  143.75  -854.0634 1141.5634 0.9999999
4:T2-1:T2 -391.50 -1389.3134  606.3134 0.9862942
1:T3-1:T2 -190.50 -1188.3134  807.3134 0.9999969
2:T3-1:T2  -36.00 -1033.8134  961.8134 1.0000000
3:T3-1:T2    4.75  -993.0634 1002.5634 1.0000000
4:T3-1:T2   19.25  -978.5634 1017.0634 1.0000000
1:T4-1:T2  -63.00 -1060.8134  934.8134 1.0000000
2:T4-1:T2 -315.00 -1312.8134  682.8134 0.9984924
3:T4-1:T2  -43.25 -1041.0634  954.5634 1.0000000
4:T4-1:T2 -173.75 -1171.5634  824.0634 0.9999991
3:T2-2:T2  215.00  -782.8134 1212.8134 0.9999849
4:T2-2:T2 -320.25 -1318.0634  677.5634 0.9981946
1:T3-2:T2 -119.25 -1117.0634  878.5634 1.0000000
2:T3-2:T2   35.25  -962.5634 1033.0634 1.0000000
3:T3-2:T2   76.00  -921.8134 1073.8134 1.0000000
4:T3-2:T2   90.50  -907.3134 1088.3134 1.0000000
1:T4-2:T2    8.25  -989.5634 1006.0634 1.0000000
2:T4-2:T2 -243.75 -1241.5634  754.0634 0.9999256
3:T4-2:T2   28.00  -969.8134 1025.8134 1.0000000
4:T4-2:T2 -102.50 -1100.3134  895.3134 1.0000000
4:T2-3:T2 -535.25 -1533.0634  462.5634 0.8451948
1:T3-3:T2 -334.25 -1332.0634  663.5634 0.9971465
2:T3-3:T2 -179.75 -1177.5634  818.0634 0.9999986
3:T3-3:T2 -139.00 -1136.8134  858.8134 1.0000000
4:T3-3:T2 -124.50 -1122.3134  873.3134 1.0000000
1:T4-3:T2 -206.75 -1204.5634  791.0634 0.9999909
2:T4-3:T2 -458.75 -1456.5634  539.0634 0.9469966
3:T4-3:T2 -187.00 -1184.8134  810.8134 0.9999976
4:T4-3:T2 -317.50 -1315.3134  680.3134 0.9983563
1:T3-4:T2  201.00  -796.8134 1198.8134 0.9999937
2:T3-4:T2  355.50  -642.3134 1353.3134 0.9946119
3:T3-4:T2  396.25  -601.5634 1394.0634 0.9846832
4:T3-4:T2  410.75  -587.0634 1408.5634 0.9788345
1:T4-4:T2  328.50  -669.3134 1326.3134 0.9976262
2:T4-4:T2   76.50  -921.3134 1074.3134 1.0000000
3:T4-4:T2  348.25  -649.5634 1346.0634 0.9956293
4:T4-4:T2  217.75  -780.0634 1215.5634 0.9999822
2:T3-1:T3  154.50  -843.3134 1152.3134 0.9999998
3:T3-1:T3  195.25  -802.5634 1193.0634 0.9999957
4:T3-1:T3  209.75  -788.0634 1207.5634 0.9999890
1:T4-1:T3  127.50  -870.3134 1125.3134 1.0000000
2:T4-1:T3 -124.50 -1122.3134  873.3134 1.0000000
3:T4-1:T3  147.25  -850.5634 1145.0634 0.9999999
4:T4-1:T3   16.75  -981.0634 1014.5634 1.0000000
3:T3-2:T3   40.75  -957.0634 1038.5634 1.0000000
4:T3-2:T3   55.25  -942.5634 1053.0634 1.0000000
1:T4-2:T3  -27.00 -1024.8134  970.8134 1.0000000
2:T4-2:T3 -279.00 -1276.8134  718.8134 0.9996198
3:T4-2:T3   -7.25 -1005.0634  990.5634 1.0000000
4:T4-2:T3 -137.75 -1135.5634  860.0634 1.0000000
4:T3-3:T3   14.50  -983.3134 1012.3134 1.0000000
1:T4-3:T3  -67.75 -1065.5634  930.0634 1.0000000
2:T4-3:T3 -319.75 -1317.5634  678.0634 0.9982249
3:T4-3:T3  -48.00 -1045.8134  949.8134 1.0000000
4:T4-3:T3 -178.50 -1176.3134  819.3134 0.9999987
1:T4-4:T3  -82.25 -1080.0634  915.5634 1.0000000
2:T4-4:T3 -334.25 -1332.0634  663.5634 0.9971465
3:T4-4:T3  -62.50 -1060.3134  935.3134 1.0000000
4:T4-4:T3 -193.00 -1190.8134  804.8134 0.9999963
2:T4-1:T4 -252.00 -1249.8134  745.8134 0.9998879
3:T4-1:T4   19.75  -978.0634 1017.5634 1.0000000
4:T4-1:T4 -110.75 -1108.5634  887.0634 1.0000000
3:T4-2:T4  271.75  -726.0634 1269.5634 0.9997213
4:T4-2:T4  141.25  -856.5634 1139.0634 0.9999999
4:T4-3:T4 -130.50 -1128.3134  867.3134 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   1   2   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
1 TRUE
2 TRUE
4 TRUE


$tratamento
$tratamento$Letters
 T3  T2  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T3 TRUE
T2 TRUE
T4 TRUE
T1 TRUE


$`fermentador:tratamento`
$`fermentador:tratamento`$Letters
3:T2 4:T3 2:T1 3:T3 1:T2 1:T1 2:T3 3:T4 1:T4 2:T2 4:T4 1:T3 4:T1 2:T4 3:T1 4:T2 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tratamento`$LetterMatrix
        a
3:T2 TRUE
4:T3 TRUE
2:T1 TRUE
3:T3 TRUE
1:T2 TRUE
1:T1 TRUE
2:T3 TRUE
3:T4 TRUE
1:T4 TRUE
2:T2 TRUE
4:T4 TRUE
1:T3 TRUE
4:T1 TRUE
2:T4 TRUE
3:T1 TRUE
4:T2 TRUE




########################### Variável: ch4_effic ##########################
ANOVA:
                       Df Sum Sq Mean Sq F value Pr(>F)
fermentador             3  4.060  1.3535   1.385  0.283
tratamento              3  5.676  1.8918   1.937  0.164
fermentador:tratamento  9 11.173  1.2414   1.271  0.324
Residuals              16 15.631  0.9769               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean    SE df lower.CL upper.CL
 1           T1           5.74 0.699 16     4.26     7.22
 2           T1           5.66 0.699 16     4.18     7.14
 3           T1           4.78 0.699 16     3.29     6.26
 4           T1           6.37 0.699 16     4.89     7.85
 1           T2           6.03 0.699 16     4.55     7.51
 2           T2           5.66 0.699 16     4.18     7.14
 3           T2           6.04 0.699 16     4.55     7.52
 4           T2           5.22 0.699 16     3.74     6.71
 1           T3           5.53 0.699 16     4.05     7.01
 2           T3           6.34 0.699 16     4.86     7.83
 3           T3           6.04 0.699 16     4.55     7.52
 4           T3           3.79 0.699 16     2.31     5.27
 1           T4           5.74 0.699 16     4.26     7.22
 2           T4           4.42 0.699 16     2.94     5.91
 3           T4           4.70 0.699 16     3.21     6.18
 4           T4           3.79 0.699 16     2.31     5.27

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
        diff       lwr       upr     p adj
2-1 -0.23750 -1.651416 1.1764159 0.9623084
3-1 -0.37500 -1.788916 1.0389159 0.8715960
4-1 -0.96625 -2.380166 0.4476659 0.2453401
3-2 -0.13750 -1.551416 1.2764159 0.9921807
4-2 -0.72875 -2.142666 0.6851659 0.4744922
4-3 -0.59125 -2.005166 0.8226659 0.6377411

$tratamento
          diff       lwr       upr     p adj
T2-T1  0.10125 -1.312666 1.5151659 0.9968287
T3-T1 -0.21125 -1.625166 1.2026659 0.9729178
T4-T1 -0.97375 -2.387666 0.4401659 0.2396590
T3-T2 -0.31250 -1.726416 1.1014159 0.9200796
T4-T2 -1.07500 -2.488916 0.3389159 0.1724193
T4-T3 -0.76250 -2.176416 0.6514159 0.4366937

$`fermentador:tratamento`
                   diff       lwr      upr     p adj
2:T1-1:T1 -8.000000e-02 -4.037166 3.877166 1.0000000
3:T1-1:T1 -9.650000e-01 -4.922166 2.992166 0.9994041
4:T1-1:T1  6.300000e-01 -3.327166 4.587166 0.9999966
1:T2-1:T1  2.900000e-01 -3.667166 4.247166 1.0000000
2:T2-1:T1 -8.000000e-02 -4.037166 3.877166 1.0000000
3:T2-1:T1  2.950000e-01 -3.662166 4.252166 1.0000000
4:T2-1:T1 -5.150000e-01 -4.472166 3.442166 0.9999998
1:T3-1:T1 -2.100000e-01 -4.167166 3.747166 1.0000000
2:T3-1:T1  6.050000e-01 -3.352166 4.562166 0.9999980
3:T3-1:T1  2.950000e-01 -3.662166 4.252166 1.0000000
4:T3-1:T1 -1.950000e+00 -5.907166 2.007166 0.8093383
1:T4-1:T1 -3.552714e-15 -3.957166 3.957166 1.0000000
2:T4-1:T1 -1.315000e+00 -5.272166 2.642166 0.9873784
3:T4-1:T1 -1.045000e+00 -5.002166 2.912166 0.9986029
4:T4-1:T1 -1.950000e+00 -5.907166 2.007166 0.8093383
3:T1-2:T1 -8.850000e-01 -4.842166 3.072166 0.9997744
4:T1-2:T1  7.100000e-01 -3.247166 4.667166 0.9999841
1:T2-2:T1  3.700000e-01 -3.587166 4.327166 1.0000000
2:T2-2:T1  1.776357e-15 -3.957166 3.957166 1.0000000
3:T2-2:T1  3.750000e-01 -3.582166 4.332166 1.0000000
4:T2-2:T1 -4.350000e-01 -4.392166 3.522166 1.0000000
1:T3-2:T1 -1.300000e-01 -4.087166 3.827166 1.0000000
2:T3-2:T1  6.850000e-01 -3.272166 4.642166 0.9999899
3:T3-2:T1  3.750000e-01 -3.582166 4.332166 1.0000000
4:T3-2:T1 -1.870000e+00 -5.827166 2.087166 0.8469659
1:T4-2:T1  8.000000e-02 -3.877166 4.037166 1.0000000
2:T4-2:T1 -1.235000e+00 -5.192166 2.722166 0.9927915
3:T4-2:T1 -9.650000e-01 -4.922166 2.992166 0.9994041
4:T4-2:T1 -1.870000e+00 -5.827166 2.087166 0.8469659
4:T1-3:T1  1.595000e+00 -2.362166 5.552166 0.9429056
1:T2-3:T1  1.255000e+00 -2.702166 5.212166 0.9916546
2:T2-3:T1  8.850000e-01 -3.072166 4.842166 0.9997744
3:T2-3:T1  1.260000e+00 -2.697166 5.217166 0.9913494
4:T2-3:T1  4.500000e-01 -3.507166 4.407166 1.0000000
1:T3-3:T1  7.550000e-01 -3.202166 4.712166 0.9999659
2:T3-3:T1  1.570000e+00 -2.387166 5.527166 0.9488982
3:T3-3:T1  1.260000e+00 -2.697166 5.217166 0.9913494
4:T3-3:T1 -9.850000e-01 -4.942166 2.972166 0.9992549
1:T4-3:T1  9.650000e-01 -2.992166 4.922166 0.9994041
2:T4-3:T1 -3.500000e-01 -4.307166 3.607166 1.0000000
3:T4-3:T1 -8.000000e-02 -4.037166 3.877166 1.0000000
4:T4-3:T1 -9.850000e-01 -4.942166 2.972166 0.9992549
1:T2-4:T1 -3.400000e-01 -4.297166 3.617166 1.0000000
2:T2-4:T1 -7.100000e-01 -4.667166 3.247166 0.9999841
3:T2-4:T1 -3.350000e-01 -4.292166 3.622166 1.0000000
4:T2-4:T1 -1.145000e+00 -5.102166 2.812166 0.9964816
1:T3-4:T1 -8.400000e-01 -4.797166 3.117166 0.9998770
2:T3-4:T1 -2.500000e-02 -3.982166 3.932166 1.0000000
3:T3-4:T1 -3.350000e-01 -4.292166 3.622166 1.0000000
4:T3-4:T1 -2.580000e+00 -6.537166 1.377166 0.4507708
1:T4-4:T1 -6.300000e-01 -4.587166 3.327166 0.9999966
2:T4-4:T1 -1.945000e+00 -5.902166 2.012166 0.8118002
3:T4-4:T1 -1.675000e+00 -5.632166 2.282166 0.9206831
4:T4-4:T1 -2.580000e+00 -6.537166 1.377166 0.4507708
2:T2-1:T2 -3.700000e-01 -4.327166 3.587166 1.0000000
3:T2-1:T2  5.000000e-03 -3.952166 3.962166 1.0000000
4:T2-1:T2 -8.050000e-01 -4.762166 3.152166 0.9999258
1:T3-1:T2 -5.000000e-01 -4.457166 3.457166 0.9999998
2:T3-1:T2  3.150000e-01 -3.642166 4.272166 1.0000000
3:T3-1:T2  5.000000e-03 -3.952166 3.962166 1.0000000
4:T3-1:T2 -2.240000e+00 -6.197166 1.717166 0.6488283
1:T4-1:T2 -2.900000e-01 -4.247166 3.667166 1.0000000
2:T4-1:T2 -1.605000e+00 -5.562166 2.352166 0.9403834
3:T4-1:T2 -1.335000e+00 -5.292166 2.622166 0.9856288
4:T4-1:T2 -2.240000e+00 -6.197166 1.717166 0.6488283
3:T2-2:T2  3.750000e-01 -3.582166 4.332166 1.0000000
4:T2-2:T2 -4.350000e-01 -4.392166 3.522166 1.0000000
1:T3-2:T2 -1.300000e-01 -4.087166 3.827166 1.0000000
2:T3-2:T2  6.850000e-01 -3.272166 4.642166 0.9999899
3:T3-2:T2  3.750000e-01 -3.582166 4.332166 1.0000000
4:T3-2:T2 -1.870000e+00 -5.827166 2.087166 0.8469659
1:T4-2:T2  8.000000e-02 -3.877166 4.037166 1.0000000
2:T4-2:T2 -1.235000e+00 -5.192166 2.722166 0.9927915
3:T4-2:T2 -9.650000e-01 -4.922166 2.992166 0.9994041
4:T4-2:T2 -1.870000e+00 -5.827166 2.087166 0.8469659
4:T2-3:T2 -8.100000e-01 -4.767166 3.147166 0.9999201
1:T3-3:T2 -5.050000e-01 -4.462166 3.452166 0.9999998
2:T3-3:T2  3.100000e-01 -3.647166 4.267166 1.0000000
3:T3-3:T2  0.000000e+00 -3.957166 3.957166 1.0000000
4:T3-3:T2 -2.245000e+00 -6.202166 1.712166 0.6458700
1:T4-3:T2 -2.950000e-01 -4.252166 3.662166 1.0000000
2:T4-3:T2 -1.610000e+00 -5.567166 2.347166 0.9390952
3:T4-3:T2 -1.340000e+00 -5.297166 2.617166 0.9851637
4:T4-3:T2 -2.245000e+00 -6.202166 1.712166 0.6458700
1:T3-4:T2  3.050000e-01 -3.652166 4.262166 1.0000000
2:T3-4:T2  1.120000e+00 -2.837166 5.077166 0.9971694
3:T3-4:T2  8.100000e-01 -3.147166 4.767166 0.9999201
4:T3-4:T2 -1.435000e+00 -5.392166 2.522166 0.9739693
1:T4-4:T2  5.150000e-01 -3.442166 4.472166 0.9999998
2:T4-4:T2 -8.000000e-01 -4.757166 3.157166 0.9999311
3:T4-4:T2 -5.300000e-01 -4.487166 3.427166 0.9999997
4:T4-4:T2 -1.435000e+00 -5.392166 2.522166 0.9739693
2:T3-1:T3  8.150000e-01 -3.142166 4.772166 0.9999140
3:T3-1:T3  5.050000e-01 -3.452166 4.462166 0.9999998
4:T3-1:T3 -1.740000e+00 -5.697166 2.217166 0.8991495
1:T4-1:T3  2.100000e-01 -3.747166 4.167166 1.0000000
2:T4-1:T3 -1.105000e+00 -5.062166 2.852166 0.9975260
3:T4-1:T3 -8.350000e-01 -4.792166 3.122166 0.9998853
4:T4-1:T3 -1.740000e+00 -5.697166 2.217166 0.8991495
3:T3-2:T3 -3.100000e-01 -4.267166 3.647166 1.0000000
4:T3-2:T3 -2.555000e+00 -6.512166 1.402166 0.4646140
1:T4-2:T3 -6.050000e-01 -4.562166 3.352166 0.9999980
2:T4-2:T3 -1.920000e+00 -5.877166 2.037166 0.8238969
3:T4-2:T3 -1.650000e+00 -5.607166 2.307166 0.9281328
4:T4-2:T3 -2.555000e+00 -6.512166 1.402166 0.4646140
4:T3-3:T3 -2.245000e+00 -6.202166 1.712166 0.6458700
1:T4-3:T3 -2.950000e-01 -4.252166 3.662166 1.0000000
2:T4-3:T3 -1.610000e+00 -5.567166 2.347166 0.9390952
3:T4-3:T3 -1.340000e+00 -5.297166 2.617166 0.9851637
4:T4-3:T3 -2.245000e+00 -6.202166 1.712166 0.6458700
1:T4-4:T3  1.950000e+00 -2.007166 5.907166 0.8093383
2:T4-4:T3  6.350000e-01 -3.322166 4.592166 0.9999962
3:T4-4:T3  9.050000e-01 -3.052166 4.862166 0.9997088
4:T4-4:T3 -1.332268e-15 -3.957166 3.957166 1.0000000
2:T4-1:T4 -1.315000e+00 -5.272166 2.642166 0.9873784
3:T4-1:T4 -1.045000e+00 -5.002166 2.912166 0.9986029
4:T4-1:T4 -1.950000e+00 -5.907166 2.007166 0.8093383
3:T4-2:T4  2.700000e-01 -3.687166 4.227166 1.0000000
4:T4-2:T4 -6.350000e-01 -4.592166 3.322166 0.9999962
4:T4-3:T4 -9.050000e-01 -4.862166 3.052166 0.9997088


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$tratamento
$tratamento$Letters
 T2  T1  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T1 TRUE
T3 TRUE
T4 TRUE


$`fermentador:tratamento`
$`fermentador:tratamento`$Letters
4:T1 2:T3 3:T2 3:T3 1:T2 1:T1 1:T4 2:T1 2:T2 1:T3 4:T2 3:T1 3:T4 2:T4 4:T3 4:T4 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tratamento`$LetterMatrix
        a
4:T1 TRUE
2:T3 TRUE
3:T2 TRUE
3:T3 TRUE
1:T2 TRUE
1:T1 TRUE
1:T4 TRUE
2:T1 TRUE
2:T2 TRUE
1:T3 TRUE
4:T2 TRUE
3:T1 TRUE
3:T4 TRUE
2:T4 TRUE
4:T3 TRUE
4:T4 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
                       Df  Sum Sq  Mean Sq F value Pr(>F)
fermentador             3 0.00659 0.002196   0.710  0.560
tratamento              3 0.00599 0.001997   0.646  0.597
fermentador:tratamento  9 0.02520 0.002800   0.905  0.544
Residuals              16 0.04950 0.003094               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean     SE df lower.CL upper.CL
 1           T1          0.120 0.0393 16  0.03632    0.203
 2           T1          0.170 0.0393 16  0.08662    0.253
 3           T1          0.070 0.0393 16 -0.01338    0.153
 4           T1          0.090 0.0393 16  0.00662    0.173
 1           T2          0.145 0.0393 16  0.06162    0.228
 2           T2          0.128 0.0393 16  0.04507    0.212
 3           T2          0.175 0.0393 16  0.09162    0.258
 4           T2          0.115 0.0393 16  0.03162    0.198
 1           T3          0.130 0.0393 16  0.04662    0.213
 2           T3          0.145 0.0393 16  0.06162    0.228
 3           T3          0.150 0.0393 16  0.06662    0.233
 4           T3          0.135 0.0393 16  0.05162    0.218
 1           T4          0.190 0.0393 16  0.10662    0.273
 2           T4          0.080 0.0393 16 -0.00338    0.163
 3           T4          0.100 0.0393 16  0.01662    0.183
 4           T4          0.085 0.0393 16  0.00162    0.168

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
          diff         lwr        upr     p adj
2-1 -0.0153125 -0.09488082 0.06425582 0.9450419
3-1 -0.0224250 -0.10199332 0.05714332 0.8505120
4-1 -0.0399250 -0.11949332 0.03964332 0.4966663
3-2 -0.0071125 -0.08668082 0.07245582 0.9938951
4-2 -0.0246125 -0.10418082 0.05495582 0.8126063
4-3 -0.0175000 -0.09706832 0.06206832 0.9211172

$tratamento
            diff         lwr        upr     p adj
T2-T1  0.0284375 -0.05113082 0.10800582 0.7389940
T3-T1  0.0275750 -0.05199332 0.10714332 0.7562630
T4-T1  0.0013250 -0.07824332 0.08089332 0.9999594
T3-T2 -0.0008625 -0.08043082 0.07870582 0.9999888
T4-T2 -0.0271125 -0.10668082 0.05245582 0.7653800
T4-T3 -0.0262500 -0.10581832 0.05331832 0.7820860

$`fermentador:tratamento`
                   diff        lwr       upr     p adj
2:T1-1:T1  5.030000e-02 -0.1723901 0.2729901 0.9997472
3:T1-1:T1 -4.970000e-02 -0.2723901 0.1729901 0.9997797
4:T1-1:T1 -2.970000e-02 -0.2523901 0.1929901 0.9999997
1:T2-1:T1  2.530000e-02 -0.1973901 0.2479901 1.0000000
2:T2-1:T1  8.750000e-03 -0.2139401 0.2314401 1.0000000
3:T2-1:T1  5.530000e-02 -0.1673901 0.2779901 0.9992737
4:T2-1:T1 -4.700000e-03 -0.2273901 0.2179901 1.0000000
1:T3-1:T1  1.030000e-02 -0.2123901 0.2329901 1.0000000
2:T3-1:T1  2.530000e-02 -0.1973901 0.2479901 1.0000000
3:T3-1:T1  3.030000e-02 -0.1923901 0.2529901 0.9999996
4:T3-1:T1  1.530000e-02 -0.2073901 0.2379901 1.0000000
1:T4-1:T1  7.030000e-02 -0.1523901 0.2929901 0.9919968
2:T4-1:T1 -3.970000e-02 -0.2623901 0.1829901 0.9999854
3:T4-1:T1 -1.970000e-02 -0.2423901 0.2029901 1.0000000
4:T4-1:T1 -3.470000e-02 -0.2573901 0.1879901 0.9999974
3:T1-2:T1 -1.000000e-01 -0.3226901 0.1226901 0.8855140
4:T1-2:T1 -8.000000e-02 -0.3026901 0.1426901 0.9758418
1:T2-2:T1 -2.500000e-02 -0.2476901 0.1976901 1.0000000
2:T2-2:T1 -4.155000e-02 -0.2642401 0.1811401 0.9999741
3:T2-2:T1  5.000000e-03 -0.2176901 0.2276901 1.0000000
4:T2-2:T1 -5.500000e-02 -0.2776901 0.1676901 0.9993154
1:T3-2:T1 -4.000000e-02 -0.2626901 0.1826901 0.9999839
2:T3-2:T1 -2.500000e-02 -0.2476901 0.1976901 1.0000000
3:T3-2:T1 -2.000000e-02 -0.2426901 0.2026901 1.0000000
4:T3-2:T1 -3.500000e-02 -0.2576901 0.1876901 0.9999971
1:T4-2:T1  2.000000e-02 -0.2026901 0.2426901 1.0000000
2:T4-2:T1 -9.000000e-02 -0.3126901 0.1326901 0.9418336
3:T4-2:T1 -7.000000e-02 -0.2926901 0.1526901 0.9923025
4:T4-2:T1 -8.500000e-02 -0.3076901 0.1376901 0.9614234
4:T1-3:T1  2.000000e-02 -0.2026901 0.2426901 1.0000000
1:T2-3:T1  7.500000e-02 -0.1476901 0.2976901 0.9858355
2:T2-3:T1  5.845000e-02 -0.1642401 0.2811401 0.9986891
3:T2-3:T1  1.050000e-01 -0.1176901 0.3276901 0.8488176
4:T2-3:T1  4.500000e-02 -0.1776901 0.2676901 0.9999315
1:T3-3:T1  6.000000e-02 -0.1626901 0.2826901 0.9982798
2:T3-3:T1  7.500000e-02 -0.1476901 0.2976901 0.9858355
3:T3-3:T1  8.000000e-02 -0.1426901 0.3026901 0.9758418
4:T3-3:T1  6.500000e-02 -0.1576901 0.2876901 0.9961694
1:T4-3:T1  1.200000e-01 -0.1026901 0.3426901 0.7115193
2:T4-3:T1  1.000000e-02 -0.2126901 0.2326901 1.0000000
3:T4-3:T1  3.000000e-02 -0.1926901 0.2526901 0.9999996
4:T4-3:T1  1.500000e-02 -0.2076901 0.2376901 1.0000000
1:T2-4:T1  5.500000e-02 -0.1676901 0.2776901 0.9993154
2:T2-4:T1  3.845000e-02 -0.1842401 0.2611401 0.9999902
3:T2-4:T1  8.500000e-02 -0.1376901 0.3076901 0.9614234
4:T2-4:T1  2.500000e-02 -0.1976901 0.2476901 1.0000000
1:T3-4:T1  4.000000e-02 -0.1826901 0.2626901 0.9999839
2:T3-4:T1  5.500000e-02 -0.1676901 0.2776901 0.9993154
3:T3-4:T1  6.000000e-02 -0.1626901 0.2826901 0.9982798
4:T3-4:T1  4.500000e-02 -0.1776901 0.2676901 0.9999315
1:T4-4:T1  1.000000e-01 -0.1226901 0.3226901 0.8855140
2:T4-4:T1 -1.000000e-02 -0.2326901 0.2126901 1.0000000
3:T4-4:T1  1.000000e-02 -0.2126901 0.2326901 1.0000000
4:T4-4:T1 -5.000000e-03 -0.2276901 0.2176901 1.0000000
2:T2-1:T2 -1.655000e-02 -0.2392401 0.2061401 1.0000000
3:T2-1:T2  3.000000e-02 -0.1926901 0.2526901 0.9999996
4:T2-1:T2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
1:T3-1:T2 -1.500000e-02 -0.2376901 0.2076901 1.0000000
2:T3-1:T2 -2.775558e-17 -0.2226901 0.2226901 1.0000000
3:T3-1:T2  5.000000e-03 -0.2176901 0.2276901 1.0000000
4:T3-1:T2 -1.000000e-02 -0.2326901 0.2126901 1.0000000
1:T4-1:T2  4.500000e-02 -0.1776901 0.2676901 0.9999315
2:T4-1:T2 -6.500000e-02 -0.2876901 0.1576901 0.9961694
3:T4-1:T2 -4.500000e-02 -0.2676901 0.1776901 0.9999315
4:T4-1:T2 -6.000000e-02 -0.2826901 0.1626901 0.9982798
3:T2-2:T2  4.655000e-02 -0.1761401 0.2692401 0.9998974
4:T2-2:T2 -1.345000e-02 -0.2361401 0.2092401 1.0000000
1:T3-2:T2  1.550000e-03 -0.2211401 0.2242401 1.0000000
2:T3-2:T2  1.655000e-02 -0.2061401 0.2392401 1.0000000
3:T3-2:T2  2.155000e-02 -0.2011401 0.2442401 1.0000000
4:T3-2:T2  6.550000e-03 -0.2161401 0.2292401 1.0000000
1:T4-2:T2  6.155000e-02 -0.1611401 0.2842401 0.9977686
2:T4-2:T2 -4.845000e-02 -0.2711401 0.1742401 0.9998359
3:T4-2:T2 -2.845000e-02 -0.2511401 0.1942401 0.9999998
4:T4-2:T2 -4.345000e-02 -0.2661401 0.1792401 0.9999552
4:T2-3:T2 -6.000000e-02 -0.2826901 0.1626901 0.9982798
1:T3-3:T2 -4.500000e-02 -0.2676901 0.1776901 0.9999315
2:T3-3:T2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
3:T3-3:T2 -2.500000e-02 -0.2476901 0.1976901 1.0000000
4:T3-3:T2 -4.000000e-02 -0.2626901 0.1826901 0.9999839
1:T4-3:T2  1.500000e-02 -0.2076901 0.2376901 1.0000000
2:T4-3:T2 -9.500000e-02 -0.3176901 0.1276901 0.9165838
3:T4-3:T2 -7.500000e-02 -0.2976901 0.1476901 0.9858355
4:T4-3:T2 -9.000000e-02 -0.3126901 0.1326901 0.9418336
1:T3-4:T2  1.500000e-02 -0.2076901 0.2376901 1.0000000
2:T3-4:T2  3.000000e-02 -0.1926901 0.2526901 0.9999996
3:T3-4:T2  3.500000e-02 -0.1876901 0.2576901 0.9999971
4:T3-4:T2  2.000000e-02 -0.2026901 0.2426901 1.0000000
1:T4-4:T2  7.500000e-02 -0.1476901 0.2976901 0.9858355
2:T4-4:T2 -3.500000e-02 -0.2576901 0.1876901 0.9999971
3:T4-4:T2 -1.500000e-02 -0.2376901 0.2076901 1.0000000
4:T4-4:T2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
2:T3-1:T3  1.500000e-02 -0.2076901 0.2376901 1.0000000
3:T3-1:T3  2.000000e-02 -0.2026901 0.2426901 1.0000000
4:T3-1:T3  5.000000e-03 -0.2176901 0.2276901 1.0000000
1:T4-1:T3  6.000000e-02 -0.1626901 0.2826901 0.9982798
2:T4-1:T3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
3:T4-1:T3 -3.000000e-02 -0.2526901 0.1926901 0.9999996
4:T4-1:T3 -4.500000e-02 -0.2676901 0.1776901 0.9999315
3:T3-2:T3  5.000000e-03 -0.2176901 0.2276901 1.0000000
4:T3-2:T3 -1.000000e-02 -0.2326901 0.2126901 1.0000000
1:T4-2:T3  4.500000e-02 -0.1776901 0.2676901 0.9999315
2:T4-2:T3 -6.500000e-02 -0.2876901 0.1576901 0.9961694
3:T4-2:T3 -4.500000e-02 -0.2676901 0.1776901 0.9999315
4:T4-2:T3 -6.000000e-02 -0.2826901 0.1626901 0.9982798
4:T3-3:T3 -1.500000e-02 -0.2376901 0.2076901 1.0000000
1:T4-3:T3  4.000000e-02 -0.1826901 0.2626901 0.9999839
2:T4-3:T3 -7.000000e-02 -0.2926901 0.1526901 0.9923025
3:T4-3:T3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
4:T4-3:T3 -6.500000e-02 -0.2876901 0.1576901 0.9961694
1:T4-4:T3  5.500000e-02 -0.1676901 0.2776901 0.9993154
2:T4-4:T3 -5.500000e-02 -0.2776901 0.1676901 0.9993154
3:T4-4:T3 -3.500000e-02 -0.2576901 0.1876901 0.9999971
4:T4-4:T3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
2:T4-1:T4 -1.100000e-01 -0.3326901 0.1126901 0.8070205
3:T4-1:T4 -9.000000e-02 -0.3126901 0.1326901 0.9418336
4:T4-1:T4 -1.050000e-01 -0.3276901 0.1176901 0.8488176
3:T4-2:T4  2.000000e-02 -0.2026901 0.2426901 1.0000000
4:T4-2:T4  5.000000e-03 -0.2176901 0.2276901 1.0000000
4:T4-3:T4 -1.500000e-02 -0.2376901 0.2076901 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  1   2   3   4 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
1 TRUE
2 TRUE
3 TRUE
4 TRUE


