Teorema del límite central

Promedios o sumas de variables i.i.d. cuando la varianza es finita y acotada tiende a una normal

Problema de Galton

y<-NULL
for(i in 1:1000){
x<-2*rbinom(100,1,0.5)-1
x
y[i]<-sum(x)
}
y
##    [1] -12   4   4   8  -2  -2 -12 -12 -14  16  -6  10  -6  -6 -26  16   0 -14
##   [19]  12   4  22  -8  18 -20 -20 -14  -6  14  10   4   4 -12   2  -6   4  -4
##   [37]   2  14 -22   0 -16 -12   2  14   4   6   2  12 -16 -12  14  12  -4   8
##   [55] -12   8   6   0  14 -12 -26  18 -10  -8   2   0   8  20  -2   4  -8   0
##   [73]   0  12   6   0 -18  -4  14 -10   2   2   8   4 -10  10  -2  -4  20  -2
##   [91]  -6 -12   0   4 -14  10   2  -2  -8   0   6   8   4  -6   0  -2  24 -12
##  [109]  16  22  14   4 -10   2   6   8 -18  -4  -8   4  24   4 -10 -10 -20   0
##  [127]   0  -8  -2   2  -8   0 -16  10   8  -2  -4  -6  12  10  -8  -2   2  16
##  [145]   6   4  -8   0  -6  12  -4   4   0   4  -8 -10  -6   2   2 -20  12   6
##  [163]   4   4   0  -2  14   2  -2   0 -16   8  -2 -14  -2   4   2 -20   8  -8
##  [181]  -4 -16 -16  10   0  14  10  14  -2  10 -10   4  -6 -18  -2  -6  16  10
##  [199]   6   2  -8   6  -8   6 -10  18 -14  -6  -8   4  10  -6  -8 -10   4  -4
##  [217]   2 -20  -6   8 -18  20 -18   6  -4  -8   6   8   4 -10  -2 -12  -8  -4
##  [235] -10  -4  -6   0   2  16   0 -26 -10  10  -4 -12   4 -10 -22  -2   0   2
##  [253] -18 -12 -10  -2 -10  -4 -14   4  -6 -12   8   8   0  10   8  -8   4 -10
##  [271]  -6   8 -14 -10  -2   4 -24   4  -6  -2  -4   4 -10  -6  18 -22  10  12
##  [289]  14  -4   8  -2   8  -6   8 -14  -2  -8  -2  -2 -28   0  18   8  16  10
##  [307] -12  -6   6  -8 -22 -14 -12 -16   2 -14  20   0 -10   0   2   6   0  -4
##  [325]   0   4 -14  14  12   0  20  28  -4   8  -4   0  -4  12  10   0   4 -16
##  [343] -12   2  12  10  -4  22  10  -4 -10   0  -4  -6  10   2  22  -4  36 -16
##  [361]   0   4  -6   6 -14   6  -8 -10   2   4   4 -10  -8 -12   8 -12   2  10
##  [379]   2   0   6   2 -10   0   4   2  14  -4   8  -4  -8   2   8   2   8  10
##  [397]  -2   4   2   0  -2 -10   0  12   8   2  -4  -4   2   2  14   0   4 -10
##  [415] -20 -12 -14   2   0 -12   0   4   6   0   0  -8  14   2   0 -12   4 -16
##  [433]  -2   6   8   4   0  -6  -4  -2  22   8   0 -16   8  -8   6   6 -12   4
##  [451] -22   4   6  -4   8   2 -12 -12   2   4  -8   0   0  -4 -12   2  -2  10
##  [469]   4  -2   6   0  10  -2   0  -6   8  -6   0   2  -4 -14 -10   4   6   8
##  [487]  32   6  -6   4   0   2  -8  -6  -6   6  -4  -4   4  -6  -8  -4   0   4
##  [505]  -4   2  -6  12  12   8  -4 -14 -12  -4 -10   8   2  10 -10  -2  -6 -16
##  [523]   2   8   8  -6  10  12   6  16  14   0  -2   0 -14 -14  -8 -14 -12  -2
##  [541]   2  -4 -16  20   0  -4 -10  16  12   2   4  -4  12   6 -10 -12  -6  22
##  [559]  -6 -10  16 -10  -2  14  -6  10   2  -8   4   4  14   0  -4   0  10  -6
##  [577] -18  -8  10 -10 -12   2  -4  -8  -8   8   6   8   2   2 -10 -20  14  12
##  [595]   8  -2  12 -10 -10   6   2  -8   4   4   8 -24   8  26  -6  -8  -2  -6
##  [613]  -2   8  -6  -4   6   6 -10 -10   4 -20 -12   6   0  -6  18  -2  18 -14
##  [631]   4   2  -6  10   4 -10  -2  16 -14   8  -6  -8   0   8   4   4   0   8
##  [649] -12 -24   4   4  -4  10   4   8  10  10  -2   2   6   0  -4  -8  -6   8
##  [667] -12  -8  -8  16  12   8 -12  22  -6   6   4   2  -8   4   2  -2  16  -8
##  [685]  -8  -8   0 -12  -2 -16  -6   4   0 -14 -12 -10   4  -8  -6   2   2  -4
##  [703]   4 -12  -2 -18  -2   2 -20   0  -4   0   2 -10   8  -2 -20  12 -14  -4
##  [721]  -4  14   0  -4   0  18  12  -8 -16   0   0  -6 -18 -20   2   4  14  20
##  [739]  14  10  -2  -4 -12   4  -2   2   0  -4  12  -4 -12   4  -6  -8 -12 -16
##  [757]  20  18   8  -2 -12 -12   2   6  -4   2  12  -4 -16 -14  -4   6  -4   4
##  [775] -18   8   4  -6   6 -14  16  14 -14 -10   0 -12   4  -4  16  -2   4   4
##  [793]   0  -2 -12  -4   6 -22 -10  -4   2   6  -2   2  -6  -4  -2   2   2   4
##  [811]  -4  -6 -14  -2   2  -4  -4 -12   0   6 -14  10 -12   8 -12  10   8   0
##  [829]  14  10  -4   2   8   4   0 -12   4  10   4  -2 -14  -6   8  -4  -2   4
##  [847]  -4   0  -6  10  -6  -4  -6 -22   4   4  -8   4 -18 -16   2  -2  -6  -8
##  [865] -16   0   0  -6 -10   4   4 -12  14  -2  -4   8   6   6   2 -12  -6  -4
##  [883]  16  -4   0   2 -10   4   4  -4  12   0   8   2  -8   4   6  -6   6  -2
##  [901]  18   8  -6   2 -18  -2 -10   0  16   2  -6  10   4  10   6 -14  12  22
##  [919]   2  -4   6   8  10   0 -18   4 -12   0 -12   4   4   0   2 -16 -16   6
##  [937]  -4  14   4  -2   6  -4 -20   2   0  -6  10  12  12  10 -18  -8 -22  10
##  [955]  -8   2 -12   2  -8 -10  -8  10   0  10  -4  -6  10  -4  12  14  -8   0
##  [973]  10  10 -24  -2  -6   4  12  24   0 -14   8  16  12  -8  -2 -16 -12   6
##  [991] -20  -4  -2   4  -2  -6 -16  -8  14  -4
hist(y)

