Ligand Receptor analysis plot aggregate
library(tidyverse)
library(magrittr)
library(liana)
show_resources()
[1] "Default" "Consensus" "Baccin2019" "CellCall" "CellChatDB"
[6] "Cellinker" "CellPhoneDB" "CellTalkDB" "connectomeDB2020" "EMBRACE"
[11] "Guide2Pharma" "HPMR" "ICELLNET" "iTALK" "Kirouac2010"
[16] "LRdb" "Ramilowski2015" "OmniPath" "MouseConsensus"
# Resource currently included in OmniPathR (and hence `liana`) include:
show_methods()
[1] "connectome" "logfc" "natmi" "sca" "cellphonedb"
[6] "cytotalk" "call_squidpy" "call_cellchat" "call_connectome" "call_sca"
[11] "call_italk" "call_natmi"
liana_output %>% dplyr::glimpse()
Rows: 18,011
Columns: 16
$ source <chr> "11", "11", "1", "1", "11", "1", "1", "12", "11", "7", "8", "12", "13", "9", "…
$ target <chr> "5", "8", "1", "1", "11", "6", "1", "1", "12", "12", "12", "12", "12", "12", "…
$ ligand.complex <chr> "GZMB", "GZMB", "VWF", "ICAM4", "GZMB", "HDC", "SORBS1", "CXCL8", "LGALS1", "L…
$ receptor.complex <chr> "IGF2R", "IGF2R", "ITGA9", "ITGA2B", "IGF2R", "HRH2", "INSR", "CD79A", "CD69",…
$ aggregate_rank <dbl> 2.542844e-07, 3.980714e-07, 6.163933e-07, 6.163933e-07, 3.044809e-06, 3.446445…
$ mean_rank <dbl> 1308.8, 1396.2, 3360.6, 3316.9, 1616.6, 2438.8, 3901.4, 1138.2, 500.6, 553.4, …
$ natmi.edge_specificity <dbl> 0.17942744, 0.16316430, 0.98887316, 0.98567044, 0.12868437, 0.17540981, 0.9187…
$ natmi.rank <dbl> 23, 35, 1, 2, 71, 26, 3, 7, 299, 390, 417, 434, 439, 483, 501, 528, 651, 1139,…
$ connectome.weight_sc <dbl> 4.5597953, 4.5030352, 7.1353034, 7.3180344, 4.3826964, 4.1193760, 5.4202919, 3…
$ connectome.rank <dbl> 31, 36, 2, 1, 51, 69, 6, 102, 254, 267, 287, 300, 303, 342, 345, 355, 417, 495…
$ logfc.logfc_comb <dbl> 1.5768442, 1.5504295, 0.6620321, 0.5330281, 1.4625134, 0.8680215, 0.3414363, 1…
$ logfc.rank <dbl> 3, 4, 212, 423, 5, 74, 1311, 1, 2, 15, 22, 30, 33, 58, 64, 103, 324, 39, 45, 1…
$ sca.LRscore <dbl> 0.8000240, 0.7923152, 0.5316317, 0.5467204, 0.7721058, 0.6836826, 0.4602975, 0…
$ sca.rank <dbl> 5150.0, 5569.0, 15251.0, 14821.5, 6619.0, 10688.0, 16850.0, 4244.0, 611.0, 758…
$ cellphonedb.pvalue <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0…
$ cellphonedb.rank <dbl> 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0…
# liana_output <- liana_output %>%
# liana_aggregate()
#> Now aggregating natmi
#> Now aggregating connectome
#> Now aggregating logfc
#> Now aggregating sca
#> Now aggregating cellphonedb
#> Aggregating Ranks
dplyr::glimpse(liana_output)
Rows: 18,011
Columns: 16
$ source <chr> "11", "11", "1", "1", "11", "1", "1", "12", "11", "7", "8", "12", "13", "9", "…
$ target <chr> "5", "8", "1", "1", "11", "6", "1", "1", "12", "12", "12", "12", "12", "12", "…
$ ligand.complex <chr> "GZMB", "GZMB", "VWF", "ICAM4", "GZMB", "HDC", "SORBS1", "CXCL8", "LGALS1", "L…
$ receptor.complex <chr> "IGF2R", "IGF2R", "ITGA9", "ITGA2B", "IGF2R", "HRH2", "INSR", "CD79A", "CD69",…
$ aggregate_rank <dbl> 2.542844e-07, 3.980714e-07, 6.163933e-07, 6.163933e-07, 3.044809e-06, 3.446445…
$ mean_rank <dbl> 1308.8, 1396.2, 3360.6, 3316.9, 1616.6, 2438.8, 3901.4, 1138.2, 500.6, 553.4, …
$ natmi.edge_specificity <dbl> 0.17942744, 0.16316430, 0.98887316, 0.98567044, 0.12868437, 0.17540981, 0.9187…
$ natmi.rank <dbl> 23, 35, 1, 2, 71, 26, 3, 7, 299, 390, 417, 434, 439, 483, 501, 528, 651, 1139,…
$ connectome.weight_sc <dbl> 4.5597953, 4.5030352, 7.1353034, 7.3180344, 4.3826964, 4.1193760, 5.4202919, 3…
$ connectome.rank <dbl> 31, 36, 2, 1, 51, 69, 6, 102, 254, 267, 287, 300, 303, 342, 345, 355, 417, 495…
$ logfc.logfc_comb <dbl> 1.5768442, 1.5504295, 0.6620321, 0.5330281, 1.4625134, 0.8680215, 0.3414363, 1…
$ logfc.rank <dbl> 3, 4, 212, 423, 5, 74, 1311, 1, 2, 15, 22, 30, 33, 58, 64, 103, 324, 39, 45, 1…
$ sca.LRscore <dbl> 0.8000240, 0.7923152, 0.5316317, 0.5467204, 0.7721058, 0.6836826, 0.4602975, 0…
$ sca.rank <dbl> 5150.0, 5569.0, 15251.0, 14821.5, 6619.0, 10688.0, 16850.0, 4244.0, 611.0, 758…
$ cellphonedb.pvalue <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0…
$ cellphonedb.rank <dbl> 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0…