$tratamento
$tratamento$Letters
 T2  T3  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T4 TRUE
T1 TRUE


$`fermentador:tratamento`
$`fermentador:tratamento`$Letters
1:T4 3:T2 2:T1 3:T3 1:T2 2:T3 4:T3 1:T3 2:T2 1:T1 4:T2 3:T4 4:T1 4:T4 2:T4 3:T1 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tratamento`$LetterMatrix
        a
1:T4 TRUE
3:T2 TRUE
2:T1 TRUE
3:T3 TRUE
1:T2 TRUE
2:T3 TRUE
4:T3 TRUE
1:T3 TRUE
2:T2 TRUE
1:T1 TRUE
4:T2 TRUE
3:T4 TRUE
4:T1 TRUE
4:T4 TRUE
2:T4 TRUE
3:T1 TRUE




########################### Variável: ch4_48h ##########################
ANOVA:
                       Df  Sum Sq Mean Sq F value   Pr(>F)    
fermentador             3 0.04519 0.01506   96.40 4.14e-16 ***
tratamento              3 0.09707 0.03236  207.08  < 2e-16 ***
fermentador:tratamento  9 0.11592 0.01288   82.43  < 2e-16 ***
Residuals              32 0.00500 0.00016                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean      SE df lower.CL upper.CL
 1           T1          0.277 0.00722 32    0.262    0.291
 2           T1          0.340 0.00722 32    0.325    0.355
 3           T1          0.163 0.00722 32    0.149    0.178
 4           T1          0.210 0.00722 32    0.195    0.225
 1           T2          0.357 0.00722 32    0.342    0.371
 2           T2          0.300 0.00722 32    0.285    0.315
 3           T2          0.433 0.00722 32    0.419    0.448
 4           T2          0.253 0.00722 32    0.239    0.268
 1           T3          0.293 0.00722 32    0.279    0.308
 2           T3          0.367 0.00722 32    0.352    0.381
 3           T3          0.350 0.00722 32    0.335    0.365
 4           T3          0.290 0.00722 32    0.275    0.305
 1           T4          0.330 0.00722 32    0.315    0.345
 2           T4          0.197 0.00722 32    0.182    0.211
 3           T4          0.230 0.00722 32    0.215    0.245
 4           T4          0.183 0.00722 32    0.169    0.198

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
            diff         lwr           upr     p adj
2-1 -0.013315833 -0.02714185  0.0005101829 0.0624366
3-1 -0.019982500 -0.03380852 -0.0061564838 0.0023853
4-1 -0.079982500 -0.09380852 -0.0661564838 0.0000000
3-2 -0.006666667 -0.02049268  0.0071593495 0.5656958
4-2 -0.066666667 -0.08049268 -0.0528406505 0.0000000
4-3 -0.060000000 -0.07382602 -0.0461739838 0.0000000

$tratamento
             diff         lwr          upr     p adj
T2-T1  0.08835083  0.07452482  0.102176850 0.0000000
T3-T1  0.07751750  0.06369148  0.091343516 0.0000000
T4-T1 -0.01248250 -0.02630852  0.001343516 0.0885647
T3-T2 -0.01083333 -0.02465935  0.002992683 0.1675959
T4-T2 -0.10083333 -0.11465935 -0.087007317 0.0000000
T4-T3 -0.09000000 -0.10382602 -0.076173984 0.0000000

$`fermentador:tratamento`
                  diff          lwr          upr     p adj
2:T1-1:T1  0.063403333  0.025558224  0.101248443 0.0000586
3:T1-1:T1 -0.113263333 -0.151108443 -0.075418224 0.0000000
4:T1-1:T1 -0.066596667 -0.104441776 -0.028751557 0.0000243
1:T2-1:T1  0.080070000  0.042224891  0.117915109 0.0000006
2:T2-1:T1  0.023403333 -0.014441776  0.061248443 0.6308596
3:T2-1:T1  0.156736667  0.118891557  0.194581776 0.0000000
4:T2-1:T1 -0.023263333 -0.061108443  0.014581776 0.6398228
1:T3-1:T1  0.016736667 -0.021108443  0.054581776 0.9477916
2:T3-1:T1  0.090070000  0.052224891  0.127915109 0.0000000
3:T3-1:T1  0.073403333  0.035558224  0.111248443 0.0000038
4:T3-1:T1  0.013403333 -0.024441776  0.051248443 0.9922893
1:T4-1:T1  0.053403333  0.015558224  0.091248443 0.0009179
2:T4-1:T1 -0.079930000 -0.117775109 -0.042084891 0.0000007
3:T4-1:T1 -0.046596667 -0.084441776 -0.008751557 0.0056910
4:T4-1:T1 -0.093263333 -0.131108443 -0.055418224 0.0000000
3:T1-2:T1 -0.176666667 -0.214511776 -0.138821557 0.0000000
4:T1-2:T1 -0.130000000 -0.167845109 -0.092154891 0.0000000
1:T2-2:T1  0.016666667 -0.021178443  0.054511776 0.9494264
2:T2-2:T1 -0.040000000 -0.077845109 -0.002154891 0.0300852
3:T2-2:T1  0.093333333  0.055488224  0.131178443 0.0000000
4:T2-2:T1 -0.086666667 -0.124511776 -0.048821557 0.0000001
1:T3-2:T1 -0.046666667 -0.084511776 -0.008821557 0.0055876
2:T3-2:T1  0.026666667 -0.011178443  0.064511776 0.4243390
3:T3-2:T1  0.010000000 -0.027845109  0.047845109 0.9996615
4:T3-2:T1 -0.050000000 -0.087845109 -0.012154891 0.0023062
1:T4-2:T1 -0.010000000 -0.047845109  0.027845109 0.9996615
2:T4-2:T1 -0.143333333 -0.181178443 -0.105488224 0.0000000
3:T4-2:T1 -0.110000000 -0.147845109 -0.072154891 0.0000000
4:T4-2:T1 -0.156666667 -0.194511776 -0.118821557 0.0000000
4:T1-3:T1  0.046666667  0.008821557  0.084511776 0.0055876
1:T2-3:T1  0.193333333  0.155488224  0.231178443 0.0000000
2:T2-3:T1  0.136666667  0.098821557  0.174511776 0.0000000
3:T2-3:T1  0.270000000  0.232154891  0.307845109 0.0000000
4:T2-3:T1  0.090000000  0.052154891  0.127845109 0.0000000
1:T3-3:T1  0.130000000  0.092154891  0.167845109 0.0000000
2:T3-3:T1  0.203333333  0.165488224  0.241178443 0.0000000
3:T3-3:T1  0.186666667  0.148821557  0.224511776 0.0000000
4:T3-3:T1  0.126666667  0.088821557  0.164511776 0.0000000
1:T4-3:T1  0.166666667  0.128821557  0.204511776 0.0000000
2:T4-3:T1  0.033333333 -0.004511776  0.071178443 0.1332726
3:T4-3:T1  0.066666667  0.028821557  0.104511776 0.0000239
4:T4-3:T1  0.020000000 -0.017845109  0.057845109 0.8289662
1:T2-4:T1  0.146666667  0.108821557  0.184511776 0.0000000
2:T2-4:T1  0.090000000  0.052154891  0.127845109 0.0000000
3:T2-4:T1  0.223333333  0.185488224  0.261178443 0.0000000
4:T2-4:T1  0.043333333  0.005488224  0.081178443 0.0131979
1:T3-4:T1  0.083333333  0.045488224  0.121178443 0.0000003
2:T3-4:T1  0.156666667  0.118821557  0.194511776 0.0000000
3:T3-4:T1  0.140000000  0.102154891  0.177845109 0.0000000
4:T3-4:T1  0.080000000  0.042154891  0.117845109 0.0000007
1:T4-4:T1  0.120000000  0.082154891  0.157845109 0.0000000
2:T4-4:T1 -0.013333333 -0.051178443  0.024511776 0.9926678
3:T4-4:T1  0.020000000 -0.017845109  0.057845109 0.8289662
4:T4-4:T1 -0.026666667 -0.064511776  0.011178443 0.4243390
2:T2-1:T2 -0.056666667 -0.094511776 -0.018821557 0.0003755
3:T2-1:T2  0.076666667  0.038821557  0.114511776 0.0000016
4:T2-1:T2 -0.103333333 -0.141178443 -0.065488224 0.0000000
1:T3-1:T2 -0.063333333 -0.101178443 -0.025488224 0.0000598
2:T3-1:T2  0.010000000 -0.027845109  0.047845109 0.9996615
3:T3-1:T2 -0.006666667 -0.044511776  0.031178443 0.9999979
4:T3-1:T2 -0.066666667 -0.104511776 -0.028821557 0.0000239
1:T4-1:T2 -0.026666667 -0.064511776  0.011178443 0.4243390
2:T4-1:T2 -0.160000000 -0.197845109 -0.122154891 0.0000000
3:T4-1:T2 -0.126666667 -0.164511776 -0.088821557 0.0000000
4:T4-1:T2 -0.173333333 -0.211178443 -0.135488224 0.0000000
3:T2-2:T2  0.133333333  0.095488224  0.171178443 0.0000000
4:T2-2:T2 -0.046666667 -0.084511776 -0.008821557 0.0055876
1:T3-2:T2 -0.006666667 -0.044511776  0.031178443 0.9999979
2:T3-2:T2  0.066666667  0.028821557  0.104511776 0.0000239
3:T3-2:T2  0.050000000  0.012154891  0.087845109 0.0023062
4:T3-2:T2 -0.010000000 -0.047845109  0.027845109 0.9996615
1:T4-2:T2  0.030000000 -0.007845109  0.067845109 0.2503711
2:T4-2:T2 -0.103333333 -0.141178443 -0.065488224 0.0000000
3:T4-2:T2 -0.070000000 -0.107845109 -0.032154891 0.0000096
4:T4-2:T2 -0.116666667 -0.154511776 -0.078821557 0.0000000
4:T2-3:T2 -0.180000000 -0.217845109 -0.142154891 0.0000000
1:T3-3:T2 -0.140000000 -0.177845109 -0.102154891 0.0000000
2:T3-3:T2 -0.066666667 -0.104511776 -0.028821557 0.0000239
3:T3-3:T2 -0.083333333 -0.121178443 -0.045488224 0.0000003
4:T3-3:T2 -0.143333333 -0.181178443 -0.105488224 0.0000000
1:T4-3:T2 -0.103333333 -0.141178443 -0.065488224 0.0000000
2:T4-3:T2 -0.236666667 -0.274511776 -0.198821557 0.0000000
3:T4-3:T2 -0.203333333 -0.241178443 -0.165488224 0.0000000
4:T4-3:T2 -0.250000000 -0.287845109 -0.212154891 0.0000000
1:T3-4:T2  0.040000000  0.002154891  0.077845109 0.0300852
2:T3-4:T2  0.113333333  0.075488224  0.151178443 0.0000000
3:T3-4:T2  0.096666667  0.058821557  0.134511776 0.0000000
4:T3-4:T2  0.036666667 -0.001178443  0.074511776 0.0653618
1:T4-4:T2  0.076666667  0.038821557  0.114511776 0.0000016
2:T4-4:T2 -0.056666667 -0.094511776 -0.018821557 0.0003755
3:T4-4:T2 -0.023333333 -0.061178443  0.014511776 0.6353449
4:T4-4:T2 -0.070000000 -0.107845109 -0.032154891 0.0000096
2:T3-1:T3  0.073333333  0.035488224  0.111178443 0.0000039
3:T3-1:T3  0.056666667  0.018821557  0.094511776 0.0003755
4:T3-1:T3 -0.003333333 -0.041178443  0.034511776 1.0000000
1:T4-1:T3  0.036666667 -0.001178443  0.074511776 0.0653618
2:T4-1:T3 -0.096666667 -0.134511776 -0.058821557 0.0000000
3:T4-1:T3 -0.063333333 -0.101178443 -0.025488224 0.0000598
4:T4-1:T3 -0.110000000 -0.147845109 -0.072154891 0.0000000
3:T3-2:T3 -0.016666667 -0.054511776  0.021178443 0.9494264
4:T3-2:T3 -0.076666667 -0.114511776 -0.038821557 0.0000016
1:T4-2:T3 -0.036666667 -0.074511776  0.001178443 0.0653618
2:T4-2:T3 -0.170000000 -0.207845109 -0.132154891 0.0000000
3:T4-2:T3 -0.136666667 -0.174511776 -0.098821557 0.0000000
4:T4-2:T3 -0.183333333 -0.221178443 -0.145488224 0.0000000
4:T3-3:T3 -0.060000000 -0.097845109 -0.022154891 0.0001499
1:T4-3:T3 -0.020000000 -0.057845109  0.017845109 0.8289662
2:T4-3:T3 -0.153333333 -0.191178443 -0.115488224 0.0000000
3:T4-3:T3 -0.120000000 -0.157845109 -0.082154891 0.0000000
4:T4-3:T3 -0.166666667 -0.204511776 -0.128821557 0.0000000
1:T4-4:T3  0.040000000  0.002154891  0.077845109 0.0300852
2:T4-4:T3 -0.093333333 -0.131178443 -0.055488224 0.0000000
3:T4-4:T3 -0.060000000 -0.097845109 -0.022154891 0.0001499
4:T4-4:T3 -0.106666667 -0.144511776 -0.068821557 0.0000000
2:T4-1:T4 -0.133333333 -0.171178443 -0.095488224 0.0000000
3:T4-1:T4 -0.100000000 -0.137845109 -0.062154891 0.0000000
4:T4-1:T4 -0.146666667 -0.184511776 -0.108821557 0.0000000
3:T4-2:T4  0.033333333 -0.004511776  0.071178443 0.1332726
4:T4-2:T4 -0.013333333 -0.051178443  0.024511776 0.9926678
4:T4-3:T4 -0.046666667 -0.084511776 -0.008821557 0.0055876


Letras do Tukey:
$fermentador
   1    2    3    4 
 "a" "ab"  "b"  "c" 

$tratamento
 T2  T3  T1  T4 
"a" "a" "b" "b" 

$`fermentador:tratamento`
 3:T2  2:T3  1:T2  3:T3  2:T1  1:T4  2:T2  1:T3  4:T3  1:T1  4:T2  3:T4  4:T1  2:T4  4:T4  3:T1 
  "a"   "b"   "b"   "b"   "b"  "bc"  "cd"  "cd"  "de"  "de"  "ef"  "fg"  "gh" "ghi"  "hi"   "i" 



########################### Variável: dmo ##########################
ANOVA:
                       Df Sum Sq Mean Sq F value Pr(>F)
fermentador             3   2776     925   0.236  0.870
tratamento              3  16169    5390   1.373  0.287
fermentador:tratamento  9   6861     762   0.194  0.991
Residuals              16  62809    3926               
48 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean   SE df lower.CL upper.CL
 1           T1            599 44.3 16      506      693
 2           T1            579 44.3 16      485      673
 3           T1            627 44.3 16      533      720
 4           T1            630 44.3 16      536      724
 1           T2            571 44.3 16      477      665
 2           T2            591 44.3 16      497      685
 3           T2            581 44.3 16      487      675
 4           T2            582 44.3 16      488      676
 1           T3            564 44.3 16      470      658
 2           T3            578 44.3 16      484      672
 3           T3            552 44.3 16      458      646
 4           T3            577 44.3 16      483      670
 1           T4            507 44.3 16      413      601
 2           T4            570 44.3 16      476      664
 3           T4            562 44.3 16      468      656
 4           T4            549 44.3 16      455      642

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
         diff       lwr       upr     p adj
2-1 19.301000 -70.32643 108.92843 0.9254430
3-1 19.838050 -69.78938 109.46548 0.9197694
4-1 24.094575 -65.53286 113.72201 0.8671400
3-2  0.537050 -89.09038  90.16448 0.9999981
4-2  4.793575 -84.83386  94.42101 0.9986679
4-3  4.256525 -85.37091  93.88396 0.9990653

$tratamento
           diff       lwr      upr     p adj
T2-T1 -27.35585 -116.9833 62.27158 0.8184909
T3-T1 -41.22081 -130.8482 48.40662 0.5666118
T4-T1 -61.86686 -151.4943 27.76057 0.2379893
T3-T2 -13.86496 -103.4924 75.76247 0.9701102
T4-T2 -34.51101 -124.1384 55.11642 0.6936451
T4-T3 -20.64605 -110.2735 68.98138 0.9108132

$`fermentador:tratamento`
                diff       lwr      upr     p adj
2:T1-1:T1  -20.63355 -271.4764 230.2093 1.0000000
3:T1-1:T1   27.11235 -223.7305 277.9552 1.0000000
4:T1-1:T1   30.97120 -219.8716 281.8140 0.9999999
1:T2-1:T1  -28.18835 -279.0312 222.6545 1.0000000
2:T2-1:T1   -8.08520 -258.9280 242.7576 1.0000000
3:T2-1:T1  -18.66215 -269.5050 232.1807 1.0000000
4:T2-1:T1  -17.03770 -267.8805 233.8051 1.0000000
1:T3-1:T1  -35.46415 -286.3070 215.3787 0.9999993
2:T3-1:T1  -21.28085 -272.1237 229.5620 1.0000000
3:T3-1:T1  -47.83165 -298.6745 203.0112 0.9999662
4:T3-1:T1  -22.85660 -273.6994 227.9862 1.0000000
1:T4-1:T1  -92.57465 -343.4175 158.2682 0.9701347
2:T4-1:T1  -29.02355 -279.8664 221.8193 1.0000000
3:T4-1:T1  -37.49350 -288.3363 213.3493 0.9999985
4:T4-1:T1  -50.92575 -301.7686 199.9171 0.9999276
3:T1-2:T1   47.74590 -203.0969 298.5887 0.9999669
4:T1-2:T1   51.60475 -199.2381 302.4476 0.9999151
1:T2-2:T1   -7.55480 -258.3976 243.2880 1.0000000
2:T2-2:T1   12.54835 -238.2945 263.3912 1.0000000
3:T2-2:T1    1.97140 -248.8714 252.8142 1.0000000
4:T2-2:T1    3.59585 -247.2470 254.4387 1.0000000
1:T3-2:T1  -14.83060 -265.6734 236.0122 1.0000000
2:T3-2:T1   -0.64730 -251.4901 250.1955 1.0000000
3:T3-2:T1  -27.19810 -278.0409 223.6447 1.0000000
4:T3-2:T1   -2.22305 -253.0659 248.6198 1.0000000
1:T4-2:T1  -71.94110 -322.7839 178.9017 0.9967742
2:T4-2:T1   -8.39000 -259.2328 242.4528 1.0000000
3:T4-2:T1  -16.85995 -267.7028 233.9829 1.0000000
4:T4-2:T1  -30.29220 -281.1350 220.5506 0.9999999
4:T1-3:T1    3.85885 -246.9840 254.7017 1.0000000
1:T2-3:T1  -55.30070 -306.1435 195.5421 0.9998087
2:T2-3:T1  -35.19755 -286.0404 215.6453 0.9999994
3:T2-3:T1  -45.77450 -296.6173 205.0683 0.9999804
4:T2-3:T1  -44.15005 -294.9929 206.6928 0.9999876
1:T3-3:T1  -62.57650 -313.4193 188.2663 0.9992369
2:T3-3:T1  -48.39320 -299.2360 202.4496 0.9999610
3:T3-3:T1  -74.94400 -325.7868 175.8988 0.9952071
4:T3-3:T1  -49.96895 -300.8118 200.8739 0.9999424
1:T4-3:T1 -119.68700 -370.5298 131.1558 0.8387851
2:T4-3:T1  -56.13590 -306.9787 194.7069 0.9997727
3:T4-3:T1  -64.60585 -315.4487 186.2370 0.9989260
4:T4-3:T1  -78.03810 -328.8809 172.8047 0.9929987
1:T2-4:T1  -59.15955 -310.0024 191.6833 0.9995883
2:T2-4:T1  -39.05640 -289.8992 211.7864 0.9999974
3:T2-4:T1  -49.63335 -300.4762 201.2095 0.9999469
4:T2-4:T1  -48.00890 -298.8517 202.8339 0.9999646
1:T3-4:T1  -66.43535 -317.2782 184.4075 0.9985598
2:T3-4:T1  -52.25205 -303.0949 198.5908 0.9999016
3:T3-4:T1  -78.80285 -329.6457 172.0400 0.9923439
4:T3-4:T1  -53.82780 -304.6706 197.0150 0.9998603
1:T4-4:T1 -123.54585 -374.3887 127.2970 0.8098341
2:T4-4:T1  -59.99475 -310.8376 190.8481 0.9995189
3:T4-4:T1  -68.46470 -319.3075 182.3781 0.9980362
4:T4-4:T1  -81.89695 -332.7398 168.9459 0.9891845
2:T2-1:T2   20.10315 -230.7397 270.9460 1.0000000
3:T2-1:T2    9.52620 -241.3166 260.3690 1.0000000
4:T2-1:T2   11.15065 -239.6922 261.9935 1.0000000
1:T3-1:T2   -7.27580 -258.1186 243.5670 1.0000000
2:T3-1:T2    6.90750 -243.9353 257.7503 1.0000000
3:T3-1:T2  -19.64330 -270.4861 231.1995 1.0000000
4:T3-1:T2    5.33175 -245.5111 256.1746 1.0000000
1:T4-1:T2  -64.38630 -315.2291 186.4565 0.9989641
2:T4-1:T2   -0.83520 -251.6780 250.0076 1.0000000
3:T4-1:T2   -9.30515 -260.1480 241.5377 1.0000000
4:T4-1:T2  -22.73740 -273.5802 228.1054 1.0000000
3:T2-2:T2  -10.57695 -261.4198 240.2659 1.0000000
4:T2-2:T2   -8.95250 -259.7953 241.8903 1.0000000
1:T3-2:T2  -27.37895 -278.2218 223.4639 1.0000000
2:T3-2:T2  -13.19565 -264.0385 237.6472 1.0000000
3:T3-2:T2  -39.74645 -290.5893 211.0964 0.9999968
4:T3-2:T2  -14.77140 -265.6142 236.0714 1.0000000
1:T4-2:T2  -84.48945 -335.3323 166.3534 0.9858243
2:T4-2:T2  -20.93835 -271.7812 229.9045 1.0000000
3:T4-2:T2  -29.40830 -280.2511 221.4345 0.9999999
4:T4-2:T2  -42.84055 -293.6834 208.0023 0.9999915
4:T2-3:T2    1.62445 -249.2184 252.4673 1.0000000
1:T3-3:T2  -16.80200 -267.6448 234.0408 1.0000000
2:T3-3:T2   -2.61870 -253.4615 248.2241 1.0000000
3:T3-3:T2  -29.16950 -280.0123 221.6733 1.0000000
4:T3-3:T2   -4.19445 -255.0373 246.6484 1.0000000
1:T4-3:T2  -73.91250 -324.7553 176.9303 0.9958030
2:T4-3:T2  -10.36140 -261.2042 240.4814 1.0000000
3:T4-3:T2  -18.83135 -269.6742 232.0115 1.0000000
4:T4-3:T2  -32.26360 -283.1064 218.5792 0.9999998
1:T3-4:T2  -18.42645 -269.2693 232.4164 1.0000000
2:T3-4:T2   -4.24315 -255.0860 246.5997 1.0000000
3:T3-4:T2  -30.79395 -281.6368 220.0489 0.9999999
4:T3-4:T2   -5.81890 -256.6617 245.0239 1.0000000
1:T4-4:T2  -75.53695 -326.3798 175.3059 0.9948346
2:T4-4:T2  -11.98585 -262.8287 238.8570 1.0000000
3:T4-4:T2  -20.45580 -271.2986 230.3870 1.0000000
4:T4-4:T2  -33.88805 -284.7309 216.9548 0.9999996
2:T3-1:T3   14.18330 -236.6595 265.0261 1.0000000
3:T3-1:T3  -12.36750 -263.2103 238.4753 1.0000000
4:T3-1:T3   12.60755 -238.2353 263.4504 1.0000000
1:T4-1:T3  -57.11050 -307.9533 193.7323 0.9997233
2:T4-1:T3    6.44060 -244.4022 257.2834 1.0000000
3:T4-1:T3   -2.02935 -252.8722 248.8135 1.0000000
4:T4-1:T3  -15.46160 -266.3044 235.3812 1.0000000
3:T3-2:T3  -26.55080 -277.3936 224.2920 1.0000000
4:T3-2:T3   -1.57575 -252.4186 249.2671 1.0000000
1:T4-2:T3  -71.29380 -322.1366 179.5490 0.9970495
2:T4-2:T3   -7.74270 -258.5855 243.1001 1.0000000
3:T4-2:T3  -16.21265 -267.0555 234.6302 1.0000000
4:T4-2:T3  -29.64490 -280.4877 221.1979 0.9999999
4:T3-3:T3   24.97505 -225.8678 275.8179 1.0000000
1:T4-3:T3  -44.74300 -295.5858 206.0998 0.9999853
2:T4-3:T3   18.80810 -232.0347 269.6509 1.0000000
3:T4-3:T3   10.33815 -240.5047 261.1810 1.0000000
4:T4-3:T3   -3.09410 -253.9369 247.7487 1.0000000
1:T4-4:T3  -69.71805 -320.5609 181.1248 0.9976398
2:T4-4:T3   -6.16695 -257.0098 244.6759 1.0000000
3:T4-4:T3  -14.63690 -265.4797 236.2059 1.0000000
4:T4-4:T3  -28.06915 -278.9120 222.7737 1.0000000
2:T4-1:T4   63.55110 -187.2917 314.3939 0.9990988
3:T4-1:T4   55.08115 -195.7617 305.9240 0.9998173
4:T4-1:T4   41.64890 -209.1939 292.4917 0.9999941
3:T4-2:T4   -8.46995 -259.3128 242.3729 1.0000000
4:T4-2:T4  -21.90220 -272.7450 228.9406 1.0000000
4:T4-3:T4  -13.43225 -264.2751 237.4106 1.0000000


Letras do Tukey:
$fermentador
$fermentador$Letters
  4   3   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
4 TRUE
3 TRUE
2 TRUE
1 TRUE


$tratamento
$tratamento$Letters
 T1  T2  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T1 TRUE
T2 TRUE
T3 TRUE
T4 TRUE


$`fermentador:tratamento`
$`fermentador:tratamento`$Letters
4:T1 3:T1 1:T1 2:T2 4:T2 3:T2 2:T1 2:T3 4:T3 1:T2 2:T4 1:T3 3:T4 3:T3 4:T4 1:T4 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tratamento`$LetterMatrix
        a
4:T1 TRUE
3:T1 TRUE
1:T1 TRUE
2:T2 TRUE
4:T2 TRUE
3:T2 TRUE
2:T1 TRUE
2:T3 TRUE
4:T3 TRUE
1:T2 TRUE
2:T4 TRUE
1:T3 TRUE
3:T4 TRUE
3:T3 TRUE
4:T4 TRUE
1:T4 TRUE




########################### Variável: n_nh3 ##########################
ANOVA:
                       Df Sum Sq  Mean Sq F value Pr(>F)
fermentador             3 0.0005 0.000173   0.008  0.999
tratamento              3 0.0022 0.000719   0.031  0.992
fermentador:tratamento  9 0.2144 0.023822   1.034  0.436
Residuals              32 0.7373 0.023041               
32 observations deleted due to missingness

Médias (emmeans):
 fermentador tratamento emmean     SE df lower.CL upper.CL
 1           T1         0.2415 0.0876 32   0.0630    0.420
 2           T1         0.1074 0.0876 32  -0.0711    0.286
 3           T1         0.0847 0.0876 32  -0.0938    0.263
 4           T1         0.0869 0.0876 32  -0.0916    0.265
 1           T2         0.0975 0.0876 32  -0.0810    0.276
 2           T2         0.2428 0.0876 32   0.0643    0.421
 3           T2         0.1156 0.0876 32  -0.0629    0.294
 4           T2         0.0949 0.0876 32  -0.0836    0.273
 1           T3         0.0885 0.0876 32  -0.0900    0.267
 2           T3         0.0830 0.0876 32  -0.0955    0.262
 3           T3         0.2608 0.0876 32   0.0823    0.439
 4           T3         0.1147 0.0876 32  -0.0638    0.293
 1           T4         0.0845 0.0876 32  -0.0940    0.263
 2           T4         0.0798 0.0876 32  -0.0988    0.258
 3           T4         0.0801 0.0876 32  -0.0984    0.259
 4           T4         0.2394 0.0876 32   0.0609    0.418

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$fermentador
             diff        lwr       upr     p adj
2-1  0.0002483333 -0.1676472 0.1681439 1.0000000
3-1  0.0072995833 -0.1605960 0.1751951 0.9994027
4-1  0.0059537500 -0.1619418 0.1738493 0.9996753
3-2  0.0070512500 -0.1608443 0.1749468 0.9994614
4-2  0.0057054167 -0.1621901 0.1736010 0.9997142
4-3 -0.0013458333 -0.1692414 0.1665497 0.9999962

$tratamento
               diff        lwr       upr     p adj
T2-T1  0.0075937500 -0.1603018 0.1754893 0.9993279
T3-T1  0.0066620833 -0.1612335 0.1745576 0.9995455
T4-T1 -0.0091691667 -0.1770647 0.1587264 0.9988201
T3-T2 -0.0009316667 -0.1688272 0.1669639 0.9999988
T4-T2 -0.0167629167 -0.1846585 0.1511326 0.9929396
T4-T3 -0.0158312500 -0.1837268 0.1520643 0.9940334