plot(density(y))

Ejercicios

r: Random

p: Porbablity

d: Density

x<-seq(-5,5,length=1000)
d1<-dnorm(x)
d2<-dnorm(x,0,1.5)
d3<-dnorm(x,0,2)
plot(x,d1,col="blue")+lines(x,d2,col="red")+lines(x,d3,col="green")

## integer(0)
  1. Dada una variable aleatoria continua Z, con distribución normal estándar, es decir, N(0;1), encuentre las siguientes probabilidades, usando la tabla. a) (0 ≤ ≤1,25). Rpta: 0,3944 b) ( ≥1,25). Rpta: 0,1056 c) ( ≤−1,25). Rpta: 0,1056 d) (0≤ ≤1,33). Rpta: 0,4082 e) ( ≥1,33). Rpta: 0,0918 f) (−1,33 ≤ ≤0). Rpta: 0,4082
pnorm(1.25,0,1)-pnorm(0,0,1)
## [1] 0.3943502
1-pnorm(1.25,0,1)
## [1] 0.1056498
pnorm(-1.25,0,1)
## [1] 0.1056498
pnorm(1.33,0,1)-pnorm(0,0,1)
## [1] 0.4082409
  1. El peso de cierto modelo de baterías está normalmente distribuido con una media de 6g y desviación estándar de 2g. Determine el porcentaje de baterías cuyo peso es mayor de 8g.
1-pnorm(8,6,2)
## [1] 0.1586553
  1. Los precios de las acciones de cierta industria se distribuyen en forma normal con media de $20 y desviación estándar de $3. ¿Cuál es la probabilidad de que el precio de las acciones de una empresa se encuentre entre $18 y $20?
pnorm(20,20,3)-pnorm(18,20,3)
## [1] 0.2475075
x<-seq(12,28,length=1000)
d<-dnorm(x,20,3)
plot(x,d,type="l",col="#a613d9")+lines(abline(v=20), col = "#a613d9")+lines(abline(v=18), col = "#a613d9")

## integer(0)

Cuantiles: q

Si X es una variable aleatoria continua, distribuida de forma normal, con media de 18 y varianza de 6,25. Encontrar: a) el valor de a, tal que ( ≥ ) =0,1814. Rpta: 20,275 b) el valor de c, tal que ( < )=0,2236.

qnorm(1-0.1814,18,sqrt(6.25))
## [1] 20.27511
qnorm(0.2236,18,sqrt(6.25))
## [1] 16.09977