$`fermentador:tratamento`
                  diff        lwr       upr     p adj
2:T1-1:T1 -0.134058333 -0.5936286 0.3255119 0.9989616
3:T1-1:T1 -0.156781667 -0.6163519 0.3027886 0.9946459
4:T1-1:T1 -0.154600000 -0.6141702 0.3049702 0.9953426
1:T2-1:T1 -0.143975000 -0.6035452 0.3155952 0.9977586
2:T2-1:T1  0.001333333 -0.4582369 0.4609036 1.0000000
3:T2-1:T1 -0.125841667 -0.5854119 0.3337286 0.9994895
4:T2-1:T1 -0.146581667 -0.6061519 0.3129886 0.9972954
1:T3-1:T1 -0.152928333 -0.6124986 0.3066419 0.9958244
2:T3-1:T1 -0.158425000 -0.6179952 0.3011452 0.9940667
3:T3-1:T1  0.019338333 -0.4402319 0.4789086 1.0000000
4:T3-1:T1 -0.126776667 -0.5863469 0.3327936 0.9994445
1:T4-1:T1 -0.156951667 -0.6165219 0.3026186 0.9945883
2:T4-1:T1 -0.161711667 -0.6212819 0.2978586 0.9927551
3:T4-1:T1 -0.161371667 -0.6209419 0.2981986 0.9929008
4:T4-1:T1 -0.002081667 -0.4616519 0.4574886 1.0000000
3:T1-2:T1 -0.022723333 -0.4822936 0.4368469 1.0000000
4:T1-2:T1 -0.020541667 -0.4801119 0.4390286 1.0000000
1:T2-2:T1 -0.009916667 -0.4694869 0.4496536 1.0000000
2:T2-2:T1  0.135391667 -0.3241786 0.5949619 0.9988423
3:T2-2:T1  0.008216667 -0.4513536 0.4677869 1.0000000
4:T2-2:T1 -0.012523333 -0.4720936 0.4470469 1.0000000
1:T3-2:T1 -0.018870000 -0.4784402 0.4407002 1.0000000
2:T3-2:T1 -0.024366667 -0.4839369 0.4352036 1.0000000
3:T3-2:T1  0.153396667 -0.3061736 0.6129669 0.9956937
4:T3-2:T1  0.007281667 -0.4522886 0.4668519 1.0000000
1:T4-2:T1 -0.022893333 -0.4824636 0.4366769 1.0000000
2:T4-2:T1 -0.027653333 -0.4872236 0.4319169 1.0000000
3:T4-2:T1 -0.027313333 -0.4868836 0.4322569 1.0000000
4:T4-2:T1  0.131976667 -0.3275936 0.5915469 0.9991269
4:T1-3:T1  0.002181667 -0.4573886 0.4617519 1.0000000
1:T2-3:T1  0.012806667 -0.4467636 0.4723769 1.0000000
2:T2-3:T1  0.158115000 -0.3014552 0.6176852 0.9941797
3:T2-3:T1  0.030940000 -0.4286302 0.4905102 1.0000000
4:T2-3:T1  0.010200000 -0.4493702 0.4697702 1.0000000
1:T3-3:T1  0.003853333 -0.4557169 0.4634236 1.0000000
2:T3-3:T1 -0.001643333 -0.4612136 0.4579269 1.0000000
3:T3-3:T1  0.176120000 -0.2834502 0.6356902 0.9839965
4:T3-3:T1  0.030005000 -0.4295652 0.4895752 1.0000000
1:T4-3:T1 -0.000170000 -0.4597402 0.4594002 1.0000000
2:T4-3:T1 -0.004930000 -0.4645002 0.4546402 1.0000000
3:T4-3:T1 -0.004590000 -0.4641602 0.4549802 1.0000000
4:T4-3:T1  0.154700000 -0.3048702 0.6142702 0.9953124
1:T2-4:T1  0.010625000 -0.4489452 0.4701952 1.0000000
2:T2-4:T1  0.155933333 -0.3036369 0.6155036 0.9949263
3:T2-4:T1  0.028758333 -0.4308119 0.4883286 1.0000000
4:T2-4:T1  0.008018333 -0.4515519 0.4675886 1.0000000
1:T3-4:T1  0.001671667 -0.4578986 0.4612419 1.0000000
2:T3-4:T1 -0.003825000 -0.4633952 0.4557452 1.0000000
3:T3-4:T1  0.173938333 -0.2856319 0.6335086 0.9856898
4:T3-4:T1  0.027823333 -0.4317469 0.4873936 1.0000000
1:T4-4:T1 -0.002351667 -0.4619219 0.4572186 1.0000000
2:T4-4:T1 -0.007111667 -0.4666819 0.4524586 1.0000000
3:T4-4:T1 -0.006771667 -0.4663419 0.4527986 1.0000000
4:T4-4:T1  0.152518333 -0.3070519 0.6120886 0.9959360
2:T2-1:T2  0.145308333 -0.3142619 0.6048786 0.9975308
3:T2-1:T2  0.018133333 -0.4414369 0.4777036 1.0000000
4:T2-1:T2 -0.002606667 -0.4621769 0.4569636 1.0000000
1:T3-1:T2 -0.008953333 -0.4685236 0.4506169 1.0000000
2:T3-1:T2 -0.014450000 -0.4740202 0.4451202 1.0000000
3:T3-1:T2  0.163313333 -0.2962569 0.6228836 0.9920358
4:T3-1:T2  0.017198333 -0.4423719 0.4767686 1.0000000
1:T4-1:T2 -0.012976667 -0.4725469 0.4465936 1.0000000
2:T4-1:T2 -0.017736667 -0.4773069 0.4418336 1.0000000
3:T4-1:T2 -0.017396667 -0.4769669 0.4421736 1.0000000
4:T4-1:T2  0.141893333 -0.3176769 0.6014636 0.9980788
3:T2-2:T2 -0.127175000 -0.5867452 0.3323952 0.9994244
4:T2-2:T2 -0.147915000 -0.6074852 0.3116552 0.9970291
1:T3-2:T2 -0.154261667 -0.6138319 0.3053086 0.9954436
2:T3-2:T2 -0.159758333 -0.6193286 0.2998119 0.9935601
3:T3-2:T2  0.018005000 -0.4415652 0.4775752 1.0000000
4:T3-2:T2 -0.128110000 -0.5876802 0.3314602 0.9993745
1:T4-2:T2 -0.158285000 -0.6178552 0.3012852 0.9941180
2:T4-2:T2 -0.163045000 -0.6226152 0.2965252 0.9921602
3:T4-2:T2 -0.162705000 -0.6222752 0.2968652 0.9923155
4:T4-2:T2 -0.003415000 -0.4629852 0.4561552 1.0000000
4:T2-3:T2 -0.020740000 -0.4803102 0.4388302 1.0000000
1:T3-3:T2 -0.027086667 -0.4866569 0.4324836 1.0000000
2:T3-3:T2 -0.032583333 -0.4921536 0.4269869 1.0000000
3:T3-3:T2  0.145180000 -0.3143902 0.6047502 0.9975535
4:T3-3:T2 -0.000935000 -0.4605052 0.4586352 1.0000000
1:T4-3:T2 -0.031110000 -0.4906802 0.4284602 1.0000000
2:T4-3:T2 -0.035870000 -0.4954402 0.4237002 1.0000000
3:T4-3:T2 -0.035530000 -0.4951002 0.4240402 1.0000000
4:T4-3:T2  0.123760000 -0.3358102 0.5833302 0.9995784
1:T3-4:T2 -0.006346667 -0.4659169 0.4532236 1.0000000
2:T3-4:T2 -0.011843333 -0.4714136 0.4477269 1.0000000
3:T3-4:T2  0.165920000 -0.2936502 0.6254902 0.9907434
4:T3-4:T2  0.019805000 -0.4397652 0.4793752 1.0000000
1:T4-4:T2 -0.010370000 -0.4699402 0.4492002 1.0000000
2:T4-4:T2 -0.015130000 -0.4747002 0.4444402 1.0000000
3:T4-4:T2 -0.014790000 -0.4743602 0.4447802 1.0000000
4:T4-4:T2  0.144500000 -0.3150702 0.6040702 0.9976711
2:T3-1:T3 -0.005496667 -0.4650669 0.4540736 1.0000000
3:T3-1:T3  0.172266667 -0.2873036 0.6318369 0.9868897
4:T3-1:T3  0.026151667 -0.4334186 0.4857219 1.0000000
1:T4-1:T3 -0.004023333 -0.4635936 0.4555469 1.0000000
2:T4-1:T3 -0.008783333 -0.4683536 0.4507869 1.0000000
3:T4-1:T3 -0.008443333 -0.4680136 0.4511269 1.0000000
4:T4-1:T3  0.150846667 -0.3087236 0.6104169 0.9963661
3:T3-2:T3  0.177763333 -0.2818069 0.6373336 0.9826215
4:T3-2:T3  0.031648333 -0.4279219 0.4912186 1.0000000
1:T4-2:T3  0.001473333 -0.4580969 0.4610436 1.0000000
2:T4-2:T3 -0.003286667 -0.4628569 0.4562836 1.0000000
3:T4-2:T3 -0.002946667 -0.4625169 0.4566236 1.0000000
4:T4-2:T3  0.156343333 -0.3032269 0.6159136 0.9947923
4:T3-3:T3 -0.146115000 -0.6056852 0.3134552 0.9973837
1:T4-3:T3 -0.176290000 -0.6358602 0.2832802 0.9838583
2:T4-3:T3 -0.181050000 -0.6406202 0.2785202 0.9795993
3:T4-3:T3 -0.180710000 -0.6402802 0.2788602 0.9799294
4:T4-3:T3 -0.021420000 -0.4809902 0.4381502 1.0000000
1:T4-4:T3 -0.030175000 -0.4897452 0.4293952 1.0000000
2:T4-4:T3 -0.034935000 -0.4945052 0.4246352 1.0000000
3:T4-4:T3 -0.034595000 -0.4941652 0.4249752 1.0000000
4:T4-4:T3  0.124695000 -0.3348752 0.5842652 0.9995403
2:T4-1:T4 -0.004760000 -0.4643302 0.4548102 1.0000000
3:T4-1:T4 -0.004420000 -0.4639902 0.4551502 1.0000000
4:T4-1:T4  0.154870000 -0.3047002 0.6144402 0.9952606
3:T4-2:T4  0.000340000 -0.4592302 0.4599102 1.0000000
4:T4-2:T4  0.159630000 -0.2999402 0.6192002 0.9936104
4:T4-3:T4  0.159290000 -0.3002802 0.6188602 0.9937419


Letras do Tukey:
$fermentador
$fermentador$Letters
  3   4   2   1 
"a" "a" "a" "a" 

$fermentador$LetterMatrix
     a
3 TRUE
4 TRUE
2 TRUE
1 TRUE


$tratamento
$tratamento$Letters
 T2  T3  T1  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T1 TRUE
T4 TRUE


$`fermentador:tratamento`
$`fermentador:tratamento`$Letters
3:T3 2:T2 1:T1 4:T4 3:T2 4:T3 2:T1 1:T2 4:T2 1:T3 4:T1 3:T1 1:T4 2:T3 3:T4 2:T4 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`fermentador:tratamento`$LetterMatrix
        a
3:T3 TRUE
2:T2 TRUE
1:T1 TRUE
4:T4 TRUE
3:T2 TRUE
4:T3 TRUE
2:T1 TRUE
1:T2 TRUE
4:T2 TRUE
1:T3 TRUE
4:T1 TRUE
3:T1 TRUE
1:T4 TRUE
2:T3 TRUE
3:T4 TRUE
2:T4 TRUE

11 Periodo x Tratamento

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ periodo * tratamento")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ periodo * tratamento")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})
Warning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertosWarning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertosWarning: testes-F ANOVA sobre um ajuste essencialmente perfeito, são incertos
resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ periodo * tratamento"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ periodo * tratamento)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
                   Df Sum Sq Mean Sq F value Pr(>F)  
periodo             3 167360   55787   3.170 0.0326 *
tratamento          3   4359    1453   0.083 0.9692  
periodo:tratamento  9  35730    3970   0.226 0.9892  
Residuals          48 844714   17598                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean   SE df lower.CL upper.CL
 1       T1            342 66.3 48    209.1      476
 2       T1            364 66.3 48    230.1      497
 3       T1            232 66.3 48     98.6      365
 4       T1            279 66.3 48    145.6      412
 1       T2            318 66.3 48    184.1      451
 2       T2            282 66.3 48    149.1      416
 3       T2            232 66.3 48     98.9      366
 4       T2            322 66.3 48    189.1      456
 1       T3            373 66.3 48    239.9      507
 2       T3            332 66.3 48    198.9      466
 3       T3            192 66.3 48     59.1      326
 4       T3            312 66.3 48    178.4      445
 1       T4            402 66.3 48    268.4      535
 2       T4            336 66.3 48    202.6      469
 3       T4            228 66.3 48     94.9      362
 4       T4            280 66.3 48    146.6      413

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
         diff        lwr       upr     p adj
2-1  -30.1875 -155.01061  94.63561 0.9172509
3-1 -137.5000 -262.32311 -12.67689 0.0256337
4-1  -60.4375 -185.26061  64.38561 0.5745558
3-2 -107.3125 -232.13561  17.51061 0.1151264
4-2  -30.2500 -155.07311  94.57311 0.9167904
4-3   77.0625  -47.76061 201.88561 0.3648104

$tratamento
          diff       lwr      upr     p adj
T2-T1 -15.5625 -140.3856 109.2606 0.9872437
T3-T1  -1.8125 -126.6356 123.0106 0.9999790
T4-T1   7.2500 -117.5731 132.0731 0.9986655
T3-T2  13.7500 -111.0731 138.5731 0.9911175
T4-T2  22.8125 -102.0106 147.6356 0.9617602
T4-T3   9.0625 -115.7606 133.8856 0.9974075

$`periodo:tratamento`
             diff       lwr      upr     p adj
2:T1-1:T1   21.00 -317.8834 359.8834 1.0000000
3:T1-1:T1 -110.50 -449.3834 228.3834 0.9978583
4:T1-1:T1  -63.50 -402.3834 275.3834 0.9999976
1:T2-1:T1  -25.00 -363.8834 313.8834 1.0000000
2:T2-1:T1  -60.00 -398.8834 278.8834 0.9999989
3:T2-1:T1 -110.25 -449.1334 228.6334 0.9979098
4:T2-1:T1  -20.00 -358.8834 318.8834 1.0000000
1:T3-1:T1   30.75 -308.1334 369.6334 1.0000000
2:T3-1:T1  -10.25 -349.1334 328.6334 1.0000000
3:T3-1:T1 -150.00 -488.8834 188.8834 0.9608061
4:T3-1:T1  -30.75 -369.6334 308.1334 1.0000000
1:T4-1:T1   59.25 -279.6334 398.1334 0.9999991
2:T4-1:T1   -6.50 -345.3834 332.3834 1.0000000
3:T4-1:T1 -114.25 -453.1334 224.6334 0.9969474
4:T4-1:T1  -62.50 -401.3834 276.3834 0.9999981
3:T1-2:T1 -131.50 -470.3834 207.3834 0.9876371
4:T1-2:T1  -84.50 -423.3834 254.3834 0.9999042
1:T2-2:T1  -46.00 -384.8834 292.8834 1.0000000
2:T2-2:T1  -81.00 -419.8834 257.8834 0.9999433
3:T2-2:T1 -131.25 -470.1334 207.6334 0.9878557
4:T2-2:T1  -41.00 -379.8834 297.8834 1.0000000
1:T3-2:T1    9.75 -329.1334 348.6334 1.0000000
2:T3-2:T1  -31.25 -370.1334 307.6334 1.0000000
3:T3-2:T1 -171.00 -509.8834 167.8834 0.8956645
4:T3-2:T1  -51.75 -390.6334 287.1334 0.9999999
1:T4-2:T1   38.25 -300.6334 377.1334 1.0000000
2:T4-2:T1  -27.50 -366.3834 311.3834 1.0000000
3:T4-2:T1 -135.25 -474.1334 203.6334 0.9839685
4:T4-2:T1  -83.50 -422.3834 255.3834 0.9999173
4:T1-3:T1   47.00 -291.8834 385.8834 1.0000000
1:T2-3:T1   85.50 -253.3834 424.3834 0.9998892
2:T2-3:T1   50.50 -288.3834 389.3834 0.9999999
3:T2-3:T1    0.25 -338.6334 339.1334 1.0000000
4:T2-3:T1   90.50 -248.3834 429.3834 0.9997794
1:T3-3:T1  141.25 -197.6334 480.1334 0.9763892
2:T3-3:T1  100.25 -238.6334 439.1334 0.9992709
3:T3-3:T1  -39.50 -378.3834 299.3834 1.0000000
4:T3-3:T1   79.75 -259.1334 418.6334 0.9999534
1:T4-3:T1  169.75 -169.1334 508.6334 0.9007593
2:T4-3:T1  104.00 -234.8834 442.8834 0.9988971
3:T4-3:T1   -3.75 -342.6334 335.1334 1.0000000
4:T4-3:T1   48.00 -290.8834 386.8834 0.9999999
1:T2-4:T1   38.50 -300.3834 377.3834 1.0000000
2:T2-4:T1    3.50 -335.3834 342.3834 1.0000000
3:T2-4:T1  -46.75 -385.6334 292.1334 1.0000000
4:T2-4:T1   43.50 -295.3834 382.3834 1.0000000
1:T3-4:T1   94.25 -244.6334 433.1334 0.9996430
2:T3-4:T1   53.25 -285.6334 392.1334 0.9999998
3:T3-4:T1  -86.50 -425.3834 252.3834 0.9998723
4:T3-4:T1   32.75 -306.1334 371.6334 1.0000000
1:T4-4:T1  122.75 -216.1334 461.6334 0.9936422
2:T4-4:T1   57.00 -281.8834 395.8834 0.9999994
3:T4-4:T1  -50.75 -389.6334 288.1334 0.9999999
4:T4-4:T1    1.00 -337.8834 339.8834 1.0000000
2:T2-1:T2  -35.00 -373.8834 303.8834 1.0000000
3:T2-1:T2  -85.25 -424.1334 253.6334 0.9998932
4:T2-1:T2    5.00 -333.8834 343.8834 1.0000000
1:T3-1:T2   55.75 -283.1334 394.6334 0.9999996
2:T3-1:T2   14.75 -324.1334 353.6334 1.0000000
3:T3-1:T2 -125.00 -463.8834 213.8834 0.9923939
4:T3-1:T2   -5.75 -344.6334 333.1334 1.0000000
1:T4-1:T2   84.25 -254.6334 423.1334 0.9999076
2:T4-1:T2   18.50 -320.3834 357.3834 1.0000000
3:T4-1:T2  -89.25 -428.1334 249.6334 0.9998134
4:T4-1:T2  -37.50 -376.3834 301.3834 1.0000000
3:T2-2:T2  -50.25 -389.1334 288.6334 0.9999999
4:T2-2:T2   40.00 -298.8834 378.8834 1.0000000
1:T3-2:T2   90.75 -248.1334 429.6334 0.9997720
2:T3-2:T2   49.75 -289.1334 388.6334 0.9999999
3:T3-2:T2  -90.00 -428.8834 248.8834 0.9997936
4:T3-2:T2   29.25 -309.6334 368.1334 1.0000000
1:T4-2:T2  119.25 -219.6334 458.1334 0.9952472
2:T4-2:T2   53.50 -285.3834 392.3834 0.9999998
3:T4-2:T2  -54.25 -393.1334 284.6334 0.9999997
4:T4-2:T2   -2.50 -341.3834 336.3834 1.0000000
4:T2-3:T2   90.25 -248.6334 429.1334 0.9997866
1:T3-3:T2  141.00 -197.8834 479.8834 0.9767514
2:T3-3:T2  100.00 -238.8834 438.8834 0.9992913
3:T3-3:T2  -39.75 -378.6334 299.1334 1.0000000
4:T3-3:T2   79.50 -259.3834 418.3834 0.9999552
1:T4-3:T2  169.50 -169.3834 508.3834 0.9017592
2:T4-3:T2  103.75 -235.1334 442.6334 0.9989264
3:T4-3:T2   -4.00 -342.8834 334.8834 1.0000000
4:T4-3:T2   47.75 -291.1334 386.6334 1.0000000
1:T3-4:T2   50.75 -288.1334 389.6334 0.9999999
2:T3-4:T2    9.75 -329.1334 348.6334 1.0000000
3:T3-4:T2 -130.00 -468.8834 208.8834 0.9889029
4:T3-4:T2  -10.75 -349.6334 328.1334 1.0000000
1:T4-4:T2   79.25 -259.6334 418.1334 0.9999569
2:T4-4:T2   13.50 -325.3834 352.3834 1.0000000
3:T4-4:T2  -94.25 -433.1334 244.6334 0.9996430
4:T4-4:T2  -42.50 -381.3834 296.3834 1.0000000
2:T3-1:T3  -41.00 -379.8834 297.8834 1.0000000
3:T3-1:T3 -180.75 -519.6334 158.1334 0.8505330
4:T3-1:T3  -61.50 -400.3834 277.3834 0.9999984
1:T4-1:T3   28.50 -310.3834 367.3834 1.0000000
2:T4-1:T3  -37.25 -376.1334 301.6334 1.0000000
3:T4-1:T3 -145.00 -483.8834 193.8834 0.9704253
4:T4-1:T3  -93.25 -432.1334 245.6334 0.9996851
3:T3-2:T3 -139.75 -478.6334 199.1334 0.9784992
4:T3-2:T3  -20.50 -359.3834 318.3834 1.0000000
1:T4-2:T3   69.50 -269.3834 408.3834 0.9999921
2:T4-2:T3    3.75 -335.1334 342.6334 1.0000000
3:T4-2:T3 -104.00 -442.8834 234.8834 0.9988971
4:T4-2:T3  -52.25 -391.1334 286.6334 0.9999998
4:T3-3:T3  119.25 -219.6334 458.1334 0.9952472
1:T4-3:T3  209.25 -129.6334 548.1334 0.6723148
2:T4-3:T3  143.50 -195.3834 482.3834 0.9729329
3:T4-3:T3   35.75 -303.1334 374.6334 1.0000000
4:T4-3:T3   87.50 -251.3834 426.3834 0.9998531
1:T4-4:T3   90.00 -248.8834 428.8834 0.9997936
2:T4-4:T3   24.25 -314.6334 363.1334 1.0000000
3:T4-4:T3  -83.50 -422.3834 255.3834 0.9999173
4:T4-4:T3  -31.75 -370.6334 307.1334 1.0000000
2:T4-1:T4  -65.75 -404.6334 273.1334 0.9999962
3:T4-1:T4 -173.50 -512.3834 165.3834 0.8849994
4:T4-1:T4 -121.75 -460.6334 217.1334 0.9941404
3:T4-2:T4 -107.75 -446.6334 231.1334 0.9983697
4:T4-2:T4  -56.00 -394.8834 282.8834 0.9999996
4:T4-3:T4   51.75 -287.1334 390.6334 0.9999999


Letras do Tukey:
$periodo
   1    2    4    3 
 "a" "ab" "ab"  "b" 

$tratamento
$tratamento$Letters
 T4  T1  T3  T2 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T4 TRUE
T1 TRUE
T3 TRUE
T2 TRUE


$`periodo:tratamento`
$`periodo:tratamento`$Letters
1:T4 1:T3 2:T1 1:T1 2:T4 2:T3 4:T2 1:T2 4:T3 2:T2 4:T4 4:T1 3:T2 3:T1 3:T4 3:T3 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tratamento`$LetterMatrix
        a
1:T4 TRUE
1:T3 TRUE
2:T1 TRUE
1:T1 TRUE
2:T4 TRUE
2:T3 TRUE
4:T2 TRUE
1:T2 TRUE
4:T3 TRUE
2:T2 TRUE
4:T4 TRUE
4:T1 TRUE
3:T2 TRUE
3:T1 TRUE
3:T4 TRUE
3:T3 TRUE




########################### Variável: gas_total ##########################
ANOVA:
                   Df  Sum Sq Mean Sq F value Pr(>F)  
periodo             3 1035268  345089   2.262 0.0932 .
tratamento          3  157390   52463   0.344 0.7937  
periodo:tratamento  9  317132   35237   0.231 0.9883  
Residuals          48 7323322  152569                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean  SE df lower.CL upper.CL
 1       T1           1549 195 48     1157     1942
 2       T1           1290 195 48      897     1682
 3       T1           1199 195 48      807     1592
 4       T1           1588 195 48     1196     1981
 1       T2           1508 195 48     1115     1901
 2       T2           1579 195 48     1187     1972
 3       T2           1188 195 48      795     1580
 4       T2           1723 195 48     1330     2116
 1       T3           1584 195 48     1191     1977
 2       T3           1543 195 48     1151     1936
 3       T3           1389 195 48      996     1781
 4       T3           1598 195 48     1206     1991
 1       T4           1406 195 48     1013     1798
 2       T4           1536 195 48     1143     1929
 3       T4           1264 195 48      872     1657
 4       T4           1516 195 48     1124     1909

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
         diff        lwr      upr     p adj
2-1  -24.6875 -392.21859 342.8436 0.9979425
3-1 -251.6875 -619.21859 115.8436 0.2755320
4-1   94.8125 -272.71859 462.3436 0.9017234
3-2 -227.0000 -594.53109 140.5311 0.3644373
4-2  119.5000 -248.03109 487.0311 0.8226068
4-3  346.5000  -21.03109 714.0311 0.0711939

$tratamento
          diff       lwr      upr     p adj
T2-T1  92.9375 -274.5936 460.4686 0.9067886
T3-T1 122.0625 -245.4686 489.5936 0.8131906
T4-T1  23.9375 -343.5936 391.4686 0.9981229
T3-T2  29.1250 -338.4061 396.6561 0.9966384
T4-T2 -69.0000 -436.5311 298.5311 0.9587578
T4-T3 -98.1250 -465.6561 269.4061 0.8924319

$`periodo:tratamento`
             diff        lwr       upr     p adj
2:T1-1:T1 -259.75 -1257.5634  738.0634 0.9998378
3:T1-1:T1 -350.00 -1347.8134  647.8134 0.9953996
4:T1-1:T1   39.00  -958.8134 1036.8134 1.0000000
1:T2-1:T1  -41.25 -1039.0634  956.5634 1.0000000
2:T2-1:T1   30.00  -967.8134 1027.8134 1.0000000
3:T2-1:T1 -361.50 -1359.3134  636.3134 0.9936294
4:T2-1:T1  173.75  -824.0634 1171.5634 0.9999991
1:T3-1:T1   34.75  -963.0634 1032.5634 1.0000000
2:T3-1:T1   -6.00 -1003.8134  991.8134 1.0000000
3:T3-1:T1 -160.50 -1158.3134  837.3134 0.9999997
4:T3-1:T1   49.25  -948.5634 1047.0634 1.0000000
1:T4-1:T1 -143.75 -1141.5634  854.0634 0.9999999
2:T4-1:T1  -13.25 -1011.0634  984.5634 1.0000000
3:T4-1:T1 -285.00 -1282.8134  712.8134 0.9995128
4:T4-1:T1  -33.00 -1030.8134  964.8134 1.0000000
3:T1-2:T1  -90.25 -1088.0634  907.5634 1.0000000
4:T1-2:T1  298.75  -699.0634 1296.5634 0.9991642
1:T2-2:T1  218.50  -779.3134 1216.3134 0.9999814
2:T2-2:T1  289.75  -708.0634 1287.5634 0.9994104
3:T2-2:T1 -101.75 -1099.5634  896.0634 1.0000000
4:T2-2:T1  433.50  -564.3134 1431.3134 0.9663855
1:T3-2:T1  294.50  -703.3134 1292.3134 0.9992897
2:T3-2:T1  253.75  -744.0634 1251.5634 0.9998780
3:T3-2:T1   99.25  -898.5634 1097.0634 1.0000000
4:T3-2:T1  309.00  -688.8134 1306.8134 0.9987805
1:T4-2:T1  116.00  -881.8134 1113.8134 1.0000000
2:T4-2:T1  246.50  -751.3134 1244.3134 0.9999146
3:T4-2:T1  -25.25 -1023.0634  972.5634 1.0000000
4:T4-2:T1  226.75  -771.0634 1224.5634 0.9999700
4:T1-3:T1  389.00  -608.8134 1386.8134 0.9870866
1:T2-3:T1  308.75  -689.0634 1306.5634 0.9987914
2:T2-3:T1  380.00  -617.8134 1377.8134 0.9896435
3:T2-3:T1  -11.50 -1009.3134  986.3134 1.0000000
4:T2-3:T1  523.75  -474.0634 1521.5634 0.8648021
1:T3-3:T1  384.75  -613.0634 1382.5634 0.9883500
2:T3-3:T1  344.00  -653.8134 1341.8134 0.9961477
3:T3-3:T1  189.50  -808.3134 1187.3134 0.9999971
4:T3-3:T1  399.25  -598.5634 1397.0634 0.9835916
1:T4-3:T1  206.25  -791.5634 1204.0634 0.9999912
2:T4-3:T1  336.75  -661.0634 1334.5634 0.9969138
3:T4-3:T1   65.00  -932.8134 1062.8134 1.0000000
4:T4-3:T1  317.00  -680.8134 1314.8134 0.9983843
1:T2-4:T1  -80.25 -1078.0634  917.5634 1.0000000
2:T2-4:T1   -9.00 -1006.8134  988.8134 1.0000000
3:T2-4:T1 -400.50 -1398.3134  597.3134 0.9831192
4:T2-4:T1  134.75  -863.0634 1132.5634 1.0000000
1:T3-4:T1   -4.25 -1002.0634  993.5634 1.0000000
2:T3-4:T1  -45.00 -1042.8134  952.8134 1.0000000
3:T3-4:T1 -199.50 -1197.3134  798.3134 0.9999943
4:T3-4:T1   10.25  -987.5634 1008.0634 1.0000000
1:T4-4:T1 -182.75 -1180.5634  815.0634 0.9999982
2:T4-4:T1  -52.25 -1050.0634  945.5634 1.0000000
3:T4-4:T1 -324.00 -1321.8134  673.8134 0.9979525
4:T4-4:T1  -72.00 -1069.8134  925.8134 1.0000000
2:T2-1:T2   71.25  -926.5634 1069.0634 1.0000000
3:T2-1:T2 -320.25 -1318.0634  677.5634 0.9981946
4:T2-1:T2  215.00  -782.8134 1212.8134 0.9999849
1:T3-1:T2   76.00  -921.8134 1073.8134 1.0000000
2:T3-1:T2   35.25  -962.5634 1033.0634 1.0000000
3:T3-1:T2 -119.25 -1117.0634  878.5634 1.0000000
4:T3-1:T2   90.50  -907.3134 1088.3134 1.0000000
1:T4-1:T2 -102.50 -1100.3134  895.3134 1.0000000
2:T4-1:T2   28.00  -969.8134 1025.8134 1.0000000
3:T4-1:T2 -243.75 -1241.5634  754.0634 0.9999256
4:T4-1:T2    8.25  -989.5634 1006.0634 1.0000000
3:T2-2:T2 -391.50 -1389.3134  606.3134 0.9862942
4:T2-2:T2  143.75  -854.0634 1141.5634 0.9999999
1:T3-2:T2    4.75  -993.0634 1002.5634 1.0000000
2:T3-2:T2  -36.00 -1033.8134  961.8134 1.0000000
3:T3-2:T2 -190.50 -1188.3134  807.3134 0.9999969
4:T3-2:T2   19.25  -978.5634 1017.0634 1.0000000
1:T4-2:T2 -173.75 -1171.5634  824.0634 0.9999991
2:T4-2:T2  -43.25 -1041.0634  954.5634 1.0000000
3:T4-2:T2 -315.00 -1312.8134  682.8134 0.9984924
4:T4-2:T2  -63.00 -1060.8134  934.8134 1.0000000
4:T2-3:T2  535.25  -462.5634 1533.0634 0.8451948
1:T3-3:T2  396.25  -601.5634 1394.0634 0.9846832
2:T3-3:T2  355.50  -642.3134 1353.3134 0.9946119
3:T3-3:T2  201.00  -796.8134 1198.8134 0.9999937
4:T3-3:T2  410.75  -587.0634 1408.5634 0.9788345
1:T4-3:T2  217.75  -780.0634 1215.5634 0.9999822
2:T4-3:T2  348.25  -649.5634 1346.0634 0.9956293
3:T4-3:T2   76.50  -921.3134 1074.3134 1.0000000
4:T4-3:T2  328.50  -669.3134 1326.3134 0.9976262
1:T3-4:T2 -139.00 -1136.8134  858.8134 1.0000000
2:T3-4:T2 -179.75 -1177.5634  818.0634 0.9999986
3:T3-4:T2 -334.25 -1332.0634  663.5634 0.9971465
4:T3-4:T2 -124.50 -1122.3134  873.3134 1.0000000
1:T4-4:T2 -317.50 -1315.3134  680.3134 0.9983563
2:T4-4:T2 -187.00 -1184.8134  810.8134 0.9999976
3:T4-4:T2 -458.75 -1456.5634  539.0634 0.9469966
4:T4-4:T2 -206.75 -1204.5634  791.0634 0.9999909
2:T3-1:T3  -40.75 -1038.5634  957.0634 1.0000000
3:T3-1:T3 -195.25 -1193.0634  802.5634 0.9999957
4:T3-1:T3   14.50  -983.3134 1012.3134 1.0000000
1:T4-1:T3 -178.50 -1176.3134  819.3134 0.9999987
2:T4-1:T3  -48.00 -1045.8134  949.8134 1.0000000
3:T4-1:T3 -319.75 -1317.5634  678.0634 0.9982249
4:T4-1:T3  -67.75 -1065.5634  930.0634 1.0000000
3:T3-2:T3 -154.50 -1152.3134  843.3134 0.9999998
4:T3-2:T3   55.25  -942.5634 1053.0634 1.0000000
1:T4-2:T3 -137.75 -1135.5634  860.0634 1.0000000
2:T4-2:T3   -7.25 -1005.0634  990.5634 1.0000000
3:T4-2:T3 -279.00 -1276.8134  718.8134 0.9996198
4:T4-2:T3  -27.00 -1024.8134  970.8134 1.0000000
4:T3-3:T3  209.75  -788.0634 1207.5634 0.9999890
1:T4-3:T3   16.75  -981.0634 1014.5634 1.0000000
2:T4-3:T3  147.25  -850.5634 1145.0634 0.9999999
3:T4-3:T3 -124.50 -1122.3134  873.3134 1.0000000
4:T4-3:T3  127.50  -870.3134 1125.3134 1.0000000
1:T4-4:T3 -193.00 -1190.8134  804.8134 0.9999963
2:T4-4:T3  -62.50 -1060.3134  935.3134 1.0000000
3:T4-4:T3 -334.25 -1332.0634  663.5634 0.9971465
4:T4-4:T3  -82.25 -1080.0634  915.5634 1.0000000
2:T4-1:T4  130.50  -867.3134 1128.3134 1.0000000
3:T4-1:T4 -141.25 -1139.0634  856.5634 0.9999999
4:T4-1:T4  110.75  -887.0634 1108.5634 1.0000000
3:T4-2:T4 -271.75 -1269.5634  726.0634 0.9997213
4:T4-2:T4  -19.75 -1017.5634  978.0634 1.0000000
4:T4-3:T4  252.00  -745.8134 1249.8134 0.9998879


Letras do Tukey:
$periodo
$periodo$Letters
  4   1   2   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
4 TRUE
1 TRUE
2 TRUE
3 TRUE


$tratamento
$tratamento$Letters
 T3  T2  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T3 TRUE
T2 TRUE
T4 TRUE
T1 TRUE


$`periodo:tratamento`
$`periodo:tratamento`$Letters
4:T2 4:T3 4:T1 1:T3 2:T2 1:T1 2:T3 2:T4 4:T4 1:T2 1:T4 3:T3 2:T1 3:T4 3:T1 3:T2 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tratamento`$LetterMatrix
        a
4:T2 TRUE
4:T3 TRUE
4:T1 TRUE
1:T3 TRUE
2:T2 TRUE
1:T1 TRUE
2:T3 TRUE
2:T4 TRUE
4:T4 TRUE
1:T2 TRUE
1:T4 TRUE
3:T3 TRUE
2:T1 TRUE
3:T4 TRUE
3:T1 TRUE
3:T2 TRUE




########################### Variável: ch4_effic ##########################
ANOVA:
                   Df Sum Sq Mean Sq F value Pr(>F)
periodo             3  3.148  1.0493   1.074  0.388
tratamento          3  5.676  1.8918   1.937  0.164
periodo:tratamento  9 12.085  1.3428   1.375  0.277
Residuals          16 15.631  0.9769               
48 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean    SE df lower.CL upper.CL
 1       T1           5.74 0.699 16     4.26     7.22
 2       T1           6.37 0.699 16     4.89     7.85
 3       T1           4.78 0.699 16     3.29     6.26
 4       T1           5.66 0.699 16     4.18     7.14
 1       T2           5.66 0.699 16     4.18     7.14
 2       T2           6.03 0.699 16     4.55     7.51
 3       T2           5.22 0.699 16     3.74     6.71
 4       T2           6.04 0.699 16     4.55     7.52
 1       T3           6.04 0.699 16     4.55     7.52
 2       T3           6.34 0.699 16     4.86     7.83
 3       T3           5.53 0.699 16     4.05     7.01
 4       T3           3.79 0.699 16     2.31     5.27
 1       T4           3.79 0.699 16     2.31     5.27
 2       T4           4.70 0.699 16     3.21     6.18
 3       T4           4.42 0.699 16     2.94     5.91
 4       T4           5.74 0.699 16     4.26     7.22

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
             diff        lwr       upr     p adj
2-1  5.537500e-01 -0.8601659 1.9676659 0.6826183
3-1 -3.175000e-01 -1.7314159 1.0964159 0.9166334
4-1 -8.881784e-16 -1.4139159 1.4139159 1.0000000
3-2 -8.712500e-01 -2.2851659 0.5426659 0.3258970
4-2 -5.537500e-01 -1.9676659 0.8601659 0.6826183
4-3  3.175000e-01 -1.0964159 1.7314159 0.9166334

$tratamento
          diff       lwr       upr     p adj
T2-T1  0.10125 -1.312666 1.5151659 0.9968287
T3-T1 -0.21125 -1.625166 1.2026659 0.9729178
T4-T1 -0.97375 -2.387666 0.4401659 0.2396590
T3-T2 -0.31250 -1.726416 1.1014159 0.9200796
T4-T2 -1.07500 -2.488916 0.3389159 0.1724193
T4-T3 -0.76250 -2.176416 0.6514159 0.4366937

$`periodo:tratamento`
                   diff       lwr      upr     p adj
2:T1-1:T1  6.300000e-01 -3.327166 4.587166 0.9999966
3:T1-1:T1 -9.650000e-01 -4.922166 2.992166 0.9994041
4:T1-1:T1 -8.000000e-02 -4.037166 3.877166 1.0000000
1:T2-1:T1 -8.000000e-02 -4.037166 3.877166 1.0000000
2:T2-1:T1  2.900000e-01 -3.667166 4.247166 1.0000000
3:T2-1:T1 -5.150000e-01 -4.472166 3.442166 0.9999998
4:T2-1:T1  2.950000e-01 -3.662166 4.252166 1.0000000
1:T3-1:T1  2.950000e-01 -3.662166 4.252166 1.0000000
2:T3-1:T1  6.050000e-01 -3.352166 4.562166 0.9999980
3:T3-1:T1 -2.100000e-01 -4.167166 3.747166 1.0000000
4:T3-1:T1 -1.950000e+00 -5.907166 2.007166 0.8093383
1:T4-1:T1 -1.950000e+00 -5.907166 2.007166 0.8093383
2:T4-1:T1 -1.045000e+00 -5.002166 2.912166 0.9986029
3:T4-1:T1 -1.315000e+00 -5.272166 2.642166 0.9873784
4:T4-1:T1 -3.552714e-15 -3.957166 3.957166 1.0000000
3:T1-2:T1 -1.595000e+00 -5.552166 2.362166 0.9429056
4:T1-2:T1 -7.100000e-01 -4.667166 3.247166 0.9999841
1:T2-2:T1 -7.100000e-01 -4.667166 3.247166 0.9999841
2:T2-2:T1 -3.400000e-01 -4.297166 3.617166 1.0000000
3:T2-2:T1 -1.145000e+00 -5.102166 2.812166 0.9964816
4:T2-2:T1 -3.350000e-01 -4.292166 3.622166 1.0000000
1:T3-2:T1 -3.350000e-01 -4.292166 3.622166 1.0000000
2:T3-2:T1 -2.500000e-02 -3.982166 3.932166 1.0000000
3:T3-2:T1 -8.400000e-01 -4.797166 3.117166 0.9998770
4:T3-2:T1 -2.580000e+00 -6.537166 1.377166 0.4507708
1:T4-2:T1 -2.580000e+00 -6.537166 1.377166 0.4507708
2:T4-2:T1 -1.675000e+00 -5.632166 2.282166 0.9206831
3:T4-2:T1 -1.945000e+00 -5.902166 2.012166 0.8118002
4:T4-2:T1 -6.300000e-01 -4.587166 3.327166 0.9999966
4:T1-3:T1  8.850000e-01 -3.072166 4.842166 0.9997744
1:T2-3:T1  8.850000e-01 -3.072166 4.842166 0.9997744
2:T2-3:T1  1.255000e+00 -2.702166 5.212166 0.9916546
3:T2-3:T1  4.500000e-01 -3.507166 4.407166 1.0000000
4:T2-3:T1  1.260000e+00 -2.697166 5.217166 0.9913494
1:T3-3:T1  1.260000e+00 -2.697166 5.217166 0.9913494
2:T3-3:T1  1.570000e+00 -2.387166 5.527166 0.9488982
3:T3-3:T1  7.550000e-01 -3.202166 4.712166 0.9999659
4:T3-3:T1 -9.850000e-01 -4.942166 2.972166 0.9992549
1:T4-3:T1 -9.850000e-01 -4.942166 2.972166 0.9992549
2:T4-3:T1 -8.000000e-02 -4.037166 3.877166 1.0000000
3:T4-3:T1 -3.500000e-01 -4.307166 3.607166 1.0000000
4:T4-3:T1  9.650000e-01 -2.992166 4.922166 0.9994041
1:T2-4:T1  0.000000e+00 -3.957166 3.957166 1.0000000
2:T2-4:T1  3.700000e-01 -3.587166 4.327166 1.0000000
3:T2-4:T1 -4.350000e-01 -4.392166 3.522166 1.0000000
4:T2-4:T1  3.750000e-01 -3.582166 4.332166 1.0000000
1:T3-4:T1  3.750000e-01 -3.582166 4.332166 1.0000000
2:T3-4:T1  6.850000e-01 -3.272166 4.642166 0.9999899
3:T3-4:T1 -1.300000e-01 -4.087166 3.827166 1.0000000
4:T3-4:T1 -1.870000e+00 -5.827166 2.087166 0.8469659
1:T4-4:T1 -1.870000e+00 -5.827166 2.087166 0.8469659
2:T4-4:T1 -9.650000e-01 -4.922166 2.992166 0.9994041
3:T4-4:T1 -1.235000e+00 -5.192166 2.722166 0.9927915
4:T4-4:T1  8.000000e-02 -3.877166 4.037166 1.0000000
2:T2-1:T2  3.700000e-01 -3.587166 4.327166 1.0000000
3:T2-1:T2 -4.350000e-01 -4.392166 3.522166 1.0000000
4:T2-1:T2  3.750000e-01 -3.582166 4.332166 1.0000000
1:T3-1:T2  3.750000e-01 -3.582166 4.332166 1.0000000
2:T3-1:T2  6.850000e-01 -3.272166 4.642166 0.9999899
3:T3-1:T2 -1.300000e-01 -4.087166 3.827166 1.0000000
4:T3-1:T2 -1.870000e+00 -5.827166 2.087166 0.8469659
1:T4-1:T2 -1.870000e+00 -5.827166 2.087166 0.8469659
2:T4-1:T2 -9.650000e-01 -4.922166 2.992166 0.9994041
3:T4-1:T2 -1.235000e+00 -5.192166 2.722166 0.9927915
4:T4-1:T2  8.000000e-02 -3.877166 4.037166 1.0000000
3:T2-2:T2 -8.050000e-01 -4.762166 3.152166 0.9999258
4:T2-2:T2  5.000000e-03 -3.952166 3.962166 1.0000000
1:T3-2:T2  5.000000e-03 -3.952166 3.962166 1.0000000
2:T3-2:T2  3.150000e-01 -3.642166 4.272166 1.0000000
3:T3-2:T2 -5.000000e-01 -4.457166 3.457166 0.9999998
4:T3-2:T2 -2.240000e+00 -6.197166 1.717166 0.6488283
1:T4-2:T2 -2.240000e+00 -6.197166 1.717166 0.6488283
2:T4-2:T2 -1.335000e+00 -5.292166 2.622166 0.9856288
3:T4-2:T2 -1.605000e+00 -5.562166 2.352166 0.9403834
4:T4-2:T2 -2.900000e-01 -4.247166 3.667166 1.0000000
4:T2-3:T2  8.100000e-01 -3.147166 4.767166 0.9999201
1:T3-3:T2  8.100000e-01 -3.147166 4.767166 0.9999201
2:T3-3:T2  1.120000e+00 -2.837166 5.077166 0.9971694
3:T3-3:T2  3.050000e-01 -3.652166 4.262166 1.0000000
4:T3-3:T2 -1.435000e+00 -5.392166 2.522166 0.9739693
1:T4-3:T2 -1.435000e+00 -5.392166 2.522166 0.9739693
2:T4-3:T2 -5.300000e-01 -4.487166 3.427166 0.9999997
3:T4-3:T2 -8.000000e-01 -4.757166 3.157166 0.9999311
4:T4-3:T2  5.150000e-01 -3.442166 4.472166 0.9999998
1:T3-4:T2  0.000000e+00 -3.957166 3.957166 1.0000000
2:T3-4:T2  3.100000e-01 -3.647166 4.267166 1.0000000
3:T3-4:T2 -5.050000e-01 -4.462166 3.452166 0.9999998
4:T3-4:T2 -2.245000e+00 -6.202166 1.712166 0.6458700
1:T4-4:T2 -2.245000e+00 -6.202166 1.712166 0.6458700
2:T4-4:T2 -1.340000e+00 -5.297166 2.617166 0.9851637
3:T4-4:T2 -1.610000e+00 -5.567166 2.347166 0.9390952
4:T4-4:T2 -2.950000e-01 -4.252166 3.662166 1.0000000
2:T3-1:T3  3.100000e-01 -3.647166 4.267166 1.0000000
3:T3-1:T3 -5.050000e-01 -4.462166 3.452166 0.9999998
4:T3-1:T3 -2.245000e+00 -6.202166 1.712166 0.6458700
1:T4-1:T3 -2.245000e+00 -6.202166 1.712166 0.6458700
2:T4-1:T3 -1.340000e+00 -5.297166 2.617166 0.9851637
3:T4-1:T3 -1.610000e+00 -5.567166 2.347166 0.9390952
4:T4-1:T3 -2.950000e-01 -4.252166 3.662166 1.0000000
3:T3-2:T3 -8.150000e-01 -4.772166 3.142166 0.9999140
4:T3-2:T3 -2.555000e+00 -6.512166 1.402166 0.4646140
1:T4-2:T3 -2.555000e+00 -6.512166 1.402166 0.4646140
2:T4-2:T3 -1.650000e+00 -5.607166 2.307166 0.9281328
3:T4-2:T3 -1.920000e+00 -5.877166 2.037166 0.8238969
4:T4-2:T3 -6.050000e-01 -4.562166 3.352166 0.9999980
4:T3-3:T3 -1.740000e+00 -5.697166 2.217166 0.8991495
1:T4-3:T3 -1.740000e+00 -5.697166 2.217166 0.8991495
2:T4-3:T3 -8.350000e-01 -4.792166 3.122166 0.9998853
3:T4-3:T3 -1.105000e+00 -5.062166 2.852166 0.9975260
4:T4-3:T3  2.100000e-01 -3.747166 4.167166 1.0000000
1:T4-4:T3  4.440892e-16 -3.957166 3.957166 1.0000000
2:T4-4:T3  9.050000e-01 -3.052166 4.862166 0.9997088
3:T4-4:T3  6.350000e-01 -3.322166 4.592166 0.9999962
4:T4-4:T3  1.950000e+00 -2.007166 5.907166 0.8093383
2:T4-1:T4  9.050000e-01 -3.052166 4.862166 0.9997088
3:T4-1:T4  6.350000e-01 -3.322166 4.592166 0.9999962
4:T4-1:T4  1.950000e+00 -2.007166 5.907166 0.8093383
3:T4-2:T4 -2.700000e-01 -4.227166 3.687166 1.0000000
4:T4-2:T4  1.045000e+00 -2.912166 5.002166 0.9986029
4:T4-3:T4  1.315000e+00 -2.642166 5.272166 0.9873784


Letras do Tukey:
$periodo
$periodo$Letters
  2   1   4   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
2 TRUE
1 TRUE
4 TRUE
3 TRUE


$tratamento
$tratamento$Letters
 T2  T1  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T1 TRUE
T3 TRUE
T4 TRUE


$`periodo:tratamento`
$`periodo:tratamento`$Letters
2:T1 2:T3 4:T2 1:T3 2:T2 1:T1 4:T4 4:T1 1:T2 3:T3 3:T2 3:T1 2:T4 3:T4 4:T3 1:T4 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tratamento`$LetterMatrix
        a
2:T1 TRUE
2:T3 TRUE
4:T2 TRUE
1:T3 TRUE
2:T2 TRUE
1:T1 TRUE
4:T4 TRUE
4:T1 TRUE
1:T2 TRUE
3:T3 TRUE
3:T2 TRUE
3:T1 TRUE
2:T4 TRUE
3:T4 TRUE
4:T3 TRUE
1:T4 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
                   Df  Sum Sq  Mean Sq F value Pr(>F)
periodo             3 0.02021 0.006735   2.177  0.131
tratamento          3 0.00599 0.001997   0.646  0.597
periodo:tratamento  9 0.01158 0.001287   0.416  0.908
Residuals          16 0.04950 0.003094               
48 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean     SE df lower.CL upper.CL
 1       T1          0.120 0.0393 16  0.03632    0.203
 2       T1          0.090 0.0393 16  0.00662    0.173
 3       T1          0.070 0.0393 16 -0.01338    0.153
 4       T1          0.170 0.0393 16  0.08662    0.253
 1       T2          0.128 0.0393 16  0.04507    0.212
 2       T2          0.145 0.0393 16  0.06162    0.228
 3       T2          0.115 0.0393 16  0.03162    0.198
 4       T2          0.175 0.0393 16  0.09162    0.258
 1       T3          0.150 0.0393 16  0.06662    0.233
 2       T3          0.145 0.0393 16  0.06162    0.228
 3       T3          0.130 0.0393 16  0.04662    0.213
 4       T3          0.135 0.0393 16  0.05162    0.218
 1       T4          0.085 0.0393 16  0.00162    0.168
 2       T4          0.100 0.0393 16  0.01662    0.183
 3       T4          0.080 0.0393 16 -0.00338    0.163
 4       T4          0.190 0.0393 16  0.10662    0.273

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
          diff         lwr        upr     p adj
2-1 -0.0007875 -0.08035582 0.07878082 0.9999915
3-1 -0.0220375 -0.10160582 0.05753082 0.8568434
4-1  0.0467125 -0.03285582 0.12628082 0.3656643
3-2 -0.0212500 -0.10081832 0.05831832 0.8693269
4-2  0.0475000 -0.03206832 0.12706832 0.3518334
4-3  0.0687500 -0.01081832 0.14831832 0.1031126

$tratamento
            diff         lwr        upr     p adj
T2-T1  0.0284375 -0.05113082 0.10800582 0.7389940
T3-T1  0.0275750 -0.05199332 0.10714332 0.7562630
T4-T1  0.0013250 -0.07824332 0.08089332 0.9999594
T3-T2 -0.0008625 -0.08043082 0.07870582 0.9999888
T4-T2 -0.0271125 -0.10668082 0.05245582 0.7653800
T4-T3 -0.0262500 -0.10581832 0.05331832 0.7820860

$`periodo:tratamento`
                   diff        lwr       upr     p adj
2:T1-1:T1 -2.970000e-02 -0.2523901 0.1929901 0.9999997
3:T1-1:T1 -4.970000e-02 -0.2723901 0.1729901 0.9997797
4:T1-1:T1  5.030000e-02 -0.1723901 0.2729901 0.9997472
1:T2-1:T1  8.750000e-03 -0.2139401 0.2314401 1.0000000
2:T2-1:T1  2.530000e-02 -0.1973901 0.2479901 1.0000000
3:T2-1:T1 -4.700000e-03 -0.2273901 0.2179901 1.0000000
4:T2-1:T1  5.530000e-02 -0.1673901 0.2779901 0.9992737
1:T3-1:T1  3.030000e-02 -0.1923901 0.2529901 0.9999996
2:T3-1:T1  2.530000e-02 -0.1973901 0.2479901 1.0000000
3:T3-1:T1  1.030000e-02 -0.2123901 0.2329901 1.0000000
4:T3-1:T1  1.530000e-02 -0.2073901 0.2379901 1.0000000
1:T4-1:T1 -3.470000e-02 -0.2573901 0.1879901 0.9999974
2:T4-1:T1 -1.970000e-02 -0.2423901 0.2029901 1.0000000
3:T4-1:T1 -3.970000e-02 -0.2623901 0.1829901 0.9999854
4:T4-1:T1  7.030000e-02 -0.1523901 0.2929901 0.9919968
3:T1-2:T1 -2.000000e-02 -0.2426901 0.2026901 1.0000000
4:T1-2:T1  8.000000e-02 -0.1426901 0.3026901 0.9758418
1:T2-2:T1  3.845000e-02 -0.1842401 0.2611401 0.9999902
2:T2-2:T1  5.500000e-02 -0.1676901 0.2776901 0.9993154
3:T2-2:T1  2.500000e-02 -0.1976901 0.2476901 1.0000000
4:T2-2:T1  8.500000e-02 -0.1376901 0.3076901 0.9614234
1:T3-2:T1  6.000000e-02 -0.1626901 0.2826901 0.9982798
2:T3-2:T1  5.500000e-02 -0.1676901 0.2776901 0.9993154
3:T3-2:T1  4.000000e-02 -0.1826901 0.2626901 0.9999839
4:T3-2:T1  4.500000e-02 -0.1776901 0.2676901 0.9999315
1:T4-2:T1 -5.000000e-03 -0.2276901 0.2176901 1.0000000
2:T4-2:T1  1.000000e-02 -0.2126901 0.2326901 1.0000000
3:T4-2:T1 -1.000000e-02 -0.2326901 0.2126901 1.0000000
4:T4-2:T1  1.000000e-01 -0.1226901 0.3226901 0.8855140
4:T1-3:T1  1.000000e-01 -0.1226901 0.3226901 0.8855140
1:T2-3:T1  5.845000e-02 -0.1642401 0.2811401 0.9986891
2:T2-3:T1  7.500000e-02 -0.1476901 0.2976901 0.9858355
3:T2-3:T1  4.500000e-02 -0.1776901 0.2676901 0.9999315
4:T2-3:T1  1.050000e-01 -0.1176901 0.3276901 0.8488176
1:T3-3:T1  8.000000e-02 -0.1426901 0.3026901 0.9758418
2:T3-3:T1  7.500000e-02 -0.1476901 0.2976901 0.9858355
3:T3-3:T1  6.000000e-02 -0.1626901 0.2826901 0.9982798
4:T3-3:T1  6.500000e-02 -0.1576901 0.2876901 0.9961694
1:T4-3:T1  1.500000e-02 -0.2076901 0.2376901 1.0000000
2:T4-3:T1  3.000000e-02 -0.1926901 0.2526901 0.9999996
3:T4-3:T1  1.000000e-02 -0.2126901 0.2326901 1.0000000
4:T4-3:T1  1.200000e-01 -0.1026901 0.3426901 0.7115193
1:T2-4:T1 -4.155000e-02 -0.2642401 0.1811401 0.9999741
2:T2-4:T1 -2.500000e-02 -0.2476901 0.1976901 1.0000000
3:T2-4:T1 -5.500000e-02 -0.2776901 0.1676901 0.9993154
4:T2-4:T1  5.000000e-03 -0.2176901 0.2276901 1.0000000
1:T3-4:T1 -2.000000e-02 -0.2426901 0.2026901 1.0000000
2:T3-4:T1 -2.500000e-02 -0.2476901 0.1976901 1.0000000
3:T3-4:T1 -4.000000e-02 -0.2626901 0.1826901 0.9999839
4:T3-4:T1 -3.500000e-02 -0.2576901 0.1876901 0.9999971
1:T4-4:T1 -8.500000e-02 -0.3076901 0.1376901 0.9614234
2:T4-4:T1 -7.000000e-02 -0.2926901 0.1526901 0.9923025
3:T4-4:T1 -9.000000e-02 -0.3126901 0.1326901 0.9418336
4:T4-4:T1  2.000000e-02 -0.2026901 0.2426901 1.0000000
2:T2-1:T2  1.655000e-02 -0.2061401 0.2392401 1.0000000
3:T2-1:T2 -1.345000e-02 -0.2361401 0.2092401 1.0000000
4:T2-1:T2  4.655000e-02 -0.1761401 0.2692401 0.9998974
1:T3-1:T2  2.155000e-02 -0.2011401 0.2442401 1.0000000
2:T3-1:T2  1.655000e-02 -0.2061401 0.2392401 1.0000000
3:T3-1:T2  1.550000e-03 -0.2211401 0.2242401 1.0000000
4:T3-1:T2  6.550000e-03 -0.2161401 0.2292401 1.0000000
1:T4-1:T2 -4.345000e-02 -0.2661401 0.1792401 0.9999552
2:T4-1:T2 -2.845000e-02 -0.2511401 0.1942401 0.9999998
3:T4-1:T2 -4.845000e-02 -0.2711401 0.1742401 0.9998359
4:T4-1:T2  6.155000e-02 -0.1611401 0.2842401 0.9977686
3:T2-2:T2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
4:T2-2:T2  3.000000e-02 -0.1926901 0.2526901 0.9999996
1:T3-2:T2  5.000000e-03 -0.2176901 0.2276901 1.0000000
2:T3-2:T2 -2.775558e-17 -0.2226901 0.2226901 1.0000000
3:T3-2:T2 -1.500000e-02 -0.2376901 0.2076901 1.0000000
4:T3-2:T2 -1.000000e-02 -0.2326901 0.2126901 1.0000000
1:T4-2:T2 -6.000000e-02 -0.2826901 0.1626901 0.9982798
2:T4-2:T2 -4.500000e-02 -0.2676901 0.1776901 0.9999315
3:T4-2:T2 -6.500000e-02 -0.2876901 0.1576901 0.9961694
4:T4-2:T2  4.500000e-02 -0.1776901 0.2676901 0.9999315
4:T2-3:T2  6.000000e-02 -0.1626901 0.2826901 0.9982798
1:T3-3:T2  3.500000e-02 -0.1876901 0.2576901 0.9999971
2:T3-3:T2  3.000000e-02 -0.1926901 0.2526901 0.9999996
3:T3-3:T2  1.500000e-02 -0.2076901 0.2376901 1.0000000
4:T3-3:T2  2.000000e-02 -0.2026901 0.2426901 1.0000000
1:T4-3:T2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
2:T4-3:T2 -1.500000e-02 -0.2376901 0.2076901 1.0000000
3:T4-3:T2 -3.500000e-02 -0.2576901 0.1876901 0.9999971
4:T4-3:T2  7.500000e-02 -0.1476901 0.2976901 0.9858355
1:T3-4:T2 -2.500000e-02 -0.2476901 0.1976901 1.0000000
2:T3-4:T2 -3.000000e-02 -0.2526901 0.1926901 0.9999996
3:T3-4:T2 -4.500000e-02 -0.2676901 0.1776901 0.9999315
4:T3-4:T2 -4.000000e-02 -0.2626901 0.1826901 0.9999839
1:T4-4:T2 -9.000000e-02 -0.3126901 0.1326901 0.9418336
2:T4-4:T2 -7.500000e-02 -0.2976901 0.1476901 0.9858355
3:T4-4:T2 -9.500000e-02 -0.3176901 0.1276901 0.9165838
4:T4-4:T2  1.500000e-02 -0.2076901 0.2376901 1.0000000
2:T3-1:T3 -5.000000e-03 -0.2276901 0.2176901 1.0000000
3:T3-1:T3 -2.000000e-02 -0.2426901 0.2026901 1.0000000
4:T3-1:T3 -1.500000e-02 -0.2376901 0.2076901 1.0000000
1:T4-1:T3 -6.500000e-02 -0.2876901 0.1576901 0.9961694
2:T4-1:T3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
3:T4-1:T3 -7.000000e-02 -0.2926901 0.1526901 0.9923025
4:T4-1:T3  4.000000e-02 -0.1826901 0.2626901 0.9999839
3:T3-2:T3 -1.500000e-02 -0.2376901 0.2076901 1.0000000
4:T3-2:T3 -1.000000e-02 -0.2326901 0.2126901 1.0000000
1:T4-2:T3 -6.000000e-02 -0.2826901 0.1626901 0.9982798
2:T4-2:T3 -4.500000e-02 -0.2676901 0.1776901 0.9999315
3:T4-2:T3 -6.500000e-02 -0.2876901 0.1576901 0.9961694
4:T4-2:T3  4.500000e-02 -0.1776901 0.2676901 0.9999315
4:T3-3:T3  5.000000e-03 -0.2176901 0.2276901 1.0000000
1:T4-3:T3 -4.500000e-02 -0.2676901 0.1776901 0.9999315
2:T4-3:T3 -3.000000e-02 -0.2526901 0.1926901 0.9999996
3:T4-3:T3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
4:T4-3:T3  6.000000e-02 -0.1626901 0.2826901 0.9982798
1:T4-4:T3 -5.000000e-02 -0.2726901 0.1726901 0.9997640
2:T4-4:T3 -3.500000e-02 -0.2576901 0.1876901 0.9999971
3:T4-4:T3 -5.500000e-02 -0.2776901 0.1676901 0.9993154
4:T4-4:T3  5.500000e-02 -0.1676901 0.2776901 0.9993154
2:T4-1:T4  1.500000e-02 -0.2076901 0.2376901 1.0000000
3:T4-1:T4 -5.000000e-03 -0.2276901 0.2176901 1.0000000
4:T4-1:T4  1.050000e-01 -0.1176901 0.3276901 0.8488176
3:T4-2:T4 -2.000000e-02 -0.2426901 0.2026901 1.0000000
4:T4-2:T4  9.000000e-02 -0.1326901 0.3126901 0.9418336
4:T4-3:T4  1.100000e-01 -0.1126901 0.3326901 0.8070205


Letras do Tukey:
$periodo
$periodo$Letters
  4   1   2   3 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
4 TRUE
1 TRUE
2 TRUE
3 TRUE


$tratamento
$tratamento$Letters
 T2  T3  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T4 TRUE
T1 TRUE


$`periodo:tratamento`
$`periodo:tratamento`$Letters
4:T4 4:T2 4:T1 1:T3 2:T2 2:T3 4:T3 3:T3 1:T2 1:T1 3:T2 2:T4 2:T1 1:T4 3:T4 3:T1 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tratamento`$LetterMatrix
        a
4:T4 TRUE
4:T2 TRUE
4:T1 TRUE
1:T3 TRUE
2:T2 TRUE
2:T3 TRUE
4:T3 TRUE
3:T3 TRUE
1:T2 TRUE
1:T1 TRUE
3:T2 TRUE
2:T4 TRUE
2:T1 TRUE
1:T4 TRUE
3:T4 TRUE
3:T1 TRUE




########################### Variável: ch4_48h ##########################
ANOVA:
                   Df  Sum Sq Mean Sq F value Pr(>F)    
periodo             3 0.09002 0.03001  192.05 <2e-16 ***
tratamento          3 0.09707 0.03236  207.08 <2e-16 ***
periodo:tratamento  9 0.07108 0.00790   50.55 <2e-16 ***
Residuals          32 0.00500 0.00016                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean      SE df lower.CL upper.CL
 1       T1          0.277 0.00722 32    0.262    0.291
 2       T1          0.210 0.00722 32    0.195    0.225
 3       T1          0.163 0.00722 32    0.149    0.178
 4       T1          0.340 0.00722 32    0.325    0.355
 1       T2          0.300 0.00722 32    0.285    0.315
 2       T2          0.357 0.00722 32    0.342    0.371
 3       T2          0.253 0.00722 32    0.239    0.268
 4       T2          0.433 0.00722 32    0.419    0.448
 1       T3          0.350 0.00722 32    0.335    0.365
 2       T3          0.367 0.00722 32    0.352    0.381
 3       T3          0.293 0.00722 32    0.279    0.308
 4       T3          0.290 0.00722 32    0.275    0.305
 1       T4          0.183 0.00722 32    0.169    0.198
 2       T4          0.230 0.00722 32    0.215    0.245
 3       T4          0.197 0.00722 32    0.182    0.211
 4       T4          0.330 0.00722 32    0.315    0.345

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
           diff           lwr         upr     p adj
2-1  0.01335083 -0.0004751829  0.02717685 0.0615041
3-1 -0.05081583 -0.0646418495 -0.03698982 0.0000000
4-1  0.07085083  0.0570248171  0.08467685 0.0000000
3-2 -0.06416667 -0.0779926829 -0.05034065 0.0000000
4-2  0.05750000  0.0436739838  0.07132602 0.0000000
4-3  0.12166667  0.1078406505  0.13549268 0.0000000

$tratamento
             diff         lwr          upr     p adj
T2-T1  0.08835083  0.07452482  0.102176850 0.0000000
T3-T1  0.07751750  0.06369148  0.091343516 0.0000000
T4-T1 -0.01248250 -0.02630852  0.001343516 0.0885647
T3-T2 -0.01083333 -0.02465935  0.002992683 0.1675959
T4-T2 -0.10083333 -0.11465935 -0.087007317 0.0000000
T4-T3 -0.09000000 -0.10382602 -0.076173984 0.0000000

$`periodo:tratamento`
                  diff          lwr          upr     p adj
2:T1-1:T1 -0.066596667 -0.104441776 -0.028751557 0.0000243
3:T1-1:T1 -0.113263333 -0.151108443 -0.075418224 0.0000000
4:T1-1:T1  0.063403333  0.025558224  0.101248443 0.0000586
1:T2-1:T1  0.023403333 -0.014441776  0.061248443 0.6308596
2:T2-1:T1  0.080070000  0.042224891  0.117915109 0.0000006
3:T2-1:T1 -0.023263333 -0.061108443  0.014581776 0.6398228
4:T2-1:T1  0.156736667  0.118891557  0.194581776 0.0000000
1:T3-1:T1  0.073403333  0.035558224  0.111248443 0.0000038
2:T3-1:T1  0.090070000  0.052224891  0.127915109 0.0000000
3:T3-1:T1  0.016736667 -0.021108443  0.054581776 0.9477916
4:T3-1:T1  0.013403333 -0.024441776  0.051248443 0.9922893
1:T4-1:T1 -0.093263333 -0.131108443 -0.055418224 0.0000000
2:T4-1:T1 -0.046596667 -0.084441776 -0.008751557 0.0056910
3:T4-1:T1 -0.079930000 -0.117775109 -0.042084891 0.0000007
4:T4-1:T1  0.053403333  0.015558224  0.091248443 0.0009179
3:T1-2:T1 -0.046666667 -0.084511776 -0.008821557 0.0055876
4:T1-2:T1  0.130000000  0.092154891  0.167845109 0.0000000
1:T2-2:T1  0.090000000  0.052154891  0.127845109 0.0000000
2:T2-2:T1  0.146666667  0.108821557  0.184511776 0.0000000
3:T2-2:T1  0.043333333  0.005488224  0.081178443 0.0131979
4:T2-2:T1  0.223333333  0.185488224  0.261178443 0.0000000
1:T3-2:T1  0.140000000  0.102154891  0.177845109 0.0000000
2:T3-2:T1  0.156666667  0.118821557  0.194511776 0.0000000
3:T3-2:T1  0.083333333  0.045488224  0.121178443 0.0000003
4:T3-2:T1  0.080000000  0.042154891  0.117845109 0.0000007
1:T4-2:T1 -0.026666667 -0.064511776  0.011178443 0.4243390
2:T4-2:T1  0.020000000 -0.017845109  0.057845109 0.8289662
3:T4-2:T1 -0.013333333 -0.051178443  0.024511776 0.9926678
4:T4-2:T1  0.120000000  0.082154891  0.157845109 0.0000000
4:T1-3:T1  0.176666667  0.138821557  0.214511776 0.0000000
1:T2-3:T1  0.136666667  0.098821557  0.174511776 0.0000000
2:T2-3:T1  0.193333333  0.155488224  0.231178443 0.0000000
3:T2-3:T1  0.090000000  0.052154891  0.127845109 0.0000000
4:T2-3:T1  0.270000000  0.232154891  0.307845109 0.0000000
1:T3-3:T1  0.186666667  0.148821557  0.224511776 0.0000000
2:T3-3:T1  0.203333333  0.165488224  0.241178443 0.0000000
3:T3-3:T1  0.130000000  0.092154891  0.167845109 0.0000000
4:T3-3:T1  0.126666667  0.088821557  0.164511776 0.0000000
1:T4-3:T1  0.020000000 -0.017845109  0.057845109 0.8289662
2:T4-3:T1  0.066666667  0.028821557  0.104511776 0.0000239
3:T4-3:T1  0.033333333 -0.004511776  0.071178443 0.1332726
4:T4-3:T1  0.166666667  0.128821557  0.204511776 0.0000000
1:T2-4:T1 -0.040000000 -0.077845109 -0.002154891 0.0300852
2:T2-4:T1  0.016666667 -0.021178443  0.054511776 0.9494264
3:T2-4:T1 -0.086666667 -0.124511776 -0.048821557 0.0000001
4:T2-4:T1  0.093333333  0.055488224  0.131178443 0.0000000
1:T3-4:T1  0.010000000 -0.027845109  0.047845109 0.9996615
2:T3-4:T1  0.026666667 -0.011178443  0.064511776 0.4243390
3:T3-4:T1 -0.046666667 -0.084511776 -0.008821557 0.0055876
4:T3-4:T1 -0.050000000 -0.087845109 -0.012154891 0.0023062
1:T4-4:T1 -0.156666667 -0.194511776 -0.118821557 0.0000000
2:T4-4:T1 -0.110000000 -0.147845109 -0.072154891 0.0000000
3:T4-4:T1 -0.143333333 -0.181178443 -0.105488224 0.0000000
4:T4-4:T1 -0.010000000 -0.047845109  0.027845109 0.9996615
2:T2-1:T2  0.056666667  0.018821557  0.094511776 0.0003755
3:T2-1:T2 -0.046666667 -0.084511776 -0.008821557 0.0055876
4:T2-1:T2  0.133333333  0.095488224  0.171178443 0.0000000
1:T3-1:T2  0.050000000  0.012154891  0.087845109 0.0023062
2:T3-1:T2  0.066666667  0.028821557  0.104511776 0.0000239
3:T3-1:T2 -0.006666667 -0.044511776  0.031178443 0.9999979
4:T3-1:T2 -0.010000000 -0.047845109  0.027845109 0.9996615
1:T4-1:T2 -0.116666667 -0.154511776 -0.078821557 0.0000000
2:T4-1:T2 -0.070000000 -0.107845109 -0.032154891 0.0000096
3:T4-1:T2 -0.103333333 -0.141178443 -0.065488224 0.0000000
4:T4-1:T2  0.030000000 -0.007845109  0.067845109 0.2503711
3:T2-2:T2 -0.103333333 -0.141178443 -0.065488224 0.0000000
4:T2-2:T2  0.076666667  0.038821557  0.114511776 0.0000016
1:T3-2:T2 -0.006666667 -0.044511776  0.031178443 0.9999979
2:T3-2:T2  0.010000000 -0.027845109  0.047845109 0.9996615
3:T3-2:T2 -0.063333333 -0.101178443 -0.025488224 0.0000598
4:T3-2:T2 -0.066666667 -0.104511776 -0.028821557 0.0000239
1:T4-2:T2 -0.173333333 -0.211178443 -0.135488224 0.0000000
2:T4-2:T2 -0.126666667 -0.164511776 -0.088821557 0.0000000
3:T4-2:T2 -0.160000000 -0.197845109 -0.122154891 0.0000000
4:T4-2:T2 -0.026666667 -0.064511776  0.011178443 0.4243390
4:T2-3:T2  0.180000000  0.142154891  0.217845109 0.0000000
1:T3-3:T2  0.096666667  0.058821557  0.134511776 0.0000000
2:T3-3:T2  0.113333333  0.075488224  0.151178443 0.0000000
3:T3-3:T2  0.040000000  0.002154891  0.077845109 0.0300852
4:T3-3:T2  0.036666667 -0.001178443  0.074511776 0.0653618
1:T4-3:T2 -0.070000000 -0.107845109 -0.032154891 0.0000096
2:T4-3:T2 -0.023333333 -0.061178443  0.014511776 0.6353449
3:T4-3:T2 -0.056666667 -0.094511776 -0.018821557 0.0003755
4:T4-3:T2  0.076666667  0.038821557  0.114511776 0.0000016
1:T3-4:T2 -0.083333333 -0.121178443 -0.045488224 0.0000003
2:T3-4:T2 -0.066666667 -0.104511776 -0.028821557 0.0000239
3:T3-4:T2 -0.140000000 -0.177845109 -0.102154891 0.0000000
4:T3-4:T2 -0.143333333 -0.181178443 -0.105488224 0.0000000
1:T4-4:T2 -0.250000000 -0.287845109 -0.212154891 0.0000000
2:T4-4:T2 -0.203333333 -0.241178443 -0.165488224 0.0000000
3:T4-4:T2 -0.236666667 -0.274511776 -0.198821557 0.0000000
4:T4-4:T2 -0.103333333 -0.141178443 -0.065488224 0.0000000
2:T3-1:T3  0.016666667 -0.021178443  0.054511776 0.9494264
3:T3-1:T3 -0.056666667 -0.094511776 -0.018821557 0.0003755
4:T3-1:T3 -0.060000000 -0.097845109 -0.022154891 0.0001499
1:T4-1:T3 -0.166666667 -0.204511776 -0.128821557 0.0000000
2:T4-1:T3 -0.120000000 -0.157845109 -0.082154891 0.0000000
3:T4-1:T3 -0.153333333 -0.191178443 -0.115488224 0.0000000
4:T4-1:T3 -0.020000000 -0.057845109  0.017845109 0.8289662
3:T3-2:T3 -0.073333333 -0.111178443 -0.035488224 0.0000039
4:T3-2:T3 -0.076666667 -0.114511776 -0.038821557 0.0000016
1:T4-2:T3 -0.183333333 -0.221178443 -0.145488224 0.0000000
2:T4-2:T3 -0.136666667 -0.174511776 -0.098821557 0.0000000
3:T4-2:T3 -0.170000000 -0.207845109 -0.132154891 0.0000000
4:T4-2:T3 -0.036666667 -0.074511776  0.001178443 0.0653618
4:T3-3:T3 -0.003333333 -0.041178443  0.034511776 1.0000000
1:T4-3:T3 -0.110000000 -0.147845109 -0.072154891 0.0000000
2:T4-3:T3 -0.063333333 -0.101178443 -0.025488224 0.0000598
3:T4-3:T3 -0.096666667 -0.134511776 -0.058821557 0.0000000
4:T4-3:T3  0.036666667 -0.001178443  0.074511776 0.0653618
1:T4-4:T3 -0.106666667 -0.144511776 -0.068821557 0.0000000
2:T4-4:T3 -0.060000000 -0.097845109 -0.022154891 0.0001499
3:T4-4:T3 -0.093333333 -0.131178443 -0.055488224 0.0000000
4:T4-4:T3  0.040000000  0.002154891  0.077845109 0.0300852
2:T4-1:T4  0.046666667  0.008821557  0.084511776 0.0055876
3:T4-1:T4  0.013333333 -0.024511776  0.051178443 0.9926678
4:T4-1:T4  0.146666667  0.108821557  0.184511776 0.0000000
3:T4-2:T4 -0.033333333 -0.071178443  0.004511776 0.1332726
4:T4-2:T4  0.100000000  0.062154891  0.137845109 0.0000000
4:T4-3:T4  0.133333333  0.095488224  0.171178443 0.0000000


Letras do Tukey:
$periodo
  4   2   1   3 
"a" "b" "b" "c" 

$tratamento
 T2  T3  T1  T4 
"a" "a" "b" "b" 

$`periodo:tratamento`
 4:T2  2:T3  2:T2  1:T3  4:T1  4:T4  1:T2  3:T3  4:T3  1:T1  3:T2  2:T4  2:T1  3:T4  1:T4  3:T1 
  "a"   "b"   "b"   "b"   "b"  "bc"  "cd"  "cd"  "de"  "de"  "ef"  "fg"  "gh" "ghi"  "hi"   "i" 



########################### Variável: dmo ##########################
ANOVA:
                   Df Sum Sq Mean Sq F value Pr(>F)
periodo             3   3430    1143   0.291  0.831
tratamento          3  16169    5390   1.373  0.287
periodo:tratamento  9   6207     690   0.176  0.994
Residuals          16  62809    3926               
48 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean   SE df lower.CL upper.CL
 1       T1            599 44.3 16      506      693
 2       T1            630 44.3 16      536      724
 3       T1            627 44.3 16      533      720
 4       T1            579 44.3 16      485      673
 1       T2            591 44.3 16      497      685
 2       T2            571 44.3 16      477      665
 3       T2            582 44.3 16      488      676
 4       T2            581 44.3 16      487      675
 1       T3            552 44.3 16      458      646
 2       T3            578 44.3 16      484      672
 3       T3            564 44.3 16      470      658
 4       T3            577 44.3 16      483      670
 1       T4            549 44.3 16      455      642
 2       T4            562 44.3 16      468      656
 3       T4            570 44.3 16      476      664
 4       T4            507 44.3 16      413      601

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
           diff        lwr       upr     p adj
2-1  12.7127750  -76.91466 102.34021 0.9766460
3-1  13.1073875  -76.52004 102.73482 0.9745182
4-1 -11.9710875 -101.59852  77.65634 0.9803409
3-2   0.3946125  -89.23282  90.02204 0.9999992
4-2 -24.6838625 -114.31129  64.94357 0.8588430
4-3 -25.0784750 -114.70591  64.54896 0.8531598

$tratamento
           diff       lwr      upr     p adj
T2-T1 -27.35585 -116.9833 62.27158 0.8184909
T3-T1 -41.22081 -130.8482 48.40662 0.5666118
T4-T1 -61.86686 -151.4943 27.76057 0.2379893
T3-T2 -13.86496 -103.4924 75.76247 0.9701102
T4-T2 -34.51101 -124.1384 55.11642 0.6936451
T4-T3 -20.64605 -110.2735 68.98138 0.9108132

$`periodo:tratamento`
                diff       lwr      upr     p adj
2:T1-1:T1   30.97120 -219.8716 281.8140 0.9999999
3:T1-1:T1   27.11235 -223.7305 277.9552 1.0000000
4:T1-1:T1  -20.63355 -271.4764 230.2093 1.0000000
1:T2-1:T1   -8.08520 -258.9280 242.7576 1.0000000
2:T2-1:T1  -28.18835 -279.0312 222.6545 1.0000000
3:T2-1:T1  -17.03770 -267.8805 233.8051 1.0000000
4:T2-1:T1  -18.66215 -269.5050 232.1807 1.0000000
1:T3-1:T1  -47.83165 -298.6745 203.0112 0.9999662
2:T3-1:T1  -21.28085 -272.1237 229.5620 1.0000000
3:T3-1:T1  -35.46415 -286.3070 215.3787 0.9999993
4:T3-1:T1  -22.85660 -273.6994 227.9862 1.0000000
1:T4-1:T1  -50.92575 -301.7686 199.9171 0.9999276
2:T4-1:T1  -37.49350 -288.3363 213.3493 0.9999985
3:T4-1:T1  -29.02355 -279.8664 221.8193 1.0000000
4:T4-1:T1  -92.57465 -343.4175 158.2682 0.9701347
3:T1-2:T1   -3.85885 -254.7017 246.9840 1.0000000
4:T1-2:T1  -51.60475 -302.4476 199.2381 0.9999151
1:T2-2:T1  -39.05640 -289.8992 211.7864 0.9999974
2:T2-2:T1  -59.15955 -310.0024 191.6833 0.9995883
3:T2-2:T1  -48.00890 -298.8517 202.8339 0.9999646
4:T2-2:T1  -49.63335 -300.4762 201.2095 0.9999469
1:T3-2:T1  -78.80285 -329.6457 172.0400 0.9923439
2:T3-2:T1  -52.25205 -303.0949 198.5908 0.9999016
3:T3-2:T1  -66.43535 -317.2782 184.4075 0.9985598
4:T3-2:T1  -53.82780 -304.6706 197.0150 0.9998603
1:T4-2:T1  -81.89695 -332.7398 168.9459 0.9891845
2:T4-2:T1  -68.46470 -319.3075 182.3781 0.9980362
3:T4-2:T1  -59.99475 -310.8376 190.8481 0.9995189
4:T4-2:T1 -123.54585 -374.3887 127.2970 0.8098341
4:T1-3:T1  -47.74590 -298.5887 203.0969 0.9999669
1:T2-3:T1  -35.19755 -286.0404 215.6453 0.9999994
2:T2-3:T1  -55.30070 -306.1435 195.5421 0.9998087
3:T2-3:T1  -44.15005 -294.9929 206.6928 0.9999876
4:T2-3:T1  -45.77450 -296.6173 205.0683 0.9999804
1:T3-3:T1  -74.94400 -325.7868 175.8988 0.9952071
2:T3-3:T1  -48.39320 -299.2360 202.4496 0.9999610
3:T3-3:T1  -62.57650 -313.4193 188.2663 0.9992369
4:T3-3:T1  -49.96895 -300.8118 200.8739 0.9999424
1:T4-3:T1  -78.03810 -328.8809 172.8047 0.9929987
2:T4-3:T1  -64.60585 -315.4487 186.2370 0.9989260
3:T4-3:T1  -56.13590 -306.9787 194.7069 0.9997727
4:T4-3:T1 -119.68700 -370.5298 131.1558 0.8387851
1:T2-4:T1   12.54835 -238.2945 263.3912 1.0000000
2:T2-4:T1   -7.55480 -258.3976 243.2880 1.0000000
3:T2-4:T1    3.59585 -247.2470 254.4387 1.0000000
4:T2-4:T1    1.97140 -248.8714 252.8142 1.0000000
1:T3-4:T1  -27.19810 -278.0409 223.6447 1.0000000
2:T3-4:T1   -0.64730 -251.4901 250.1955 1.0000000
3:T3-4:T1  -14.83060 -265.6734 236.0122 1.0000000
4:T3-4:T1   -2.22305 -253.0659 248.6198 1.0000000
1:T4-4:T1  -30.29220 -281.1350 220.5506 0.9999999
2:T4-4:T1  -16.85995 -267.7028 233.9829 1.0000000
3:T4-4:T1   -8.39000 -259.2328 242.4528 1.0000000
4:T4-4:T1  -71.94110 -322.7839 178.9017 0.9967742
2:T2-1:T2  -20.10315 -270.9460 230.7397 1.0000000
3:T2-1:T2   -8.95250 -259.7953 241.8903 1.0000000
4:T2-1:T2  -10.57695 -261.4198 240.2659 1.0000000
1:T3-1:T2  -39.74645 -290.5893 211.0964 0.9999968
2:T3-1:T2  -13.19565 -264.0385 237.6472 1.0000000
3:T3-1:T2  -27.37895 -278.2218 223.4639 1.0000000
4:T3-1:T2  -14.77140 -265.6142 236.0714 1.0000000
1:T4-1:T2  -42.84055 -293.6834 208.0023 0.9999915
2:T4-1:T2  -29.40830 -280.2511 221.4345 0.9999999
3:T4-1:T2  -20.93835 -271.7812 229.9045 1.0000000
4:T4-1:T2  -84.48945 -335.3323 166.3534 0.9858243
3:T2-2:T2   11.15065 -239.6922 261.9935 1.0000000
4:T2-2:T2    9.52620 -241.3166 260.3690 1.0000000
1:T3-2:T2  -19.64330 -270.4861 231.1995 1.0000000
2:T3-2:T2    6.90750 -243.9353 257.7503 1.0000000
3:T3-2:T2   -7.27580 -258.1186 243.5670 1.0000000
4:T3-2:T2    5.33175 -245.5111 256.1746 1.0000000
1:T4-2:T2  -22.73740 -273.5802 228.1054 1.0000000
2:T4-2:T2   -9.30515 -260.1480 241.5377 1.0000000
3:T4-2:T2   -0.83520 -251.6780 250.0076 1.0000000
4:T4-2:T2  -64.38630 -315.2291 186.4565 0.9989641
4:T2-3:T2   -1.62445 -252.4673 249.2184 1.0000000
1:T3-3:T2  -30.79395 -281.6368 220.0489 0.9999999
2:T3-3:T2   -4.24315 -255.0860 246.5997 1.0000000
3:T3-3:T2  -18.42645 -269.2693 232.4164 1.0000000
4:T3-3:T2   -5.81890 -256.6617 245.0239 1.0000000
1:T4-3:T2  -33.88805 -284.7309 216.9548 0.9999996
2:T4-3:T2  -20.45580 -271.2986 230.3870 1.0000000
3:T4-3:T2  -11.98585 -262.8287 238.8570 1.0000000
4:T4-3:T2  -75.53695 -326.3798 175.3059 0.9948346
1:T3-4:T2  -29.16950 -280.0123 221.6733 1.0000000
2:T3-4:T2   -2.61870 -253.4615 248.2241 1.0000000
3:T3-4:T2  -16.80200 -267.6448 234.0408 1.0000000
4:T3-4:T2   -4.19445 -255.0373 246.6484 1.0000000
1:T4-4:T2  -32.26360 -283.1064 218.5792 0.9999998
2:T4-4:T2  -18.83135 -269.6742 232.0115 1.0000000
3:T4-4:T2  -10.36140 -261.2042 240.4814 1.0000000
4:T4-4:T2  -73.91250 -324.7553 176.9303 0.9958030
2:T3-1:T3   26.55080 -224.2920 277.3936 1.0000000
3:T3-1:T3   12.36750 -238.4753 263.2103 1.0000000
4:T3-1:T3   24.97505 -225.8678 275.8179 1.0000000
1:T4-1:T3   -3.09410 -253.9369 247.7487 1.0000000
2:T4-1:T3   10.33815 -240.5047 261.1810 1.0000000
3:T4-1:T3   18.80810 -232.0347 269.6509 1.0000000
4:T4-1:T3  -44.74300 -295.5858 206.0998 0.9999853
3:T3-2:T3  -14.18330 -265.0261 236.6595 1.0000000
4:T3-2:T3   -1.57575 -252.4186 249.2671 1.0000000
1:T4-2:T3  -29.64490 -280.4877 221.1979 0.9999999
2:T4-2:T3  -16.21265 -267.0555 234.6302 1.0000000
3:T4-2:T3   -7.74270 -258.5855 243.1001 1.0000000
4:T4-2:T3  -71.29380 -322.1366 179.5490 0.9970495
4:T3-3:T3   12.60755 -238.2353 263.4504 1.0000000
1:T4-3:T3  -15.46160 -266.3044 235.3812 1.0000000
2:T4-3:T3   -2.02935 -252.8722 248.8135 1.0000000
3:T4-3:T3    6.44060 -244.4022 257.2834 1.0000000
4:T4-3:T3  -57.11050 -307.9533 193.7323 0.9997233
1:T4-4:T3  -28.06915 -278.9120 222.7737 1.0000000
2:T4-4:T3  -14.63690 -265.4797 236.2059 1.0000000
3:T4-4:T3   -6.16695 -257.0098 244.6759 1.0000000
4:T4-4:T3  -69.71805 -320.5609 181.1248 0.9976398
2:T4-1:T4   13.43225 -237.4106 264.2751 1.0000000
3:T4-1:T4   21.90220 -228.9406 272.7450 1.0000000
4:T4-1:T4  -41.64890 -292.4917 209.1939 0.9999941
3:T4-2:T4    8.46995 -242.3729 259.3128 1.0000000
4:T4-2:T4  -55.08115 -305.9240 195.7617 0.9998173
4:T4-3:T4  -63.55110 -314.3939 187.2917 0.9990988


Letras do Tukey:
$periodo
$periodo$Letters
  3   2   1   4 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
3 TRUE
2 TRUE
1 TRUE
4 TRUE


$tratamento
$tratamento$Letters
 T1  T2  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T1 TRUE
T2 TRUE
T3 TRUE
T4 TRUE


$`periodo:tratamento`
$`periodo:tratamento`$Letters
2:T1 3:T1 1:T1 1:T2 3:T2 4:T2 4:T1 2:T3 4:T3 2:T2 3:T4 3:T3 2:T4 1:T3 1:T4 4:T4 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tratamento`$LetterMatrix
        a
2:T1 TRUE
3:T1 TRUE
1:T1 TRUE
1:T2 TRUE
3:T2 TRUE
4:T2 TRUE
4:T1 TRUE
2:T3 TRUE
4:T3 TRUE
2:T2 TRUE
3:T4 TRUE
3:T3 TRUE
2:T4 TRUE
1:T3 TRUE
1:T4 TRUE
4:T4 TRUE




########################### Variável: n_nh3 ##########################
ANOVA:
                   Df Sum Sq Mean Sq F value Pr(>F)  
periodo             3 0.2134 0.07114   3.087  0.041 *
tratamento          3 0.0022 0.00072   0.031  0.992  
periodo:tratamento  9 0.0015 0.00017   0.007  1.000  
Residuals          32 0.7373 0.02304                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 periodo tratamento emmean     SE df lower.CL upper.CL
 1       T1         0.2415 0.0876 32   0.0630    0.420
 2       T1         0.0869 0.0876 32  -0.0916    0.265
 3       T1         0.0847 0.0876 32  -0.0938    0.263
 4       T1         0.1074 0.0876 32  -0.0711    0.286
 1       T2         0.2428 0.0876 32   0.0643    0.421
 2       T2         0.0975 0.0876 32  -0.0810    0.276
 3       T2         0.0949 0.0876 32  -0.0836    0.273
 4       T2         0.1156 0.0876 32  -0.0629    0.294
 1       T3         0.2608 0.0876 32   0.0823    0.439
 2       T3         0.0830 0.0876 32  -0.0955    0.262
 3       T3         0.0885 0.0876 32  -0.0900    0.267
 4       T3         0.1147 0.0876 32  -0.0638    0.293
 1       T4         0.2394 0.0876 32   0.0609    0.418
 2       T4         0.0801 0.0876 32  -0.0984    0.259
 3       T4         0.0798 0.0876 32  -0.0988    0.258
 4       T4         0.0845 0.0876 32  -0.0940    0.263

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$periodo
             diff        lwr         upr     p adj
2-1 -1.592404e-01 -0.3271360 0.008655137 0.0680796
3-1 -1.591483e-01 -0.3270439 0.008747220 0.0682991
4-1 -1.405546e-01 -0.3084501 0.027340970 0.1270168
3-2  9.208333e-05 -0.1678035 0.167987637 1.0000000
4-2  1.868583e-02 -0.1492097 0.186581387 0.9902907
4-3  1.859375e-02 -0.1493018 0.186489304 0.9904301

$tratamento
               diff        lwr       upr     p adj
T2-T1  0.0075937500 -0.1603018 0.1754893 0.9993279
T3-T1  0.0066620833 -0.1612335 0.1745576 0.9995455
T4-T1 -0.0091691667 -0.1770647 0.1587264 0.9988201
T3-T2 -0.0009316667 -0.1688272 0.1669639 0.9999988
T4-T2 -0.0167629167 -0.1846585 0.1511326 0.9929396
T4-T3 -0.0158312500 -0.1837268 0.1520643 0.9940334

$`periodo:tratamento`
                  diff        lwr       upr     p adj
2:T1-1:T1 -0.154600000 -0.6141702 0.3049702 0.9953426
3:T1-1:T1 -0.156781667 -0.6163519 0.3027886 0.9946459
4:T1-1:T1 -0.134058333 -0.5936286 0.3255119 0.9989616
1:T2-1:T1  0.001333333 -0.4582369 0.4609036 1.0000000
2:T2-1:T1 -0.143975000 -0.6035452 0.3155952 0.9977586
3:T2-1:T1 -0.146581667 -0.6061519 0.3129886 0.9972954
4:T2-1:T1 -0.125841667 -0.5854119 0.3337286 0.9994895
1:T3-1:T1  0.019338333 -0.4402319 0.4789086 1.0000000
2:T3-1:T1 -0.158425000 -0.6179952 0.3011452 0.9940667
3:T3-1:T1 -0.152928333 -0.6124986 0.3066419 0.9958244
4:T3-1:T1 -0.126776667 -0.5863469 0.3327936 0.9994445
1:T4-1:T1 -0.002081667 -0.4616519 0.4574886 1.0000000
2:T4-1:T1 -0.161371667 -0.6209419 0.2981986 0.9929008
3:T4-1:T1 -0.161711667 -0.6212819 0.2978586 0.9927551
4:T4-1:T1 -0.156951667 -0.6165219 0.3026186 0.9945883
3:T1-2:T1 -0.002181667 -0.4617519 0.4573886 1.0000000
4:T1-2:T1  0.020541667 -0.4390286 0.4801119 1.0000000
1:T2-2:T1  0.155933333 -0.3036369 0.6155036 0.9949263
2:T2-2:T1  0.010625000 -0.4489452 0.4701952 1.0000000
3:T2-2:T1  0.008018333 -0.4515519 0.4675886 1.0000000
4:T2-2:T1  0.028758333 -0.4308119 0.4883286 1.0000000
1:T3-2:T1  0.173938333 -0.2856319 0.6335086 0.9856898
2:T3-2:T1 -0.003825000 -0.4633952 0.4557452 1.0000000
3:T3-2:T1  0.001671667 -0.4578986 0.4612419 1.0000000
4:T3-2:T1  0.027823333 -0.4317469 0.4873936 1.0000000
1:T4-2:T1  0.152518333 -0.3070519 0.6120886 0.9959360
2:T4-2:T1 -0.006771667 -0.4663419 0.4527986 1.0000000
3:T4-2:T1 -0.007111667 -0.4666819 0.4524586 1.0000000
4:T4-2:T1 -0.002351667 -0.4619219 0.4572186 1.0000000
4:T1-3:T1  0.022723333 -0.4368469 0.4822936 1.0000000
1:T2-3:T1  0.158115000 -0.3014552 0.6176852 0.9941797
2:T2-3:T1  0.012806667 -0.4467636 0.4723769 1.0000000
3:T2-3:T1  0.010200000 -0.4493702 0.4697702 1.0000000
4:T2-3:T1  0.030940000 -0.4286302 0.4905102 1.0000000
1:T3-3:T1  0.176120000 -0.2834502 0.6356902 0.9839965
2:T3-3:T1 -0.001643333 -0.4612136 0.4579269 1.0000000
3:T3-3:T1  0.003853333 -0.4557169 0.4634236 1.0000000
4:T3-3:T1  0.030005000 -0.4295652 0.4895752 1.0000000
1:T4-3:T1  0.154700000 -0.3048702 0.6142702 0.9953124
2:T4-3:T1 -0.004590000 -0.4641602 0.4549802 1.0000000
3:T4-3:T1 -0.004930000 -0.4645002 0.4546402 1.0000000
4:T4-3:T1 -0.000170000 -0.4597402 0.4594002 1.0000000
1:T2-4:T1  0.135391667 -0.3241786 0.5949619 0.9988423
2:T2-4:T1 -0.009916667 -0.4694869 0.4496536 1.0000000
3:T2-4:T1 -0.012523333 -0.4720936 0.4470469 1.0000000
4:T2-4:T1  0.008216667 -0.4513536 0.4677869 1.0000000
1:T3-4:T1  0.153396667 -0.3061736 0.6129669 0.9956937
2:T3-4:T1 -0.024366667 -0.4839369 0.4352036 1.0000000
3:T3-4:T1 -0.018870000 -0.4784402 0.4407002 1.0000000
4:T3-4:T1  0.007281667 -0.4522886 0.4668519 1.0000000
1:T4-4:T1  0.131976667 -0.3275936 0.5915469 0.9991269
2:T4-4:T1 -0.027313333 -0.4868836 0.4322569 1.0000000
3:T4-4:T1 -0.027653333 -0.4872236 0.4319169 1.0000000
4:T4-4:T1 -0.022893333 -0.4824636 0.4366769 1.0000000
2:T2-1:T2 -0.145308333 -0.6048786 0.3142619 0.9975308
3:T2-1:T2 -0.147915000 -0.6074852 0.3116552 0.9970291
4:T2-1:T2 -0.127175000 -0.5867452 0.3323952 0.9994244
1:T3-1:T2  0.018005000 -0.4415652 0.4775752 1.0000000
2:T3-1:T2 -0.159758333 -0.6193286 0.2998119 0.9935601
3:T3-1:T2 -0.154261667 -0.6138319 0.3053086 0.9954436
4:T3-1:T2 -0.128110000 -0.5876802 0.3314602 0.9993745
1:T4-1:T2 -0.003415000 -0.4629852 0.4561552 1.0000000
2:T4-1:T2 -0.162705000 -0.6222752 0.2968652 0.9923155
3:T4-1:T2 -0.163045000 -0.6226152 0.2965252 0.9921602
4:T4-1:T2 -0.158285000 -0.6178552 0.3012852 0.9941180
3:T2-2:T2 -0.002606667 -0.4621769 0.4569636 1.0000000
4:T2-2:T2  0.018133333 -0.4414369 0.4777036 1.0000000
1:T3-2:T2  0.163313333 -0.2962569 0.6228836 0.9920358
2:T3-2:T2 -0.014450000 -0.4740202 0.4451202 1.0000000
3:T3-2:T2 -0.008953333 -0.4685236 0.4506169 1.0000000
4:T3-2:T2  0.017198333 -0.4423719 0.4767686 1.0000000
1:T4-2:T2  0.141893333 -0.3176769 0.6014636 0.9980788
2:T4-2:T2 -0.017396667 -0.4769669 0.4421736 1.0000000
3:T4-2:T2 -0.017736667 -0.4773069 0.4418336 1.0000000
4:T4-2:T2 -0.012976667 -0.4725469 0.4465936 1.0000000
4:T2-3:T2  0.020740000 -0.4388302 0.4803102 1.0000000
1:T3-3:T2  0.165920000 -0.2936502 0.6254902 0.9907434
2:T3-3:T2 -0.011843333 -0.4714136 0.4477269 1.0000000
3:T3-3:T2 -0.006346667 -0.4659169 0.4532236 1.0000000
4:T3-3:T2  0.019805000 -0.4397652 0.4793752 1.0000000
1:T4-3:T2  0.144500000 -0.3150702 0.6040702 0.9976711
2:T4-3:T2 -0.014790000 -0.4743602 0.4447802 1.0000000
3:T4-3:T2 -0.015130000 -0.4747002 0.4444402 1.0000000
4:T4-3:T2 -0.010370000 -0.4699402 0.4492002 1.0000000
1:T3-4:T2  0.145180000 -0.3143902 0.6047502 0.9975535
2:T3-4:T2 -0.032583333 -0.4921536 0.4269869 1.0000000
3:T3-4:T2 -0.027086667 -0.4866569 0.4324836 1.0000000
4:T3-4:T2 -0.000935000 -0.4605052 0.4586352 1.0000000
1:T4-4:T2  0.123760000 -0.3358102 0.5833302 0.9995784
2:T4-4:T2 -0.035530000 -0.4951002 0.4240402 1.0000000
3:T4-4:T2 -0.035870000 -0.4954402 0.4237002 1.0000000
4:T4-4:T2 -0.031110000 -0.4906802 0.4284602 1.0000000
2:T3-1:T3 -0.177763333 -0.6373336 0.2818069 0.9826215
3:T3-1:T3 -0.172266667 -0.6318369 0.2873036 0.9868897
4:T3-1:T3 -0.146115000 -0.6056852 0.3134552 0.9973837
1:T4-1:T3 -0.021420000 -0.4809902 0.4381502 1.0000000
2:T4-1:T3 -0.180710000 -0.6402802 0.2788602 0.9799294
3:T4-1:T3 -0.181050000 -0.6406202 0.2785202 0.9795993
4:T4-1:T3 -0.176290000 -0.6358602 0.2832802 0.9838583
3:T3-2:T3  0.005496667 -0.4540736 0.4650669 1.0000000
4:T3-2:T3  0.031648333 -0.4279219 0.4912186 1.0000000
1:T4-2:T3  0.156343333 -0.3032269 0.6159136 0.9947923
2:T4-2:T3 -0.002946667 -0.4625169 0.4566236 1.0000000
3:T4-2:T3 -0.003286667 -0.4628569 0.4562836 1.0000000
4:T4-2:T3  0.001473333 -0.4580969 0.4610436 1.0000000
4:T3-3:T3  0.026151667 -0.4334186 0.4857219 1.0000000
1:T4-3:T3  0.150846667 -0.3087236 0.6104169 0.9963661
2:T4-3:T3 -0.008443333 -0.4680136 0.4511269 1.0000000
3:T4-3:T3 -0.008783333 -0.4683536 0.4507869 1.0000000
4:T4-3:T3 -0.004023333 -0.4635936 0.4555469 1.0000000
1:T4-4:T3  0.124695000 -0.3348752 0.5842652 0.9995403
2:T4-4:T3 -0.034595000 -0.4941652 0.4249752 1.0000000
3:T4-4:T3 -0.034935000 -0.4945052 0.4246352 1.0000000
4:T4-4:T3 -0.030175000 -0.4897452 0.4293952 1.0000000
2:T4-1:T4 -0.159290000 -0.6188602 0.3002802 0.9937419
3:T4-1:T4 -0.159630000 -0.6192002 0.2999402 0.9936104
4:T4-1:T4 -0.154870000 -0.6144402 0.3047002 0.9952606
3:T4-2:T4 -0.000340000 -0.4599102 0.4592302 1.0000000
4:T4-2:T4  0.004420000 -0.4551502 0.4639902 1.0000000
4:T4-3:T4  0.004760000 -0.4548102 0.4643302 1.0000000


Letras do Tukey:
$periodo
$periodo$Letters
  1   4   3   2 
"a" "a" "a" "a" 

$periodo$LetterMatrix
     a
1 TRUE
4 TRUE
3 TRUE
2 TRUE


$tratamento
$tratamento$Letters
 T2  T3  T1  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T1 TRUE
T4 TRUE


$`periodo:tratamento`
$`periodo:tratamento`$Letters
1:T3 1:T2 1:T1 1:T4 4:T2 4:T3 4:T1 2:T2 3:T2 3:T3 2:T1 3:T1 4:T4 2:T3 2:T4 3:T4 
 "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a"  "a" 

$`periodo:tratamento`$LetterMatrix
        a
1:T3 TRUE
1:T2 TRUE
1:T1 TRUE
1:T4 TRUE
4:T2 TRUE
4:T3 TRUE
4:T1 TRUE
2:T2 TRUE
3:T2 TRUE
3:T3 TRUE
2:T1 TRUE
3:T1 TRUE
4:T4 TRUE
2:T3 TRUE
2:T4 TRUE
3:T4 TRUE

12 Tempo x Tratamento

# Normalidade e homocedasticidade
testes = lapply(variables, function(var) {
  modelo <- aov(as.formula(paste(var, "~ tempo * tratamento")), data = database)
  res <- residuals(modelo)
  shapiro_p <- shapiro.test(res)$p.value
  levene_p <- leveneTest(as.formula(paste(var, "~ tempo * tratamento")), data = database)[1, "Pr(>F)"]
  
  data.frame(Variavel = var,
             p_Shapiro = round(shapiro_p, 4),
             p_Levene = round(levene_p, 4))
})

resultado_testes = do.call(rbind, testes)
print(resultado_testes)

# Anova e tukey

for (var in variables) {
  cat("\n\n########################### Variável:", var, "##########################\n")
  formula <- as.formula(paste(var, "~ tempo * tratamento"))
  mod <- aov(formula, data = database)
  
  cat("ANOVA:\n")
  print(summary(mod))
  
  cat("\nMédias (emmeans):\n")
  medias <- emmeans(mod, ~ tempo * tratamento)
  print(summary(medias))
  
  cat("\nTukey HSD:\n")
  tukey <- TukeyHSD(mod)
  print(tukey)
  
  cat("\nLetras do Tukey:\n")
  letras <- multcompLetters4(mod, tukey)
  print(letras)
}


########################### Variável: efluente ##########################
ANOVA:
                 Df Sum Sq Mean Sq F value  Pr(>F)    
tempo             3 349201  116400   8.111 0.00018 ***
tratamento        3   4359    1453   0.101 0.95892    
tempo:tratamento  9   9756    1084   0.076 0.99985    
Residuals        48 688848   14351                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean   SE df lower.CL upper.CL
 24    T1            297 59.9 48    176.6      417
 48    T1            209 59.9 48     88.3      329
 72    T1            401 59.9 48    280.8      522
 96    T1            310 59.9 48    189.6      430
 24    T2            292 59.9 48    172.1      413
 48    T2            160 59.9 48     39.6      280
 72    T2            400 59.9 48    279.6      520
 96    T2            302 59.9 48    181.8      423
 24    T3            292 59.9 48    172.1      413
 48    T3            189 59.9 48     68.3      309
 72    T3            378 59.9 48    257.1      498
 96    T3            351 59.9 48    230.6      471
 24    T4            312 59.9 48    192.1      433
 48    T4            202 59.9 48     81.6      322
 72    T4            405 59.9 48    284.6      525
 96    T4            326 59.9 48    206.1      447

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff        lwr        upr     p adj
48-24 -108.7500 -221.47019   3.970194 0.0622779
72-24   97.3125  -15.40769 210.032694 0.1128509
96-24   23.8125  -88.90769 136.532694 0.9427304
72-48  206.0625   93.34231 318.782694 0.0000735
96-48  132.5625   19.84231 245.282694 0.0152349
96-72  -73.5000 -186.22019  39.220194 0.3170677

$tratamento
          diff        lwr       upr     p adj
T2-T1 -15.5625 -128.28269  97.15769 0.9828466
T3-T1  -1.8125 -114.53269 110.90769 0.9999714
T4-T1   7.2500 -105.47019 119.97019 0.9981917
T3-T2  13.7500  -98.97019 126.47019 0.9880304
T4-T2  22.8125  -89.90769 135.53269 0.9491390
T4-T3   9.0625 -103.65769 121.78269 0.9964913

$`tempo:tratamento`
                     diff        lwr       upr     p adj
48:T1-24:T1 -8.825000e+01 -394.27506 217.77506 0.9994557
72:T1-24:T1  1.042500e+02 -201.77506 410.27506 0.9965969
96:T1-24:T1  1.300000e+01 -293.02506 319.02506 1.0000000
24:T2-24:T1 -4.500000e+00 -310.52506 301.52506 1.0000000
48:T2-24:T1 -1.370000e+02 -443.02506 169.02506 0.9570449
72:T2-24:T1  1.030000e+02 -203.02506 409.02506 0.9970005
96:T2-24:T1  5.250000e+00 -300.77506 311.27506 1.0000000
24:T3-24:T1 -4.500000e+00 -310.52506 301.52506 1.0000000
48:T3-24:T1 -1.082500e+02 -414.27506 197.77506 0.9949891
72:T3-24:T1  8.050000e+01 -225.52506 386.52506 0.9998160
96:T3-24:T1  5.400000e+01 -252.02506 360.02506 0.9999989
24:T4-24:T1  1.550000e+01 -290.52506 321.52506 1.0000000
48:T4-24:T1 -9.500000e+01 -401.02506 211.02506 0.9987471
72:T4-24:T1  1.080000e+02 -198.02506 414.02506 0.9951052
96:T4-24:T1  2.950000e+01 -276.52506 335.52506 1.0000000
72:T1-48:T1  1.925000e+02 -113.52506 498.52506 0.6441955
96:T1-48:T1  1.012500e+02 -204.77506 407.27506 0.9974975
24:T2-48:T1  8.375000e+01 -222.27506 389.77506 0.9997048
48:T2-48:T1 -4.875000e+01 -354.77506 257.27506 0.9999997
72:T2-48:T1  1.912500e+02 -114.77506 497.27506 0.6541814
96:T2-48:T1  9.350000e+01 -212.52506 399.52506 0.9989505
24:T3-48:T1  8.375000e+01 -222.27506 389.77506 0.9997048
48:T3-48:T1 -2.000000e+01 -326.02506 286.02506 1.0000000
72:T3-48:T1  1.687500e+02 -137.27506 474.77506 0.8175211
96:T3-48:T1  1.422500e+02 -163.77506 448.27506 0.9423177
24:T4-48:T1  1.037500e+02 -202.27506 409.77506 0.9967635
48:T4-48:T1 -6.750000e+00 -312.77506 299.27506 1.0000000
72:T4-48:T1  1.962500e+02 -109.77506 502.27506 0.6139681
96:T4-48:T1  1.177500e+02 -188.27506 423.77506 0.9885817
96:T1-72:T1 -9.125000e+01 -397.27506 214.77506 0.9992022
24:T2-72:T1 -1.087500e+02 -414.77506 197.27506 0.9947500
48:T2-72:T1 -2.412500e+02 -547.27506  64.77506 0.2781969
72:T2-72:T1 -1.250000e+00 -307.27506 304.77506 1.0000000
96:T2-72:T1 -9.900000e+01 -405.02506 207.02506 0.9980331
24:T3-72:T1 -1.087500e+02 -414.77506 197.27506 0.9947500
48:T3-72:T1 -2.125000e+02 -518.52506  93.52506 0.4824475
72:T3-72:T1 -2.375000e+01 -329.77506 282.27506 1.0000000
96:T3-72:T1 -5.025000e+01 -356.27506 255.77506 0.9999996
24:T4-72:T1 -8.875000e+01 -394.77506 217.27506 0.9994191
48:T4-72:T1 -1.992500e+02 -505.27506 106.77506 0.5895946
72:T4-72:T1  3.750000e+00 -302.27506 309.77506 1.0000000
96:T4-72:T1 -7.475000e+01 -380.77506 231.27506 0.9999257
24:T2-96:T1 -1.750000e+01 -323.52506 288.52506 1.0000000
48:T2-96:T1 -1.500000e+02 -456.02506 156.02506 0.9147076
72:T2-96:T1  9.000000e+01 -216.02506 396.02506 0.9993181
96:T2-96:T1 -7.750000e+00 -313.77506 298.27506 1.0000000
24:T3-96:T1 -1.750000e+01 -323.52506 288.52506 1.0000000
48:T3-96:T1 -1.212500e+02 -427.27506 184.77506 0.9850017
72:T3-96:T1  6.750000e+01 -238.52506 373.52506 0.9999795
96:T3-96:T1  4.100000e+01 -265.02506 347.02506 1.0000000
24:T4-96:T1  2.500000e+00 -303.52506 308.52506 1.0000000
48:T4-96:T1 -1.080000e+02 -414.02506 198.02506 0.9951052
72:T4-96:T1  9.500000e+01 -211.02506 401.02506 0.9987471
96:T4-96:T1  1.650000e+01 -289.52506 322.52506 1.0000000
48:T2-24:T2 -1.325000e+02 -438.52506 173.52506 0.9673280
72:T2-24:T2  1.075000e+02 -198.52506 413.52506 0.9953308
96:T2-24:T2  9.750000e+00 -296.27506 315.77506 1.0000000
24:T3-24:T2 -5.684342e-14 -306.02506 306.02506 1.0000000
48:T3-24:T2 -1.037500e+02 -409.77506 202.27506 0.9967635
72:T3-24:T2  8.500000e+01 -221.02506 391.02506 0.9996484
96:T3-24:T2  5.850000e+01 -247.52506 364.52506 0.9999969
24:T4-24:T2  2.000000e+01 -286.02506 326.02506 1.0000000
48:T4-24:T2 -9.050000e+01 -396.52506 215.52506 0.9992736
72:T4-24:T2  1.125000e+02 -193.52506 418.52506 0.9926413
96:T4-24:T2  3.400000e+01 -272.02506 340.02506 1.0000000
72:T2-48:T2  2.400000e+02  -66.02506 546.02506 0.2858159
96:T2-48:T2  1.422500e+02 -163.77506 448.27506 0.9423177
24:T3-48:T2  1.325000e+02 -173.52506 438.52506 0.9673280
48:T3-48:T2  2.875000e+01 -277.27506 334.77506 1.0000000
72:T3-48:T2  2.175000e+02  -88.52506 523.52506 0.4432735
96:T3-48:T2  1.910000e+02 -115.02506 497.02506 0.6561720
24:T4-48:T2  1.525000e+02 -153.52506 458.52506 0.9042346
48:T4-48:T2  4.200000e+01 -264.02506 348.02506 1.0000000
72:T4-48:T2  2.450000e+02  -61.02506 551.02506 0.2561317
96:T4-48:T2  1.665000e+02 -139.52506 472.52506 0.8313786
96:T2-72:T2 -9.775000e+01 -403.77506 208.27506 0.9982861
24:T3-72:T2 -1.075000e+02 -413.52506 198.52506 0.9953308
48:T3-72:T2 -2.112500e+02 -517.27506  94.77506 0.4923958
72:T3-72:T2 -2.250000e+01 -328.52506 283.52506 1.0000000
96:T3-72:T2 -4.900000e+01 -355.02506 257.02506 0.9999997
24:T4-72:T2 -8.750000e+01 -393.52506 218.52506 0.9995069
48:T4-72:T2 -1.980000e+02 -504.02506 108.02506 0.5997636
72:T4-72:T2  5.000000e+00 -301.02506 311.02506 1.0000000
96:T4-72:T2 -7.350000e+01 -379.52506 232.52506 0.9999398
24:T3-96:T2 -9.750000e+00 -315.77506 296.27506 1.0000000
48:T3-96:T2 -1.135000e+02 -419.52506 192.52506 0.9919756
72:T3-96:T2  7.525000e+01 -230.77506 381.27506 0.9999193
96:T3-96:T2  4.875000e+01 -257.27506 354.77506 0.9999997
24:T4-96:T2  1.025000e+01 -295.77506 316.27506 1.0000000
48:T4-96:T2 -1.002500e+02 -406.27506 205.77506 0.9977490
72:T4-96:T2  1.027500e+02 -203.27506 408.77506 0.9970762
96:T4-96:T2  2.425000e+01 -281.77506 330.27506 1.0000000
48:T3-24:T3 -1.037500e+02 -409.77506 202.27506 0.9967635
72:T3-24:T3  8.500000e+01 -221.02506 391.02506 0.9996484
96:T3-24:T3  5.850000e+01 -247.52506 364.52506 0.9999969
24:T4-24:T3  2.000000e+01 -286.02506 326.02506 1.0000000
48:T4-24:T3 -9.050000e+01 -396.52506 215.52506 0.9992736
72:T4-24:T3  1.125000e+02 -193.52506 418.52506 0.9926413
96:T4-24:T3  3.400000e+01 -272.02506 340.02506 1.0000000
72:T3-48:T3  1.887500e+02 -117.27506 494.77506 0.6739752
96:T3-48:T3  1.622500e+02 -143.77506 468.27506 0.8559899
24:T4-48:T3  1.237500e+02 -182.27506 429.77506 0.9819444
48:T4-48:T3  1.325000e+01 -292.77506 319.27506 1.0000000
72:T4-48:T3  2.162500e+02  -89.77506 522.27506 0.4529636
96:T4-48:T3  1.377500e+02 -168.27506 443.77506 0.9551269
96:T3-72:T3 -2.650000e+01 -332.52506 279.52506 1.0000000
24:T4-72:T3 -6.500000e+01 -371.02506 241.02506 0.9999874
48:T4-72:T3 -1.755000e+02 -481.52506 130.52506 0.7727910
72:T4-72:T3  2.750000e+01 -278.52506 333.52506 1.0000000
96:T4-72:T3 -5.100000e+01 -357.02506 255.02506 0.9999995
24:T4-96:T3 -3.850000e+01 -344.52506 267.52506 1.0000000
48:T4-96:T3 -1.490000e+02 -455.02506 157.02506 0.9186800
72:T4-96:T3  5.400000e+01 -252.02506 360.02506 0.9999989
96:T4-96:T3 -2.450000e+01 -330.52506 281.52506 1.0000000
48:T4-24:T4 -1.105000e+02 -416.52506 195.52506 0.9938381
72:T4-24:T4  9.250000e+01 -213.52506 398.52506 0.9990697
96:T4-24:T4  1.400000e+01 -292.02506 320.02506 1.0000000
72:T4-48:T4  2.030000e+02 -103.02506 509.02506 0.5590491
96:T4-48:T4  1.245000e+02 -181.52506 430.52506 0.9809387
96:T4-72:T4 -7.850000e+01 -384.52506 227.52506 0.9998644


Letras do Tukey:
$tempo
  72   96   24   48 
 "a"  "a" "ab"  "b" 

$tratamento
$tratamento$Letters
 T4  T1  T3  T2 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T4 TRUE
T1 TRUE
T3 TRUE
T2 TRUE


$`tempo:tratamento`
$`tempo:tratamento`$Letters
72:T4 72:T1 72:T2 72:T3 96:T3 96:T4 24:T4 96:T1 96:T2 24:T1 24:T2 24:T3 48:T1 48:T4 48:T3 48:T2 
  "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a" 

$`tempo:tratamento`$LetterMatrix
         a
72:T4 TRUE
72:T1 TRUE
72:T2 TRUE
72:T3 TRUE
96:T3 TRUE
96:T4 TRUE
24:T4 TRUE
96:T1 TRUE
96:T2 TRUE
24:T1 TRUE
24:T2 TRUE
24:T3 TRUE
48:T1 TRUE
48:T4 TRUE
48:T3 TRUE
48:T2 TRUE




########################### Variável: gas_total ##########################
ANOVA:
                 Df  Sum Sq Mean Sq F value   Pr(>F)    
tempo             3 3330824 1110275  13.325 1.88e-06 ***
tratamento        3  157390   52463   0.630    0.599    
tempo:tratamento  9 1345330  149481   1.794    0.094 .  
Residuals        48 3999568   83324                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
16 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean  SE df lower.CL upper.CL
 24    T1           1796 144 48     1506     2087
 48    T1           1380 144 48     1089     1670
 72    T1            797 144 48      507     1087
 96    T1           1653 144 48     1363     1943
 24    T2           1474 144 48     1183     1764
 48    T2           1475 144 48     1185     1765
 72    T2           1266 144 48      976     1556
 96    T2           1783 144 48     1493     2073
 24    T3           1632 144 48     1342     1923
 48    T3           1324 144 48     1034     1614
 72    T3           1403 144 48     1113     1693
 96    T3           1755 144 48     1465     2045
 24    T4           1867 144 48     1577     2157
 48    T4           1291 144 48     1001     1581
 72    T4           1089 144 48      799     1379
 96    T4           1476 144 48     1185     1766

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff        lwr        upr     p adj
48-24 -325.0000 -596.61052  -53.38948 0.0131437
72-24 -553.3750 -824.98552 -281.76448 0.0000110
96-24  -25.6875 -297.29802  245.92302 0.9943283
72-48 -228.3750 -499.98552   43.23552 0.1277064
96-48  299.3125   27.70198  570.92302 0.0255581
96-72  527.6875  256.07698  799.29802 0.0000262

$tratamento
          diff       lwr      upr     p adj
T2-T1  92.9375 -178.6730 364.5480 0.7992604
T3-T1 122.0625 -149.5480 393.6730 0.6323047
T4-T1  23.9375 -247.6730 295.5480 0.9953951
T3-T2  29.1250 -242.4855 300.7355 0.9917919
T4-T2 -69.0000 -340.6105 202.6105 0.9056390
T4-T3 -98.1250 -369.7355 173.4855 0.7717616

$`tempo:tratamento`
               diff        lwr       upr     p adj
48:T1-24:T1 -417.00 -1154.3978  320.3978 0.7894936
72:T1-24:T1 -999.25 -1736.6478 -261.8522 0.0011146
96:T1-24:T1 -143.50  -880.8978  593.8978 0.9999960
24:T2-24:T1 -323.00 -1060.3978  414.3978 0.9640232
48:T2-24:T1 -321.25 -1058.6478  416.1478 0.9656038
72:T2-24:T1 -530.25 -1267.6478  207.1478 0.4236949
96:T2-24:T1  -13.50  -750.8978  723.8978 1.0000000
24:T3-24:T1 -164.00  -901.3978  573.3978 0.9999773
48:T3-24:T1 -472.75 -1210.1478  264.6478 0.6144183
72:T3-24:T1 -393.25 -1130.6478  344.1478 0.8506630
96:T3-24:T1  -41.50  -778.8978  695.8978 1.0000000
24:T4-24:T1   70.25  -667.1478  807.6478 1.0000000
48:T4-24:T1 -505.75 -1243.1478  231.6478 0.5032799
72:T4-24:T1 -707.50 -1444.8978   29.8978 0.0724624
96:T4-24:T1 -321.00 -1058.3978  416.3978 0.9658253
72:T1-48:T1 -582.25 -1319.6478  155.1478 0.2758606
96:T1-48:T1  273.50  -463.8978 1010.8978 0.9919726
24:T2-48:T1   94.00  -643.3978  831.3978 1.0000000
48:T2-48:T1   95.75  -641.6478  833.1478 1.0000000
72:T2-48:T1 -113.25  -850.6478  624.1478 0.9999998
96:T2-48:T1  403.50  -333.8978 1140.8978 0.8255636
24:T3-48:T1  253.00  -484.3978  990.3978 0.9963349
48:T3-48:T1  -55.75  -793.1478  681.6478 1.0000000
72:T3-48:T1   23.75  -713.6478  761.1478 1.0000000
96:T3-48:T1  375.50  -361.8978 1112.8978 0.8890527
24:T4-48:T1  487.25  -250.1478 1224.6478 0.5654665
48:T4-48:T1  -88.75  -826.1478  648.6478 1.0000000
72:T4-48:T1 -290.50 -1027.8978  446.8978 0.9857700
96:T4-48:T1   96.00  -641.3978  833.3978 1.0000000
96:T1-72:T1  855.75   118.3522 1593.1478 0.0099367
24:T2-72:T1  676.25   -61.1478 1413.6478 0.1047465
48:T2-72:T1  678.00   -59.3978 1415.3978 0.1026643
72:T2-72:T1  469.00  -268.3978 1206.3978 0.6270029
96:T2-72:T1  985.75   248.3522 1723.1478 0.0013802
24:T3-72:T1  835.25    97.8522 1572.6478 0.0133386
48:T3-72:T1  526.50  -210.8978 1263.8978 0.4355688
72:T3-72:T1  606.00  -131.3978 1343.3978 0.2207667
96:T3-72:T1  957.75   220.3522 1695.1478 0.0021401
24:T4-72:T1 1069.50   332.1022 1806.8978 0.0003594
48:T4-72:T1  493.50  -243.8978 1230.8978 0.5443590
72:T4-72:T1  291.75  -445.6478 1029.1478 0.9851958
96:T4-72:T1  678.25   -59.1478 1415.6478 0.1023697
24:T2-96:T1 -179.50  -916.8978  557.8978 0.9999288
48:T2-96:T1 -177.75  -915.1478  559.6478 0.9999370
72:T2-96:T1 -386.75 -1124.1478  350.6478 0.8654857
96:T2-96:T1  130.00  -607.3978  867.3978 0.9999989
24:T3-96:T1  -20.50  -757.8978  716.8978 1.0000000
48:T3-96:T1 -329.25 -1066.6478  408.1478 0.9579418
72:T3-96:T1 -249.75  -987.1478  487.6478 0.9967966
96:T3-96:T1  102.00  -635.3978  839.3978 1.0000000
24:T4-96:T1  213.75  -523.6478  951.1478 0.9994223
48:T4-96:T1 -362.25 -1099.6478  375.1478 0.9133444
72:T4-96:T1 -564.00 -1301.3978  173.3978 0.3237536
96:T4-96:T1 -177.50  -914.8978  559.8978 0.9999381
48:T2-24:T2    1.75  -735.6478  739.1478 1.0000000
72:T2-24:T2 -207.25  -944.6478  530.1478 0.9995962
96:T2-24:T2  309.50  -427.8978 1046.8978 0.9749188
24:T3-24:T2  159.00  -578.3978  896.3978 0.9999847
48:T3-24:T2 -149.75  -887.1478  587.6478 0.9999930
72:T3-24:T2  -70.25  -807.6478  667.1478 1.0000000
96:T3-24:T2  281.50  -455.8978 1018.8978 0.9894042
24:T4-24:T2  393.25  -344.1478 1130.6478 0.8506630
48:T4-24:T2 -182.75  -920.1478  554.6478 0.9999111
72:T4-24:T2 -384.50 -1121.8978  352.8978 0.8704128
96:T4-24:T2    2.00  -735.3978  739.3978 1.0000000
72:T2-48:T2 -209.00  -946.3978  528.3978 0.9995546
96:T2-48:T2  307.75  -429.6478 1045.1478 0.9761234
24:T3-48:T2  157.25  -580.1478  894.6478 0.9999868
48:T3-48:T2 -151.50  -888.8978  585.8978 0.9999919
72:T3-48:T2  -72.00  -809.3978  665.3978 1.0000000
96:T3-48:T2  279.75  -457.6478 1017.1478 0.9900158
24:T4-48:T2  391.50  -345.8978 1128.8978 0.8547390
48:T4-48:T2 -184.50  -921.8978  552.8978 0.9999000
72:T4-48:T2 -386.25 -1123.6478  351.1478 0.8665898
96:T4-48:T2    0.25  -737.1478  737.6478 1.0000000
96:T2-72:T2  516.75  -220.6478 1254.1478 0.4670060
24:T3-72:T2  366.25  -371.1478 1103.6478 0.9064075
48:T3-72:T2   57.50  -679.8978  794.8978 1.0000000
72:T3-72:T2  137.00  -600.3978  874.3978 0.9999979
96:T3-72:T2  488.75  -248.6478 1226.1478 0.5603963
24:T4-72:T2  600.50  -136.8978 1337.8978 0.2327837
48:T4-72:T2   24.50  -712.8978  761.8978 1.0000000
72:T4-72:T2 -177.25  -914.6478  560.1478 0.9999392
96:T4-72:T2  209.25  -528.1478  946.6478 0.9995484
24:T3-96:T2 -150.50  -887.8978  586.8978 0.9999925
48:T3-96:T2 -459.25 -1196.6478  278.1478 0.6594168
72:T3-96:T2 -379.75 -1117.1478  357.6478 0.8804648
96:T3-96:T2  -28.00  -765.3978  709.3978 1.0000000
24:T4-96:T2   83.75  -653.6478  821.1478 1.0000000
48:T4-96:T2 -492.25 -1229.6478  245.1478 0.5485758
72:T4-96:T2 -694.00 -1431.3978   43.3978 0.0851818
96:T4-96:T2 -307.50 -1044.8978  429.8978 0.9762918
48:T3-24:T3 -308.75 -1046.1478  428.6478 0.9754406
72:T3-24:T3 -229.25  -966.6478  508.1478 0.9987265
96:T3-24:T3  122.50  -614.8978  859.8978 0.9999995
24:T4-24:T3  234.25  -503.1478  971.6478 0.9983856
48:T4-24:T3 -341.75 -1079.1478  395.6478 0.9436145
72:T4-24:T3 -543.50 -1280.8978  193.8978 0.3828703
96:T4-24:T3 -157.00  -894.3978  580.3978 0.9999870
72:T3-48:T3   79.50  -657.8978  816.8978 1.0000000
96:T3-48:T3  431.25  -306.1478 1168.6478 0.7481317
24:T4-48:T3  543.00  -194.3978 1280.3978 0.3843763
48:T4-48:T3  -33.00  -770.3978  704.3978 1.0000000
72:T4-48:T3 -234.75  -972.1478  502.6478 0.9983476
96:T4-48:T3  151.75  -585.6478  889.1478 0.9999917
96:T3-72:T3  351.75  -385.6478 1089.1478 0.9299373
24:T4-72:T3  463.50  -273.8978 1200.8978 0.6453515
48:T4-72:T3 -112.50  -849.8978  624.8978 0.9999999
72:T4-72:T3 -314.25 -1051.6478  423.1478 0.9714168
96:T4-72:T3   72.25  -665.1478  809.6478 1.0000000
24:T4-96:T3  111.75  -625.6478  849.1478 0.9999999
48:T4-96:T3 -464.25 -1201.6478  273.1478 0.6428584
72:T4-96:T3 -666.00 -1403.3978   71.3978 0.1176558
96:T4-96:T3 -279.50 -1016.8978  457.8978 0.9901008
48:T4-24:T4 -576.00 -1313.3978  161.3978 0.2917316
72:T4-24:T4 -777.75 -1515.1478  -40.3522 0.0295319
96:T4-24:T4 -391.25 -1128.6478  346.1478 0.8553162
72:T4-48:T4 -201.75  -939.1478  535.6478 0.9997058
96:T4-48:T4  184.75  -552.6478  922.1478 0.9998983
96:T4-72:T4  386.50  -350.8978 1123.8978 0.8660384


Letras do Tukey:
$tempo
 24  96  48  72 
"a" "a" "b" "b" 

$tratamento
$tratamento$Letters
 T3  T2  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T3 TRUE
T2 TRUE
T4 TRUE
T1 TRUE


$`tempo:tratamento`
24:T4 24:T1 96:T2 96:T3 96:T1 24:T3 96:T4 48:T2 24:T2 72:T3 48:T1 48:T3 48:T4 72:T2 72:T4 72:T1 
  "a"  "ab"  "ab"  "ab"  "ab"  "ab" "abc" "abc" "abc" "abc" "abc" "abc" "abc" "abc"  "bc"   "c" 



########################### Variável: ch4_effic ##########################
ANOVA:
                 Df Sum Sq Mean Sq F value Pr(>F)  
tempo             1  5.874   5.874   5.691 0.0253 *
tratamento        3  5.676   1.892   1.833 0.1681  
tempo:tratamento  3  0.219   0.073   0.071 0.9750  
Residuals        24 24.771   1.032                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean    SE df lower.CL upper.CL
 72    T1           5.25 0.508 24     4.20     6.30
 96    T1           6.02 0.508 24     4.97     7.07
 72    T2           5.42 0.508 24     4.37     6.47
 96    T2           6.05 0.508 24     5.00     7.10
 72    T3           4.92 0.508 24     3.87     5.97
 96    T3           5.93 0.508 24     4.88     6.98
 72    T4           4.16 0.508 24     3.11     5.20
 96    T4           5.17 0.508 24     4.12     6.22

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
          diff       lwr      upr     p adj
96-72 0.856875 0.1155415 1.598209 0.0252956

$tratamento
          diff       lwr       upr     p adj
T2-T1  0.10125 -1.300048 1.5025478 0.9971165
T3-T1 -0.21125 -1.612548 1.1900478 0.9752233
T4-T1 -0.97375 -2.375048 0.4275478 0.2477197
T3-T2 -0.31250 -1.713798 1.0887978 0.9262342
T4-T2 -1.07500 -2.476298 0.3262978 0.1766108
T4-T3 -0.76250 -2.163798 0.6387978 0.4524458

$`tempo:tratamento`
               diff       lwr       upr     p adj
96:T1-72:T1  0.7675 -1.611718 3.1467179 0.9574626
72:T2-72:T1  0.1700 -2.209218 2.5492179 0.9999972
96:T2-72:T1  0.8000 -1.579218 3.1792179 0.9474312
72:T3-72:T1 -0.3350 -2.714218 2.0442179 0.9997173
96:T3-72:T1  0.6800 -1.699218 3.0592179 0.9777358
72:T4-72:T1 -1.0975 -3.476718 1.2817179 0.7855227
96:T4-72:T1 -0.0825 -2.461718 2.2967179 1.0000000
72:T2-96:T1 -0.5975 -2.976718 1.7817179 0.9893118
96:T2-96:T1  0.0325 -2.346718 2.4117179 1.0000000
72:T3-96:T1 -1.1025 -3.481718 1.2767179 0.7818120
96:T3-96:T1 -0.0875 -2.466718 2.2917179 1.0000000
72:T4-96:T1 -1.8650 -4.244218 0.5142179 0.2055744
96:T4-96:T1 -0.8500 -3.229218 1.5292179 0.9290910
96:T2-72:T2  0.6300 -1.749218 3.0092179 0.9854963
72:T3-72:T2 -0.5050 -2.884218 1.8742179 0.9960942
96:T3-72:T2  0.5100 -1.869218 2.8892179 0.9958512
72:T4-72:T2 -1.2675 -3.646718 1.1117179 0.6480034
96:T4-72:T2 -0.2525 -2.631718 2.1267179 0.9999574
72:T3-96:T2 -1.1350 -3.514218 1.2442179 0.7570843
96:T3-96:T2 -0.1200 -2.499218 2.2592179 0.9999997
72:T4-96:T2 -1.8975 -4.276718 0.4817179 0.1897629
96:T4-96:T2 -0.8825 -3.261718 1.4967179 0.9152115
96:T3-72:T3  1.0150 -1.364218 3.3942179 0.8426178
72:T4-72:T3 -0.7625 -3.141718 1.6167179 0.9588789
96:T4-72:T3  0.2525 -2.126718 2.6317179 0.9999574
72:T4-96:T3 -1.7775 -4.156718 0.6017179 0.2530470
96:T4-96:T3 -0.7625 -3.141718 1.6167179 0.9588789
96:T4-72:T4  1.0150 -1.364218 3.3942179 0.8426178


Letras do Tukey:
$tempo
 96  72 
"a" "b" 

$tratamento
$tratamento$Letters
 T2  T1  T3  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T1 TRUE
T3 TRUE
T4 TRUE


$`tempo:tratamento`
$`tempo:tratamento`$Letters
96:T2 96:T1 96:T3 72:T2 72:T1 96:T4 72:T3 72:T4 
  "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a" 

$`tempo:tratamento`$LetterMatrix
         a
96:T2 TRUE
96:T1 TRUE
96:T3 TRUE
72:T2 TRUE
72:T1 TRUE
96:T4 TRUE
72:T3 TRUE
72:T4 TRUE




########################### Variável: ch4_24h ##########################
ANOVA:
                 Df  Sum Sq Mean Sq F value   Pr(>F)    
tempo             1 0.03768 0.03768  21.769 9.72e-05 ***
tratamento        3 0.00599 0.00200   1.154    0.348    
tempo:tratamento  3 0.00206 0.00069   0.398    0.756    
Residuals        24 0.04154 0.00173                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean     SE df lower.CL upper.CL
 72    T1         0.0648 0.0208 24   0.0218    0.108
 96    T1         0.1601 0.0208 24   0.1171    0.203
 72    T2         0.1100 0.0208 24   0.0671    0.153
 96    T2         0.1717 0.0208 24   0.1288    0.215
 72    T3         0.1075 0.0208 24   0.0646    0.150
 96    T3         0.1725 0.0208 24   0.1296    0.215
 72    T4         0.0875 0.0208 24   0.0446    0.130
 96    T4         0.1400 0.0208 24   0.0971    0.183

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
            diff       lwr       upr    p adj
96-72 0.06863125 0.0382718 0.0989907 9.72e-05

$tratamento
            diff         lwr        upr     p adj
T2-T1  0.0284375 -0.02894912 0.08582412 0.5312388
T3-T1  0.0275750 -0.02981162 0.08496162 0.5562812
T4-T1  0.0013250 -0.05606162 0.05871162 0.9999045
T3-T2 -0.0008625 -0.05824912 0.05652412 0.9999736
T4-T2 -0.0271125 -0.08449912 0.03027412 0.5697856
T4-T3 -0.0262500 -0.08363662 0.03113662 0.5950505

$`tempo:tratamento`
                 diff          lwr        upr     p adj
96:T1-72:T1  0.095300 -0.002134875 0.19273487 0.0584109
72:T2-72:T1  0.045225 -0.052209875 0.14265987 0.7804484
96:T2-72:T1  0.106950  0.009515125 0.20438487 0.0244072
72:T3-72:T1  0.042725 -0.054709875 0.14015987 0.8239731
96:T3-72:T1  0.107725  0.010290125 0.20515987 0.0229877
72:T4-72:T1  0.022725 -0.074709875 0.12015987 0.9930892
96:T4-72:T1  0.075225 -0.022209875 0.17265987 0.2200416
72:T2-96:T1 -0.050075 -0.147509875 0.04735987 0.6859709
96:T2-96:T1  0.011650 -0.085784875 0.10908487 0.9999048
72:T3-96:T1 -0.052575 -0.150009875 0.04485987 0.6339928
96:T3-96:T1  0.012425 -0.085009875 0.10985987 0.9998535
72:T4-96:T1 -0.072575 -0.170009875 0.02485987 0.2561695
96:T4-96:T1 -0.020075 -0.117509875 0.07735987 0.9967478
96:T2-72:T2  0.061725 -0.035709875 0.15915987 0.4436161
72:T3-72:T2 -0.002500 -0.099934875 0.09493487 1.0000000
96:T3-72:T2  0.062500 -0.034934875 0.15993487 0.4283771
72:T4-72:T2 -0.022500 -0.119934875 0.07493487 0.9934884
96:T4-72:T2  0.030000 -0.067434875 0.12743487 0.9666809
72:T3-96:T2 -0.064225 -0.161659875 0.03320987 0.3953277
96:T3-96:T2  0.000775 -0.096659875 0.09820987 1.0000000
72:T4-96:T2 -0.084225 -0.181659875 0.01320987 0.1256521
96:T4-96:T2 -0.031725 -0.129159875 0.06570987 0.9553708
96:T3-72:T3  0.065000 -0.032434875 0.16243487 0.3809046
72:T4-72:T3 -0.020000 -0.117434875 0.07743487 0.9968222
96:T4-72:T3  0.032500 -0.064934875 0.12993487 0.9495207
72:T4-96:T3 -0.085000 -0.182434875 0.01243487 0.1193921
96:T4-96:T3 -0.032500 -0.129934875 0.06493487 0.9495207
96:T4-72:T4  0.052500 -0.044934875 0.14993487 0.6355699


Letras do Tukey:
$tempo
 96  72 
"a" "b" 

$tratamento
$tratamento$Letters
 T2  T3  T4  T1 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T4 TRUE
T1 TRUE


$`tempo:tratamento`
96:T3 96:T2 96:T1 96:T4 72:T2 72:T3 72:T4 72:T1 
  "a"   "a"  "ab"  "ab"  "ab"  "ab"  "ab"   "b" 



########################### Variável: ch4_48h ##########################
ANOVA:
                 Df  Sum Sq Mean Sq F value   Pr(>F)    
tempo             2 0.00000 0.00000   0.000 0.999873    
tratamento        3 0.09707 0.03236   7.081 0.000735 ***
tempo:tratamento  6 0.00162 0.00027   0.059 0.999073    
Residuals        36 0.16449 0.00457                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean     SE df lower.CL upper.CL
 48    T1          0.250 0.0338 36    0.181    0.319
 72    T1          0.249 0.0338 36    0.180    0.318
 96    T1          0.243 0.0338 36    0.175    0.312
 48    T2          0.330 0.0338 36    0.261    0.399
 72    T2          0.340 0.0338 36    0.271    0.409
 96    T2          0.338 0.0338 36    0.269    0.406
 48    T3          0.320 0.0338 36    0.251    0.389
 72    T3          0.333 0.0338 36    0.264    0.401
 96    T3          0.323 0.0338 36    0.254    0.391
 48    T4          0.242 0.0338 36    0.174    0.311
 72    T4          0.222 0.0338 36    0.154    0.291
 96    T4          0.240 0.0338 36    0.171    0.309

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
            diff         lwr        upr     p adj
72-48  0.0003775 -0.05803744 0.05879244 0.9998624
96-48  0.0002325 -0.05818244 0.05864744 0.9999478
96-72 -0.0001450 -0.05855994 0.05826994 0.9999797

$tratamento
             diff          lwr         upr     p adj
T2-T1  0.08835083  0.014029708  0.16267196 0.0144872
T3-T1  0.07751750  0.003196374  0.15183863 0.0381844
T4-T1 -0.01248250 -0.086803626  0.06183863 0.9687472
T3-T2 -0.01083333 -0.085154459  0.06348779 0.9791550
T4-T2 -0.10083333 -0.175154459 -0.02651221 0.0043435
T4-T3 -0.09000000 -0.164321126 -0.01567887 0.0124163

$`tempo:tratamento`
                  diff         lwr        upr     p adj
72:T1-48:T1 -0.0009900 -0.16781662 0.16583662 1.0000000
96:T1-48:T1 -0.0065700 -0.17339662 0.16025662 1.0000000
48:T2-48:T1  0.0799975 -0.08682912 0.24682412 0.8682595
72:T2-48:T1  0.0899975 -0.07682912 0.25682412 0.7615117
96:T2-48:T1  0.0874975 -0.07932912 0.25432412 0.7909945
48:T3-48:T1  0.0699975 -0.09682912 0.23682412 0.9407873
72:T3-48:T1  0.0824975 -0.08432912 0.24932412 0.8445423
96:T3-48:T1  0.0724975 -0.09432912 0.23932412 0.9260290
48:T4-48:T1 -0.0075025 -0.17432912 0.15932412 1.0000000
72:T4-48:T1 -0.0275025 -0.19432912 0.13932412 0.9999825
96:T4-48:T1 -0.0100025 -0.17682912 0.15682412 1.0000000
96:T1-72:T1 -0.0055800 -0.17240662 0.16124662 1.0000000
48:T2-72:T1  0.0809875 -0.08583912 0.24781412 0.8591254
72:T2-72:T1  0.0909875 -0.07583912 0.25781412 0.7494044
96:T2-72:T1  0.0884875 -0.07833912 0.25531412 0.7795156
48:T3-72:T1  0.0709875 -0.09583912 0.23781412 0.9352055
72:T3-72:T1  0.0834875 -0.08333912 0.25031412 0.8345652
96:T3-72:T1  0.0734875 -0.09333912 0.24031412 0.9195710
48:T4-72:T1 -0.0065125 -0.17333912 0.16031412 1.0000000
72:T4-72:T1 -0.0265125 -0.19333912 0.14031412 0.9999879
96:T4-72:T1 -0.0090125 -0.17583912 0.15781412 1.0000000
48:T2-96:T1  0.0865675 -0.08025912 0.25339412 0.8015289
72:T2-96:T1  0.0965675 -0.07025912 0.26339412 0.6774754
96:T2-96:T1  0.0940675 -0.07275912 0.26089412 0.7103872
48:T3-96:T1  0.0765675 -0.09025912 0.24339412 0.8972089
72:T3-96:T1  0.0890675 -0.07775912 0.25589412 0.7726690
96:T3-96:T1  0.0790675 -0.08775912 0.24589412 0.8765257
48:T4-96:T1 -0.0009325 -0.16775912 0.16589412 1.0000000
72:T4-96:T1 -0.0209325 -0.18775912 0.14589412 0.9999990
96:T4-96:T1 -0.0034325 -0.17025912 0.16339412 1.0000000
72:T2-48:T2  0.0100000 -0.15682662 0.17682662 1.0000000
96:T2-48:T2  0.0075000 -0.15932662 0.17432662 1.0000000
48:T3-48:T2 -0.0100000 -0.17682662 0.15682662 1.0000000
72:T3-48:T2  0.0025000 -0.16432662 0.16932662 1.0000000
96:T3-48:T2 -0.0075000 -0.17432662 0.15932662 1.0000000
48:T4-48:T2 -0.0875000 -0.25432662 0.07932662 0.7909659
72:T4-48:T2 -0.1075000 -0.27432662 0.05932662 0.5277196
96:T4-48:T2 -0.0900000 -0.25682662 0.07682662 0.7614814
96:T2-72:T2 -0.0025000 -0.16932662 0.16432662 1.0000000
48:T3-72:T2 -0.0200000 -0.18682662 0.14682662 0.9999994
72:T3-72:T2 -0.0075000 -0.17432662 0.15932662 1.0000000
96:T3-72:T2 -0.0175000 -0.18432662 0.14932662 0.9999998
48:T4-72:T2 -0.0975000 -0.26432662 0.06932662 0.6649758
72:T4-72:T2 -0.1175000 -0.28432662 0.04932662 0.3960949
96:T4-72:T2 -0.1000000 -0.26682662 0.06682662 0.6310200
48:T3-96:T2 -0.0175000 -0.18432662 0.14932662 0.9999998
72:T3-96:T2 -0.0050000 -0.17182662 0.16182662 1.0000000
96:T3-96:T2 -0.0150000 -0.18182662 0.15182662 1.0000000
48:T4-96:T2 -0.0950000 -0.26182662 0.07182662 0.6982241
72:T4-96:T2 -0.1150000 -0.28182662 0.05182662 0.4276918
96:T4-96:T2 -0.0975000 -0.26432662 0.06932662 0.6649758
72:T3-48:T3  0.0125000 -0.15432662 0.17932662 1.0000000
96:T3-48:T3  0.0025000 -0.16432662 0.16932662 1.0000000
48:T4-48:T3 -0.0775000 -0.24432662 0.08932662 0.8897582
72:T4-48:T3 -0.0975000 -0.26432662 0.06932662 0.6649758
96:T4-48:T3 -0.0800000 -0.24682662 0.08682662 0.8682369
96:T3-72:T3 -0.0100000 -0.17682662 0.15682662 1.0000000
48:T4-72:T3 -0.0900000 -0.25682662 0.07682662 0.7614814
72:T4-72:T3 -0.1100000 -0.27682662 0.05682662 0.4936987
96:T4-72:T3 -0.0925000 -0.25932662 0.07432662 0.7304831
48:T4-96:T3 -0.0800000 -0.24682662 0.08682662 0.8682369
72:T4-96:T3 -0.1000000 -0.26682662 0.06682662 0.6310200
96:T4-96:T3 -0.0825000 -0.24932662 0.08432662 0.8445175
72:T4-48:T4 -0.0200000 -0.18682662 0.14682662 0.9999994
96:T4-48:T4 -0.0025000 -0.16932662 0.16432662 1.0000000
96:T4-72:T4  0.0175000 -0.14932662 0.18432662 0.9999998


Letras do Tukey:
$tempo
$tempo$Letters
 72  96  48 
"a" "a" "a" 

$tempo$LetterMatrix
      a
72 TRUE
96 TRUE
48 TRUE


$tratamento
 T2  T3  T1  T4 
"a" "a" "b" "b" 

$`tempo:tratamento`
$`tempo:tratamento`$Letters
72:T2 96:T2 72:T3 48:T2 96:T3 48:T3 48:T1 72:T1 96:T1 48:T4 96:T4 72:T4 
  "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a" 

$`tempo:tratamento`$LetterMatrix
         a
72:T2 TRUE
96:T2 TRUE
72:T3 TRUE
48:T2 TRUE
96:T3 TRUE
48:T3 TRUE
48:T1 TRUE
72:T1 TRUE
96:T1 TRUE
48:T4 TRUE
96:T4 TRUE
72:T4 TRUE




########################### Variável: dmo ##########################
ANOVA:
                 Df Sum Sq Mean Sq F value   Pr(>F)    
tempo             1  42080   42080  37.243 2.65e-06 ***
tratamento        3  16169    5390   4.770  0.00955 ** 
tempo:tratamento  3   3249    1083   0.958  0.42831    
Residuals        24  27117    1130                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
48 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean   SE df lower.CL upper.CL
 24    T1            645 16.8 24      611      680
 48    T1            572 16.8 24      538      607
 24    T2            628 16.8 24      593      663
 48    T2            535 16.8 24      500      569
 24    T3            610 16.8 24      575      644
 48    T3            526 16.8 24      491      560
 24    T4            567 16.8 24      532      602
 48    T4            527 16.8 24      492      562

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff       lwr       upr   p adj
48-24 -72.52585 -97.05379 -47.99791 2.6e-06

$tratamento
           diff        lwr        upr     p adj
T2-T1 -27.35585  -73.71953  19.007834 0.3827508
T3-T1 -41.22081  -87.58450   5.142872 0.0938891
T4-T1 -61.86686 -108.23055 -15.503178 0.0060311
T3-T2 -13.86496  -60.22865  32.498722 0.8420986
T4-T2 -34.51101  -80.87470  11.852672 0.1971202
T4-T3 -20.64605  -67.00973  25.717634 0.6154408

$`tempo:tratamento`
                   diff        lwr         upr     p adj
48:T1-24:T1  -72.894000 -151.61339   5.8253898 0.0837317
24:T2-24:T1  -17.114000  -95.83339  61.6053898 0.9954774
48:T2-24:T1 -110.491700 -189.21109 -31.7723102 0.0022021
24:T3-24:T1  -35.730500 -114.44989  42.9888898 0.7983573
48:T3-24:T1 -119.605125 -198.32451 -40.8857352 0.0008621
24:T4-24:T1  -78.335325 -157.05471   0.3840648 0.0517713
48:T4-24:T1 -118.292400 -197.01179 -39.5730102 0.0009870
24:T2-48:T1   55.780000  -22.93939 134.4993898 0.3105000
48:T2-48:T1  -37.597700 -116.31709  41.1216898 0.7560322
24:T3-48:T1   37.163500  -41.55589 115.8828898 0.7661563
48:T3-48:T1  -46.711125 -125.43051  32.0082648 0.5233813
24:T4-48:T1   -5.441325  -84.16071  73.2780648 0.9999977
48:T4-48:T1  -45.398400 -124.11779  33.3209898 0.5575260
48:T2-24:T2  -93.377700 -172.09709 -14.6583102 0.0123975
24:T3-24:T2  -18.616500  -97.33589  60.1028898 0.9924937
48:T3-24:T2 -102.491125 -181.21051 -23.7717352 0.0049800
24:T4-24:T2  -61.221325 -139.94071  17.4980648 0.2130179
48:T4-24:T2 -101.178400 -179.89779 -22.4590102 0.0056871
24:T3-48:T2   74.761200   -3.95819 153.4805898 0.0711925
48:T3-48:T2   -9.113425  -87.83281  69.6059648 0.9999234
24:T4-48:T2   32.156375  -46.56301 110.8757648 0.8689876
48:T4-48:T2   -7.800700  -86.52009  70.9186898 0.9999733
48:T3-24:T3  -83.874625 -162.59401  -5.1552352 0.0310333
24:T4-24:T3  -42.604825 -121.32421  36.1145648 0.6306448
48:T4-24:T3  -82.561900 -161.28129  -3.8425102 0.0350974
24:T4-48:T3   41.269800  -37.44959 119.9891898 0.6652118
48:T4-48:T3    1.312725  -77.40666  80.0321148 1.0000000
48:T4-24:T4  -39.957075 -118.67646  38.7623148 0.6985692


Letras do Tukey:
$tempo
 24  48 
"a" "b" 

$tratamento
  T1   T2   T3   T4 
 "a" "ab" "ab"  "b" 

$`tempo:tratamento`
24:T1 24:T2 24:T3 48:T1 24:T4 48:T2 48:T4 48:T3 
  "a"   "a"  "ab" "abc" "abc"  "bc"   "c"   "c" 



########################### Variável: n_nh3 ##########################
ANOVA:
                 Df Sum Sq Mean Sq F value   Pr(>F)    
tempo             2 0.5514 0.27568  24.882 1.64e-07 ***
tratamento        3 0.0022 0.00072   0.065    0.978    
tempo:tratamento  6 0.0020 0.00033   0.030    1.000    
Residuals        36 0.3989 0.01108                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
32 observations deleted due to missingness

Médias (emmeans):
 tempo tratamento emmean     SE df lower.CL upper.CL
 0     T1         0.0420 0.0526 36  -0.0648    0.149
 72    T1         0.0673 0.0526 36  -0.0394    0.174
 96    T1         0.2810 0.0526 36   0.1743    0.388
 0     T2         0.0382 0.0526 36  -0.0686    0.145
 72    T2         0.0777 0.0526 36  -0.0290    0.184
 96    T2         0.2972 0.0526 36   0.1905    0.404
 0     T3         0.0426 0.0526 36  -0.0641    0.149
 72    T3         0.0767 0.0526 36  -0.0300    0.183
 96    T3         0.2910 0.0526 36   0.1843    0.398
 0     T4         0.0415 0.0526 36  -0.0652    0.148
 72    T4         0.0627 0.0526 36  -0.0440    0.169
 96    T4         0.2585 0.0526 36   0.1518    0.365

Confidence level used: 0.95 

Tukey HSD:
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = formula, data = database)

$tempo
           diff         lwr       upr     p adj
72-0  0.0300475 -0.06091686 0.1210119 0.7009119
96-0  0.2408847  0.14992033 0.3318490 0.0000005
96-72 0.2108372  0.11987283 0.3018015 0.0000057

$tratamento
               diff        lwr        upr     p adj
T2-T1  0.0075937500 -0.1081399 0.12332740 0.9980024
T3-T1  0.0066620833 -0.1090716 0.12239573 0.9986472
T4-T1 -0.0091691667 -0.1249028 0.10656448 0.9965037
T3-T2 -0.0009316667 -0.1166653 0.11480198 0.9999963
T4-T2 -0.0167629167 -0.1324966 0.09897073 0.9795328
T4-T3 -0.0158312500 -0.1315649 0.09990240 0.9826456

$`tempo:tratamento`
                   diff           lwr         upr     p adj
72:T1-0:T1   0.02536250 -0.2344216891 0.285146689 0.9999999
96:T1-0:T1   0.23903125 -0.0207529391 0.498815439 0.0955214
0:T2-0:T1   -0.00382375 -0.2636079391 0.255960439 1.0000000
72:T2-0:T1   0.03573250 -0.2240516891 0.295516689 0.9999973
96:T2-0:T1   0.25526625 -0.0045179391 0.515050439 0.0578216
0:T3-0:T1    0.00062750 -0.2591566891 0.260411689 1.0000000
72:T3-0:T1   0.03471250 -0.2250716891 0.294496689 0.9999980
96:T3-0:T1   0.24904000 -0.0107441891 0.508824189 0.0703696
0:T4-0:T1   -0.00043500 -0.2602191891 0.259349189 1.0000000
72:T4-0:T1   0.02075125 -0.2390329391 0.280535439 1.0000000
96:T4-0:T1   0.21657000 -0.0432141891 0.476354189 0.1801470
96:T1-72:T1  0.21366875 -0.0461154391 0.473452939 0.1944077
0:T2-72:T1  -0.02918625 -0.2889704391 0.230597939 0.9999997
72:T2-72:T1  0.01037000 -0.2494141891 0.270154189 1.0000000
96:T2-72:T1  0.22990375 -0.0298804391 0.489687939 0.1247409
0:T3-72:T1  -0.02473500 -0.2845191891 0.235049189 0.9999999
72:T3-72:T1  0.00935000 -0.2504341891 0.269134189 1.0000000
96:T3-72:T1  0.22367750 -0.0361066891 0.483461689 0.1486085
0:T4-72:T1  -0.02579750 -0.2855816891 0.233986689 0.9999999
72:T4-72:T1 -0.00461125 -0.2643954391 0.255172939 1.0000000
96:T4-72:T1  0.19120750 -0.0685766891 0.450991689 0.3332062
0:T2-96:T1  -0.24285500 -0.5026391891 0.016929189 0.0851263
72:T2-96:T1 -0.20329875 -0.4630829391 0.056485439 0.2522297
96:T2-96:T1  0.01623500 -0.2435491891 0.276019189 1.0000000
0:T3-96:T1  -0.23840375 -0.4981879391 0.021380439 0.0973264
72:T3-96:T1 -0.20431875 -0.4641029391 0.055465439 0.2460619
96:T3-96:T1  0.01000875 -0.2497754391 0.269792939 1.0000000
0:T4-96:T1  -0.23946625 -0.4992504391 0.020317939 0.0942869
72:T4-96:T1 -0.21828000 -0.4780641891 0.041504189 0.1721239
96:T4-96:T1 -0.02246125 -0.2822454391 0.237322939 1.0000000
72:T2-0:T2   0.03955625 -0.2202279391 0.299340439 0.9999922
96:T2-0:T2   0.25909000 -0.0006941891 0.518874189 0.0511368
0:T3-0:T2    0.00445125 -0.2553329391 0.264235439 1.0000000
72:T3-0:T2   0.03853625 -0.2212479391 0.298320439 0.9999940
96:T3-0:T2   0.25286375 -0.0069204391 0.512647939 0.0624080
0:T4-0:T2    0.00338875 -0.2563954391 0.263172939 1.0000000
72:T4-0:T2   0.02457500 -0.2352091891 0.284359189 0.9999999
96:T4-0:T2   0.22039375 -0.0393904391 0.480177939 0.1625915
96:T2-72:T2  0.21953375 -0.0402504391 0.479317939 0.1664189
0:T3-72:T2  -0.03510500 -0.2948891891 0.224679189 0.9999977
72:T3-72:T2 -0.00102000 -0.2608041891 0.258764189 1.0000000
96:T3-72:T2  0.21330750 -0.0464766891 0.473091689 0.1962412
0:T4-72:T2  -0.03616750 -0.2959516891 0.223616689 0.9999969
72:T4-72:T2 -0.01498125 -0.2747654391 0.244802939 1.0000000
96:T4-72:T2  0.18083750 -0.0789466891 0.440621689 0.4132876
0:T3-96:T2  -0.25463875 -0.5144229391 0.005145439 0.0589898
72:T3-96:T2 -0.22055375 -0.4803379391 0.039230439 0.1618870
96:T3-96:T2 -0.00622625 -0.2660104391 0.253557939 1.0000000
0:T4-96:T2  -0.25570125 -0.5154854391 0.004082939 0.0570239
72:T4-96:T2 -0.23451500 -0.4942991891 0.025269189 0.1091667
96:T4-96:T2 -0.03869625 -0.2984804391 0.221087939 0.9999938
72:T3-0:T3   0.03408500 -0.2256991891 0.293869189 0.9999983
96:T3-0:T3   0.24841250 -0.0113716891 0.508196689 0.0717577
0:T4-0:T3   -0.00106250 -0.2608466891 0.258721689 1.0000000
72:T4-0:T3   0.02012375 -0.2396604391 0.279907939 1.0000000
96:T4-0:T3   0.21594250 -0.0438416891 0.475726689 0.1831618
96:T3-72:T3  0.21432750 -0.0454566891 0.474111689 0.1910974
0:T4-72:T3  -0.03514750 -0.2949316891 0.224636689 0.9999977
72:T4-72:T3 -0.01396125 -0.2737454391 0.245822939 1.0000000
96:T4-72:T3  0.18185750 -0.0779266891 0.441641689 0.4050309
0:T4-96:T3  -0.24947500 -0.5092591891 0.010309189 0.0694211
72:T4-96:T3 -0.22828875 -0.4880729391 0.031495439 0.1306096
96:T4-96:T3 -0.03247000 -0.2922541891 0.227314189 0.9999990
72:T4-0:T4   0.02118625 -0.2385979391 0.280970439 1.0000000
96:T4-0:T4   0.21700500 -0.0427791891 0.476789189 0.1780794
96:T4-72:T4  0.19581875 -0.0639654391 0.455602939 0.3006435


Letras do Tukey:
$tempo
 96  72   0 
"a" "b" "b" 

$tratamento
$tratamento$Letters
 T2  T3  T1  T4 
"a" "a" "a" "a" 

$tratamento$LetterMatrix
      a
T2 TRUE
T3 TRUE
T1 TRUE
T4 TRUE


$`tempo:tratamento`
$`tempo:tratamento`$Letters
96:T2 96:T3 96:T1 96:T4 72:T2 72:T3 72:T1 72:T4  0:T3  0:T1  0:T4  0:T2 
  "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a"   "a" 

$`tempo:tratamento`$LetterMatrix
         a
96:T2 TRUE
96:T3 TRUE
96:T1 TRUE
96:T4 TRUE
72:T2 TRUE
72:T3 TRUE
72:T1 TRUE
72:T4 TRUE
0:T3  TRUE
0:T1  TRUE
0:T4  TRUE
0:T2  TRUE
LS0tDQp0aXRsZTogIlJVTUVORkxPVyAtIEplcmFsZGluZSINCmF1dGhvcjogIlZhZ25lciBPdmFuaSINCmRhdGU6ICIyNy8wNS8yMDI1Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOg0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19kZXB0aDogMg0KICAgIHRoZW1lOiB1bml0ZWQNCi0tLQ0KDQoqKioNCioqKg0KDQojICoqMSBQYWNrYWdlcyoqDQoNCmBgYHtyfQ0KbGlicmFyeShjYXIpDQpsaWJyYXJ5KGVtbWVhbnMpDQpsaWJyYXJ5KG11bHRjb21wVmlldykNCmBgYA0KDQoqKioNCioqKg0KDQojICoqMiBEQVRBKioNCg0KYGBge3J9DQpkYXRhYmFzZT1yZWFkLmNzdigiRDovQXJtYXplbmFtZW50by84IC0gREFUQSBSL1J1bWVuZmxvdy9ydW1lbmZsb3cyLmNzdiIpDQpzdHIoZGF0YWJhc2UpDQoNCmRhdGFiYXNlJGZlcm1lbnRhZG9yPWFzLmZhY3RvcihkYXRhYmFzZSRmZXJtZW50YWRvcikNCmRhdGFiYXNlJHBlcmlvZG89YXMuZmFjdG9yKGRhdGFiYXNlJHBlcmlvZG8pDQpkYXRhYmFzZSR0ZW1wbz1hcy5mYWN0b3IoZGF0YWJhc2UkdGVtcG8pDQpkYXRhYmFzZSR0cmF0YW1lbnRvPWFzLmZhY3RvcihkYXRhYmFzZSR0cmF0YW1lbnRvKQ0KVmlldyhkYXRhYmFzZSkNCmBgYA0KDQoqKioNCioqKg0KDQojICoqMyBGZXJtZW50YWRvcioqDQoNCmBgYHtyfQ0KbmFtZXMoZGF0YWJhc2UpDQojIFZhcmnDoXZlaXMgYSBzZXJlbSBhbmFsaXNhZGFzDQp2YXJpYWJsZXMgPSBjKCJlZmx1ZW50ZSIsImdhc190b3RhbCIsImNoNF9lZmZpYyIsImNoNF8yNGgiLCJjaDRfNDhoIiwiZG1vIiwgIm5fbmgzIikNCnZhcmlhYmxlcw0KDQoNCiMgTm9ybWFsaWRhZGUgZSBob21vY2VkYXN0aWNpZGFkZQ0KdGVzdGVzID0gbGFwcGx5KHZhcmlhYmxlcywgZnVuY3Rpb24odmFyKSB7DQogIG1vZGVsbyA8LSBhb3YoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IGZlcm1lbnRhZG9yIikpLCBkYXRhID0gZGF0YWJhc2UpDQogIHJlcyA8LSByZXNpZHVhbHMobW9kZWxvKQ0KICBzaGFwaXJvX3AgPC0gc2hhcGlyby50ZXN0KHJlcykkcC52YWx1ZQ0KICBsZXZlbmVfcCA8LSBsZXZlbmVUZXN0KGFzLmZvcm11bGEocGFzdGUodmFyLCAifiBmZXJtZW50YWRvciIpKSwgZGF0YSA9IGRhdGFiYXNlKVsxLCAiUHIoPkYpIl0NCiAgDQogIGRhdGEuZnJhbWUoVmFyaWF2ZWwgPSB2YXIsDQogICAgICAgICAgICAgcF9TaGFwaXJvID0gcm91bmQoc2hhcGlyb19wLCA0KSwNCiAgICAgICAgICAgICBwX0xldmVuZSA9IHJvdW5kKGxldmVuZV9wLCA0KSkNCn0pDQoNCnJlc3VsdGFkb190ZXN0ZXMgPSBkby5jYWxsKHJiaW5kLCB0ZXN0ZXMpDQpwcmludChyZXN1bHRhZG9fdGVzdGVzKQ0KDQojIEFub3ZhIGUgdHVrZXkNCg0KZm9yICh2YXIgaW4gdmFyaWFibGVzKSB7DQogIGNhdCgiXG5cbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyBWYXJpw6F2ZWw6IiwgdmFyLCAiIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcbiIpDQogIGZvcm11bGEgPC0gYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IGZlcm1lbnRhZG9yIikpDQogIG1vZCA8LSBhb3YoZm9ybXVsYSwgZGF0YSA9IGRhdGFiYXNlKQ0KICANCiAgY2F0KCJBTk9WQTpcbiIpDQogIHByaW50KHN1bW1hcnkobW9kKSkNCiAgDQogIGNhdCgiXG5Nw6lkaWFzIChlbW1lYW5zKTpcbiIpDQogIG1lZGlhcyA8LSBlbW1lYW5zKG1vZCwgfiBmZXJtZW50YWRvcikNCiAgcHJpbnQoc3VtbWFyeShtZWRpYXMpKQ0KICANCiAgY2F0KCJcblR1a2V5IEhTRDpcbiIpDQogIHR1a2V5IDwtIFR1a2V5SFNEKG1vZCkNCiAgcHJpbnQodHVrZXkpDQogIA0KICBjYXQoIlxuTGV0cmFzIGRvIFR1a2V5OlxuIikNCiAgbGV0cmFzIDwtIG11bHRjb21wTGV0dGVyczQobW9kLCB0dWtleSkNCiAgcHJpbnQobGV0cmFzKQ0KfQ0KYGBgDQoNCiMgKio0IFBlcmlvZG8qKg0KDQpgYGB7cn0NCiMgTm9ybWFsaWRhZGUgZSBob21vY2VkYXN0aWNpZGFkZQ0KdGVzdGVzID0gbGFwcGx5KHZhcmlhYmxlcywgZnVuY3Rpb24odmFyKSB7DQogIG1vZGVsbyA8LSBhb3YoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHBlcmlvZG8iKSksIGRhdGEgPSBkYXRhYmFzZSkNCiAgcmVzIDwtIHJlc2lkdWFscyhtb2RlbG8pDQogIHNoYXBpcm9fcCA8LSBzaGFwaXJvLnRlc3QocmVzKSRwLnZhbHVlDQogIGxldmVuZV9wIDwtIGxldmVuZVRlc3QoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHBlcmlvZG8iKSksIGRhdGEgPSBkYXRhYmFzZSlbMSwgIlByKD5GKSJdDQogIA0KICBkYXRhLmZyYW1lKFZhcmlhdmVsID0gdmFyLA0KICAgICAgICAgICAgIHBfU2hhcGlybyA9IHJvdW5kKHNoYXBpcm9fcCwgNCksDQogICAgICAgICAgICAgcF9MZXZlbmUgPSByb3VuZChsZXZlbmVfcCwgNCkpDQp9KQ0KDQpyZXN1bHRhZG9fdGVzdGVzID0gZG8uY2FsbChyYmluZCwgdGVzdGVzKQ0KcHJpbnQocmVzdWx0YWRvX3Rlc3RlcykNCg0KIyBBbm92YSBlIHR1a2V5DQoNCmZvciAodmFyIGluIHZhcmlhYmxlcykgew0KICBjYXQoIlxuXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgVmFyacOhdmVsOiIsIHZhciwgIiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXG4iKQ0KICBmb3JtdWxhIDwtIGFzLmZvcm11bGEocGFzdGUodmFyLCAifiBwZXJpb2RvIikpDQogIG1vZCA8LSBhb3YoZm9ybXVsYSwgZGF0YSA9IGRhdGFiYXNlKQ0KICANCiAgY2F0KCJBTk9WQTpcbiIpDQogIHByaW50KHN1bW1hcnkobW9kKSkNCiAgDQogIGNhdCgiXG5Nw6lkaWFzIChlbW1lYW5zKTpcbiIpDQogIG1lZGlhcyA8LSBlbW1lYW5zKG1vZCwgfiBwZXJpb2RvKQ0KICBwcmludChzdW1tYXJ5KG1lZGlhcykpDQogIA0KICBjYXQoIlxuVHVrZXkgSFNEOlxuIikNCiAgdHVrZXkgPC0gVHVrZXlIU0QobW9kKQ0KICBwcmludCh0dWtleSkNCiAgDQogIGNhdCgiXG5MZXRyYXMgZG8gVHVrZXk6XG4iKQ0KICBsZXRyYXMgPC0gbXVsdGNvbXBMZXR0ZXJzNChtb2QsIHR1a2V5KQ0KICBwcmludChsZXRyYXMpDQp9DQpgYGANCg0KIyAqKjUgVGVtcG8qKg0KDQpgYGB7cn0NCiMgTm9ybWFsaWRhZGUgZSBob21vY2VkYXN0aWNpZGFkZQ0KdGVzdGVzID0gbGFwcGx5KHZhcmlhYmxlcywgZnVuY3Rpb24odmFyKSB7DQogIG1vZGVsbyA8LSBhb3YoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHRlbXBvIikpLCBkYXRhID0gZGF0YWJhc2UpDQogIHJlcyA8LSByZXNpZHVhbHMobW9kZWxvKQ0KICBzaGFwaXJvX3AgPC0gc2hhcGlyby50ZXN0KHJlcykkcC52YWx1ZQ0KICBsZXZlbmVfcCA8LSBsZXZlbmVUZXN0KGFzLmZvcm11bGEocGFzdGUodmFyLCAifiB0ZW1wbyIpKSwgZGF0YSA9IGRhdGFiYXNlKVsxLCAiUHIoPkYpIl0NCiAgDQogIGRhdGEuZnJhbWUoVmFyaWF2ZWwgPSB2YXIsDQogICAgICAgICAgICAgcF9TaGFwaXJvID0gcm91bmQoc2hhcGlyb19wLCA0KSwNCiAgICAgICAgICAgICBwX0xldmVuZSA9IHJvdW5kKGxldmVuZV9wLCA0KSkNCn0pDQoNCnJlc3VsdGFkb190ZXN0ZXMgPSBkby5jYWxsKHJiaW5kLCB0ZXN0ZXMpDQpwcmludChyZXN1bHRhZG9fdGVzdGVzKQ0KDQojIEFub3ZhIGUgdHVrZXkNCg0KZm9yICh2YXIgaW4gdmFyaWFibGVzKSB7DQogIGNhdCgiXG5cbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyBWYXJpw6F2ZWw6IiwgdmFyLCAiIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcbiIpDQogIGZvcm11bGEgPC0gYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHRlbXBvIikpDQogIG1vZCA8LSBhb3YoZm9ybXVsYSwgZGF0YSA9IGRhdGFiYXNlKQ0KICANCiAgY2F0KCJBTk9WQTpcbiIpDQogIHByaW50KHN1bW1hcnkobW9kKSkNCiAgDQogIGNhdCgiXG5Nw6lkaWFzIChlbW1lYW5zKTpcbiIpDQogIG1lZGlhcyA8LSBlbW1lYW5zKG1vZCwgfiB0ZW1wbykNCiAgcHJpbnQoc3VtbWFyeShtZWRpYXMpKQ0KICANCiAgY2F0KCJcblR1a2V5IEhTRDpcbiIpDQogIHR1a2V5IDwtIFR1a2V5SFNEKG1vZCkNCiAgcHJpbnQodHVrZXkpDQogIA0KICBjYXQoIlxuTGV0cmFzIGRvIFR1a2V5OlxuIikNCiAgbGV0cmFzIDwtIG11bHRjb21wTGV0dGVyczQobW9kLCB0dWtleSkNCiAgcHJpbnQobGV0cmFzKQ0KfQ0KYGBgDQoNCiMgKio2IFRyYXRhbWVudG8qKg0KDQpgYGB7cn0NCiMgTm9ybWFsaWRhZGUgZSBob21vY2VkYXN0aWNpZGFkZQ0KdGVzdGVzID0gbGFwcGx5KHZhcmlhYmxlcywgZnVuY3Rpb24odmFyKSB7DQogIG1vZGVsbyA8LSBhb3YoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHRyYXRhbWVudG8iKSksIGRhdGEgPSBkYXRhYmFzZSkNCiAgcmVzIDwtIHJlc2lkdWFscyhtb2RlbG8pDQogIHNoYXBpcm9fcCA8LSBzaGFwaXJvLnRlc3QocmVzKSRwLnZhbHVlDQogIGxldmVuZV9wIDwtIGxldmVuZVRlc3QoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHRyYXRhbWVudG8iKSksIGRhdGEgPSBkYXRhYmFzZSlbMSwgIlByKD5GKSJdDQogIA0KICBkYXRhLmZyYW1lKFZhcmlhdmVsID0gdmFyLA0KICAgICAgICAgICAgIHBfU2hhcGlybyA9IHJvdW5kKHNoYXBpcm9fcCwgNCksDQogICAgICAgICAgICAgcF9MZXZlbmUgPSByb3VuZChsZXZlbmVfcCwgNCkpDQp9KQ0KDQpyZXN1bHRhZG9fdGVzdGVzID0gZG8uY2FsbChyYmluZCwgdGVzdGVzKQ0KcHJpbnQocmVzdWx0YWRvX3Rlc3RlcykNCg0KIyBBbm92YSBlIHR1a2V5DQoNCmZvciAodmFyIGluIHZhcmlhYmxlcykgew0KICBjYXQoIlxuXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgVmFyacOhdmVsOiIsIHZhciwgIiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXG4iKQ0KICBmb3JtdWxhIDwtIGFzLmZvcm11bGEocGFzdGUodmFyLCAifiB0cmF0YW1lbnRvIikpDQogIG1vZCA8LSBhb3YoZm9ybXVsYSwgZGF0YSA9IGRhdGFiYXNlKQ0KICANCiAgY2F0KCJBTk9WQTpcbiIpDQogIHByaW50KHN1bW1hcnkobW9kKSkNCiAgDQogIGNhdCgiXG5Nw6lkaWFzIChlbW1lYW5zKTpcbiIpDQogIG1lZGlhcyA8LSBlbW1lYW5zKG1vZCwgfiB0cmF0YW1lbnRvKQ0KICBwcmludChzdW1tYXJ5KG1lZGlhcykpDQogIA0KICBjYXQoIlxuVHVrZXkgSFNEOlxuIikNCiAgdHVrZXkgPC0gVHVrZXlIU0QobW9kKQ0KICBwcmludCh0dWtleSkNCiAgDQogIGNhdCgiXG5MZXRyYXMgZG8gVHVrZXk6XG4iKQ0KICBsZXRyYXMgPC0gbXVsdGNvbXBMZXR0ZXJzNChtb2QsIHR1a2V5KQ0KICBwcmludChsZXRyYXMpDQp9DQpgYGANCg0KIyAqKjcgRmVybWVudGFkb3IgeCBQZXJpb2RvKioNCg0KYGBge3J9DQojIE5vcm1hbGlkYWRlIGUgaG9tb2NlZGFzdGljaWRhZGUNCnRlc3RlcyA9IGxhcHBseSh2YXJpYWJsZXMsIGZ1bmN0aW9uKHZhcikgew0KICBtb2RlbG8gPC0gYW92KGFzLmZvcm11bGEocGFzdGUodmFyLCAifiBmZXJtZW50YWRvciAqIHBlcmlvZG8iKSksIGRhdGEgPSBkYXRhYmFzZSkNCiAgcmVzIDwtIHJlc2lkdWFscyhtb2RlbG8pDQogIHNoYXBpcm9fcCA8LSBzaGFwaXJvLnRlc3QocmVzKSRwLnZhbHVlDQogIGxldmVuZV9wIDwtIGxldmVuZVRlc3QoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IGZlcm1lbnRhZG9yICogcGVyaW9kbyIpKSwgZGF0YSA9IGRhdGFiYXNlKVsxLCAiUHIoPkYpIl0NCiAgDQogIGRhdGEuZnJhbWUoVmFyaWF2ZWwgPSB2YXIsDQogICAgICAgICAgICAgcF9TaGFwaXJvID0gcm91bmQoc2hhcGlyb19wLCA0KSwNCiAgICAgICAgICAgICBwX0xldmVuZSA9IHJvdW5kKGxldmVuZV9wLCA0KSkNCn0pDQoNCnJlc3VsdGFkb190ZXN0ZXMgPSBkby5jYWxsKHJiaW5kLCB0ZXN0ZXMpDQpwcmludChyZXN1bHRhZG9fdGVzdGVzKQ0KDQojIEFub3ZhIGUgdHVrZXkNCg0KZm9yICh2YXIgaW4gdmFyaWFibGVzKSB7DQogIGNhdCgiXG5cbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyBWYXJpw6F2ZWw6IiwgdmFyLCAiIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcbiIpDQogIGZvcm11bGEgPC0gYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IGZlcm1lbnRhZG9yICogcGVyaW9kbyIpKQ0KICBtb2QgPC0gYW92KGZvcm11bGEsIGRhdGEgPSBkYXRhYmFzZSkNCiAgDQogIGNhdCgiQU5PVkE6XG4iKQ0KICBwcmludChzdW1tYXJ5KG1vZCkpDQogIA0KICBjYXQoIlxuTcOpZGlhcyAoZW1tZWFucyk6XG4iKQ0KICBtZWRpYXMgPC0gZW1tZWFucyhtb2QsIH4gZmVybWVudGFkb3IgKiBwZXJpb2RvKQ0KICBwcmludChzdW1tYXJ5KG1lZGlhcykpDQogIA0KICBjYXQoIlxuVHVrZXkgSFNEOlxuIikNCiAgdHVrZXkgPC0gVHVrZXlIU0QobW9kKQ0KICBwcmludCh0dWtleSkNCiAgDQogIGNhdCgiXG5MZXRyYXMgZG8gVHVrZXk6XG4iKQ0KICBsZXRyYXMgPC0gbXVsdGNvbXBMZXR0ZXJzNChtb2QsIHR1a2V5KQ0KICBwcmludChsZXRyYXMpDQp9DQpgYGANCg0KIyAqKjggRmVybWVudGFkb3IgeCBUZW1wbyoqDQoNCmBgYHtyfQ0KIyBOb3JtYWxpZGFkZSBlIGhvbW9jZWRhc3RpY2lkYWRlDQp0ZXN0ZXMgPSBsYXBwbHkodmFyaWFibGVzLCBmdW5jdGlvbih2YXIpIHsNCiAgbW9kZWxvIDwtIGFvdihhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gZmVybWVudGFkb3IgKiB0ZW1wbyIpKSwgZGF0YSA9IGRhdGFiYXNlKQ0KICByZXMgPC0gcmVzaWR1YWxzKG1vZGVsbykNCiAgc2hhcGlyb19wIDwtIHNoYXBpcm8udGVzdChyZXMpJHAudmFsdWUNCiAgbGV2ZW5lX3AgPC0gbGV2ZW5lVGVzdChhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gZmVybWVudGFkb3IgKiB0ZW1wbyIpKSwgZGF0YSA9IGRhdGFiYXNlKVsxLCAiUHIoPkYpIl0NCiAgDQogIGRhdGEuZnJhbWUoVmFyaWF2ZWwgPSB2YXIsDQogICAgICAgICAgICAgcF9TaGFwaXJvID0gcm91bmQoc2hhcGlyb19wLCA0KSwNCiAgICAgICAgICAgICBwX0xldmVuZSA9IHJvdW5kKGxldmVuZV9wLCA0KSkNCn0pDQoNCnJlc3VsdGFkb190ZXN0ZXMgPSBkby5jYWxsKHJiaW5kLCB0ZXN0ZXMpDQpwcmludChyZXN1bHRhZG9fdGVzdGVzKQ0KDQojIEFub3ZhIGUgdHVrZXkNCg0KZm9yICh2YXIgaW4gdmFyaWFibGVzKSB7DQogIGNhdCgiXG5cbiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyBWYXJpw6F2ZWw6IiwgdmFyLCAiIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcbiIpDQogIGZvcm11bGEgPC0gYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IGZlcm1lbnRhZG9yICogdGVtcG8iKSkNCiAgbW9kIDwtIGFvdihmb3JtdWxhLCBkYXRhID0gZGF0YWJhc2UpDQogIA0KICBjYXQoIkFOT1ZBOlxuIikNCiAgcHJpbnQoc3VtbWFyeShtb2QpKQ0KICANCiAgY2F0KCJcbk3DqWRpYXMgKGVtbWVhbnMpOlxuIikNCiAgbWVkaWFzIDwtIGVtbWVhbnMobW9kLCB+IGZlcm1lbnRhZG9yICogdGVtcG8pDQogIHByaW50KHN1bW1hcnkobWVkaWFzKSkNCiAgDQogIGNhdCgiXG5UdWtleSBIU0Q6XG4iKQ0KICB0dWtleSA8LSBUdWtleUhTRChtb2QpDQogIHByaW50KHR1a2V5KQ0KICANCiAgY2F0KCJcbkxldHJhcyBkbyBUdWtleTpcbiIpDQogIGxldHJhcyA8LSBtdWx0Y29tcExldHRlcnM0KG1vZCwgdHVrZXkpDQogIHByaW50KGxldHJhcykNCn0NCmBgYA0KDQojICoqOSBQZXJpb2RvIHggVGVtcG8qKg0KDQpgYGB7cn0NCiMgTm9ybWFsaWRhZGUgZSBob21vY2VkYXN0aWNpZGFkZQ0KdGVzdGVzID0gbGFwcGx5KHZhcmlhYmxlcywgZnVuY3Rpb24odmFyKSB7DQogIG1vZGVsbyA8LSBhb3YoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHBlcmlvZG8gKiB0ZW1wbyIpKSwgZGF0YSA9IGRhdGFiYXNlKQ0KICByZXMgPC0gcmVzaWR1YWxzKG1vZGVsbykNCiAgc2hhcGlyb19wIDwtIHNoYXBpcm8udGVzdChyZXMpJHAudmFsdWUNCiAgbGV2ZW5lX3AgPC0gbGV2ZW5lVGVzdChhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gcGVyaW9kbyAqIHRlbXBvIikpLCBkYXRhID0gZGF0YWJhc2UpWzEsICJQcig+RikiXQ0KICANCiAgZGF0YS5mcmFtZShWYXJpYXZlbCA9IHZhciwNCiAgICAgICAgICAgICBwX1NoYXBpcm8gPSByb3VuZChzaGFwaXJvX3AsIDQpLA0KICAgICAgICAgICAgIHBfTGV2ZW5lID0gcm91bmQobGV2ZW5lX3AsIDQpKQ0KfSkNCg0KcmVzdWx0YWRvX3Rlc3RlcyA9IGRvLmNhbGwocmJpbmQsIHRlc3RlcykNCnByaW50KHJlc3VsdGFkb190ZXN0ZXMpDQoNCiMgQW5vdmEgZSB0dWtleQ0KDQpmb3IgKHZhciBpbiB2YXJpYWJsZXMpIHsNCiAgY2F0KCJcblxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIFZhcmnDoXZlbDoiLCB2YXIsICIjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI1xuIikNCiAgZm9ybXVsYSA8LSBhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gcGVyaW9kbyAqIHRlbXBvIikpDQogIG1vZCA8LSBhb3YoZm9ybXVsYSwgZGF0YSA9IGRhdGFiYXNlKQ0KICANCiAgY2F0KCJBTk9WQTpcbiIpDQogIHByaW50KHN1bW1hcnkobW9kKSkNCiAgDQogIGNhdCgiXG5Nw6lkaWFzIChlbW1lYW5zKTpcbiIpDQogIG1lZGlhcyA8LSBlbW1lYW5zKG1vZCwgfiBwZXJpb2RvICogdGVtcG8pDQogIHByaW50KHN1bW1hcnkobWVkaWFzKSkNCiAgDQogIGNhdCgiXG5UdWtleSBIU0Q6XG4iKQ0KICB0dWtleSA8LSBUdWtleUhTRChtb2QpDQogIHByaW50KHR1a2V5KQ0KICANCiAgY2F0KCJcbkxldHJhcyBkbyBUdWtleTpcbiIpDQogIGxldHJhcyA8LSBtdWx0Y29tcExldHRlcnM0KG1vZCwgdHVrZXkpDQogIHByaW50KGxldHJhcykNCn0NCmBgYA0KIyAqKjEwIEZlcm1lbnRhZG9yIHggVHJhdGFtZW50byoqDQoNCmBgYHtyfQ0KIyBOb3JtYWxpZGFkZSBlIGhvbW9jZWRhc3RpY2lkYWRlDQp0ZXN0ZXMgPSBsYXBwbHkodmFyaWFibGVzLCBmdW5jdGlvbih2YXIpIHsNCiAgbW9kZWxvIDwtIGFvdihhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gZmVybWVudGFkb3IgKiB0cmF0YW1lbnRvIikpLCBkYXRhID0gZGF0YWJhc2UpDQogIHJlcyA8LSByZXNpZHVhbHMobW9kZWxvKQ0KICBzaGFwaXJvX3AgPC0gc2hhcGlyby50ZXN0KHJlcykkcC52YWx1ZQ0KICBsZXZlbmVfcCA8LSBsZXZlbmVUZXN0KGFzLmZvcm11bGEocGFzdGUodmFyLCAifiBmZXJtZW50YWRvciAqIHRyYXRhbWVudG8iKSksIGRhdGEgPSBkYXRhYmFzZSlbMSwgIlByKD5GKSJdDQogIA0KICBkYXRhLmZyYW1lKFZhcmlhdmVsID0gdmFyLA0KICAgICAgICAgICAgIHBfU2hhcGlybyA9IHJvdW5kKHNoYXBpcm9fcCwgNCksDQogICAgICAgICAgICAgcF9MZXZlbmUgPSByb3VuZChsZXZlbmVfcCwgNCkpDQp9KQ0KDQpyZXN1bHRhZG9fdGVzdGVzID0gZG8uY2FsbChyYmluZCwgdGVzdGVzKQ0KcHJpbnQocmVzdWx0YWRvX3Rlc3RlcykNCg0KIyBBbm92YSBlIHR1a2V5DQoNCmZvciAodmFyIGluIHZhcmlhYmxlcykgew0KICBjYXQoIlxuXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgVmFyacOhdmVsOiIsIHZhciwgIiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXG4iKQ0KICBmb3JtdWxhIDwtIGFzLmZvcm11bGEocGFzdGUodmFyLCAifiBmZXJtZW50YWRvciAqIHRyYXRhbWVudG8iKSkNCiAgbW9kIDwtIGFvdihmb3JtdWxhLCBkYXRhID0gZGF0YWJhc2UpDQogIA0KICBjYXQoIkFOT1ZBOlxuIikNCiAgcHJpbnQoc3VtbWFyeShtb2QpKQ0KICANCiAgY2F0KCJcbk3DqWRpYXMgKGVtbWVhbnMpOlxuIikNCiAgbWVkaWFzIDwtIGVtbWVhbnMobW9kLCB+IGZlcm1lbnRhZG9yICogdHJhdGFtZW50bykNCiAgcHJpbnQoc3VtbWFyeShtZWRpYXMpKQ0KICANCiAgY2F0KCJcblR1a2V5IEhTRDpcbiIpDQogIHR1a2V5IDwtIFR1a2V5SFNEKG1vZCkNCiAgcHJpbnQodHVrZXkpDQogIA0KICBjYXQoIlxuTGV0cmFzIGRvIFR1a2V5OlxuIikNCiAgbGV0cmFzIDwtIG11bHRjb21wTGV0dGVyczQobW9kLCB0dWtleSkNCiAgcHJpbnQobGV0cmFzKQ0KfQ0KYGBgDQoNCiMgKioxMSBQZXJpb2RvIHggVHJhdGFtZW50byoqDQoNCmBgYHtyfQ0KIyBOb3JtYWxpZGFkZSBlIGhvbW9jZWRhc3RpY2lkYWRlDQp0ZXN0ZXMgPSBsYXBwbHkodmFyaWFibGVzLCBmdW5jdGlvbih2YXIpIHsNCiAgbW9kZWxvIDwtIGFvdihhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gcGVyaW9kbyAqIHRyYXRhbWVudG8iKSksIGRhdGEgPSBkYXRhYmFzZSkNCiAgcmVzIDwtIHJlc2lkdWFscyhtb2RlbG8pDQogIHNoYXBpcm9fcCA8LSBzaGFwaXJvLnRlc3QocmVzKSRwLnZhbHVlDQogIGxldmVuZV9wIDwtIGxldmVuZVRlc3QoYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHBlcmlvZG8gKiB0cmF0YW1lbnRvIikpLCBkYXRhID0gZGF0YWJhc2UpWzEsICJQcig+RikiXQ0KICANCiAgZGF0YS5mcmFtZShWYXJpYXZlbCA9IHZhciwNCiAgICAgICAgICAgICBwX1NoYXBpcm8gPSByb3VuZChzaGFwaXJvX3AsIDQpLA0KICAgICAgICAgICAgIHBfTGV2ZW5lID0gcm91bmQobGV2ZW5lX3AsIDQpKQ0KfSkNCg0KcmVzdWx0YWRvX3Rlc3RlcyA9IGRvLmNhbGwocmJpbmQsIHRlc3RlcykNCnByaW50KHJlc3VsdGFkb190ZXN0ZXMpDQoNCiMgQW5vdmEgZSB0dWtleQ0KDQpmb3IgKHZhciBpbiB2YXJpYWJsZXMpIHsNCiAgY2F0KCJcblxuIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIFZhcmnDoXZlbDoiLCB2YXIsICIjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI1xuIikNCiAgZm9ybXVsYSA8LSBhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gcGVyaW9kbyAqIHRyYXRhbWVudG8iKSkNCiAgbW9kIDwtIGFvdihmb3JtdWxhLCBkYXRhID0gZGF0YWJhc2UpDQogIA0KICBjYXQoIkFOT1ZBOlxuIikNCiAgcHJpbnQoc3VtbWFyeShtb2QpKQ0KICANCiAgY2F0KCJcbk3DqWRpYXMgKGVtbWVhbnMpOlxuIikNCiAgbWVkaWFzIDwtIGVtbWVhbnMobW9kLCB+IHBlcmlvZG8gKiB0cmF0YW1lbnRvKQ0KICBwcmludChzdW1tYXJ5KG1lZGlhcykpDQogIA0KICBjYXQoIlxuVHVrZXkgSFNEOlxuIikNCiAgdHVrZXkgPC0gVHVrZXlIU0QobW9kKQ0KICBwcmludCh0dWtleSkNCiAgDQogIGNhdCgiXG5MZXRyYXMgZG8gVHVrZXk6XG4iKQ0KICBsZXRyYXMgPC0gbXVsdGNvbXBMZXR0ZXJzNChtb2QsIHR1a2V5KQ0KICBwcmludChsZXRyYXMpDQp9DQpgYGANCg0KIyAqKjEyIFRlbXBvIHggVHJhdGFtZW50byoqDQoNCmBgYHtyfQ0KIyBOb3JtYWxpZGFkZSBlIGhvbW9jZWRhc3RpY2lkYWRlDQp0ZXN0ZXMgPSBsYXBwbHkodmFyaWFibGVzLCBmdW5jdGlvbih2YXIpIHsNCiAgbW9kZWxvIDwtIGFvdihhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gdGVtcG8gKiB0cmF0YW1lbnRvIikpLCBkYXRhID0gZGF0YWJhc2UpDQogIHJlcyA8LSByZXNpZHVhbHMobW9kZWxvKQ0KICBzaGFwaXJvX3AgPC0gc2hhcGlyby50ZXN0KHJlcykkcC52YWx1ZQ0KICBsZXZlbmVfcCA8LSBsZXZlbmVUZXN0KGFzLmZvcm11bGEocGFzdGUodmFyLCAifiB0ZW1wbyAqIHRyYXRhbWVudG8iKSksIGRhdGEgPSBkYXRhYmFzZSlbMSwgIlByKD5GKSJdDQogIA0KICBkYXRhLmZyYW1lKFZhcmlhdmVsID0gdmFyLA0KICAgICAgICAgICAgIHBfU2hhcGlybyA9IHJvdW5kKHNoYXBpcm9fcCwgNCksDQogICAgICAgICAgICAgcF9MZXZlbmUgPSByb3VuZChsZXZlbmVfcCwgNCkpDQp9KQ0KDQpyZXN1bHRhZG9fdGVzdGVzID0gZG8uY2FsbChyYmluZCwgdGVzdGVzKQ0KcHJpbnQocmVzdWx0YWRvX3Rlc3RlcykNCg0KIyBBbm92YSBlIHR1a2V5DQoNCmZvciAodmFyIGluIHZhcmlhYmxlcykgew0KICBjYXQoIlxuXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgVmFyacOhdmVsOiIsIHZhciwgIiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjXG4iKQ0KICBmb3JtdWxhIDwtIGFzLmZvcm11bGEocGFzdGUodmFyLCAifiB0ZW1wbyAqIHRyYXRhbWVudG8iKSkNCiAgbW9kIDwtIGFvdihmb3JtdWxhLCBkYXRhID0gZGF0YWJhc2UpDQogIA0KICBjYXQoIkFOT1ZBOlxuIikNCiAgcHJpbnQoc3VtbWFyeShtb2QpKQ0KICANCiAgY2F0KCJcbk3DqWRpYXMgKGVtbWVhbnMpOlxuIikNCiAgbWVkaWFzIDwtIGVtbWVhbnMobW9kLCB+IHRlbXBvICogdHJhdGFtZW50bykNCiAgcHJpbnQoc3VtbWFyeShtZWRpYXMpKQ0KICANCiAgY2F0KCJcblR1a2V5IEhTRDpcbiIpDQogIHR1a2V5IDwtIFR1a2V5SFNEKG1vZCkNCiAgcHJpbnQodHVrZXkpDQogIA0KICBjYXQoIlxuTGV0cmFzIGRvIFR1a2V5OlxuIikNCiAgbGV0cmFzIDwtIG11bHRjb21wTGV0dGVyczQobW9kLCB0dWtleSkNCiAgcHJpbnQobGV0cmFzKQ0KfQ0KYGBgDQo=