1. load libraries

2. load seurat object

#Load Seurat Object
load("/home/nabbasi/isilon/To_Transfer_between_computers/23-Harmony_Integration/0-robj/5-Harmony_Integrated_All_samples_Merged_CD4Tcells_final_Resolution_Selected_0.8_ADT_Normalized_cleaned_mt.robj")


DefaultAssay(All_sample_Merged) <- "SCT"
Erreur dans DefaultAssay(All_sample_Merged) <- "SCT" : 
  objet 'All_sample_Merged' introuvable

3. Liana analysis using scPubr

L3_only <- subset(All_samples_Merged, subset = sample == "L3")
Error in `FetchData()`:
! None of the requested variables were found: 
Run `]8;;x-r-run:rlang::last_trace()rlang::last_trace()]8;;` to see where the error occurred.

Ligand Receptor analysis plot

library(SCpubr)

# Ligand Receptor analysis plot.
p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output)
p


for (name in names(liana_output)) {
    # Save each component to a CSV file
    write.csv(liana_output[[name]], paste0("liana_L3_", name, "_L3_results.csv"), row.names = FALSE)
}

Ligand Receptor analysis plot aggregate

library(tidyverse)
library(magrittr)
library(liana)


show_resources()
 [1] "Default"          "Consensus"        "Baccin2019"       "CellCall"         "CellChatDB"      
 [6] "Cellinker"        "CellPhoneDB"      "CellTalkDB"       "connectomeDB2020" "EMBRACE"         
[11] "Guide2Pharma"     "HPMR"             "ICELLNET"         "iTALK"            "Kirouac2010"     
[16] "LRdb"             "Ramilowski2015"   "OmniPath"         "MouseConsensus"  
# Resource currently included in OmniPathR (and hence `liana`) include:
show_methods()
 [1] "connectome"      "logfc"           "natmi"           "sca"             "cellphonedb"    
 [6] "cytotalk"        "call_squidpy"    "call_cellchat"   "call_connectome" "call_sca"       
[11] "call_italk"      "call_natmi"     
liana_output %>% dplyr::glimpse()
Rows: 18,011
Columns: 16
$ source                 <chr> "11", "11", "1", "1", "11", "1", "1", "12", "11", "7", "8", "12", "13", "9", "…
$ target                 <chr> "5", "8", "1", "1", "11", "6", "1", "1", "12", "12", "12", "12", "12", "12", "…
$ ligand.complex         <chr> "GZMB", "GZMB", "VWF", "ICAM4", "GZMB", "HDC", "SORBS1", "CXCL8", "LGALS1", "L…
$ receptor.complex       <chr> "IGF2R", "IGF2R", "ITGA9", "ITGA2B", "IGF2R", "HRH2", "INSR", "CD79A", "CD69",…
$ aggregate_rank         <dbl> 2.542844e-07, 3.980714e-07, 6.163933e-07, 6.163933e-07, 3.044809e-06, 3.446445…
$ mean_rank              <dbl> 1308.8, 1396.2, 3360.6, 3316.9, 1616.6, 2438.8, 3901.4, 1138.2, 500.6, 553.4, …
$ natmi.edge_specificity <dbl> 0.17942744, 0.16316430, 0.98887316, 0.98567044, 0.12868437, 0.17540981, 0.9187…
$ natmi.rank             <dbl> 23, 35, 1, 2, 71, 26, 3, 7, 299, 390, 417, 434, 439, 483, 501, 528, 651, 1139,…
$ connectome.weight_sc   <dbl> 4.5597953, 4.5030352, 7.1353034, 7.3180344, 4.3826964, 4.1193760, 5.4202919, 3…
$ connectome.rank        <dbl> 31, 36, 2, 1, 51, 69, 6, 102, 254, 267, 287, 300, 303, 342, 345, 355, 417, 495…
$ logfc.logfc_comb       <dbl> 1.5768442, 1.5504295, 0.6620321, 0.5330281, 1.4625134, 0.8680215, 0.3414363, 1…
$ logfc.rank             <dbl> 3, 4, 212, 423, 5, 74, 1311, 1, 2, 15, 22, 30, 33, 58, 64, 103, 324, 39, 45, 1…
$ sca.LRscore            <dbl> 0.8000240, 0.7923152, 0.5316317, 0.5467204, 0.7721058, 0.6836826, 0.4602975, 0…
$ sca.rank               <dbl> 5150.0, 5569.0, 15251.0, 14821.5, 6619.0, 10688.0, 16850.0, 4244.0, 611.0, 758…
$ cellphonedb.pvalue     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0…
$ cellphonedb.rank       <dbl> 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0…
# liana_output <- liana_output %>%
#   liana_aggregate()
#> Now aggregating natmi
#> Now aggregating connectome
#> Now aggregating logfc
#> Now aggregating sca
#> Now aggregating cellphonedb
#> Aggregating Ranks

dplyr::glimpse(liana_output)
Rows: 18,011
Columns: 16
$ source                 <chr> "11", "11", "1", "1", "11", "1", "1", "12", "11", "7", "8", "12", "13", "9", "…
$ target                 <chr> "5", "8", "1", "1", "11", "6", "1", "1", "12", "12", "12", "12", "12", "12", "…
$ ligand.complex         <chr> "GZMB", "GZMB", "VWF", "ICAM4", "GZMB", "HDC", "SORBS1", "CXCL8", "LGALS1", "L…
$ receptor.complex       <chr> "IGF2R", "IGF2R", "ITGA9", "ITGA2B", "IGF2R", "HRH2", "INSR", "CD79A", "CD69",…
$ aggregate_rank         <dbl> 2.542844e-07, 3.980714e-07, 6.163933e-07, 6.163933e-07, 3.044809e-06, 3.446445…
$ mean_rank              <dbl> 1308.8, 1396.2, 3360.6, 3316.9, 1616.6, 2438.8, 3901.4, 1138.2, 500.6, 553.4, …
$ natmi.edge_specificity <dbl> 0.17942744, 0.16316430, 0.98887316, 0.98567044, 0.12868437, 0.17540981, 0.9187…
$ natmi.rank             <dbl> 23, 35, 1, 2, 71, 26, 3, 7, 299, 390, 417, 434, 439, 483, 501, 528, 651, 1139,…
$ connectome.weight_sc   <dbl> 4.5597953, 4.5030352, 7.1353034, 7.3180344, 4.3826964, 4.1193760, 5.4202919, 3…
$ connectome.rank        <dbl> 31, 36, 2, 1, 51, 69, 6, 102, 254, 267, 287, 300, 303, 342, 345, 355, 417, 495…
$ logfc.logfc_comb       <dbl> 1.5768442, 1.5504295, 0.6620321, 0.5330281, 1.4625134, 0.8680215, 0.3414363, 1…
$ logfc.rank             <dbl> 3, 4, 212, 423, 5, 74, 1311, 1, 2, 15, 22, 30, 33, 58, 64, 103, 324, 39, 45, 1…
$ sca.LRscore            <dbl> 0.8000240, 0.7923152, 0.5316317, 0.5467204, 0.7721058, 0.6836826, 0.4602975, 0…
$ sca.rank               <dbl> 5150.0, 5569.0, 15251.0, 14821.5, 6619.0, 10688.0, 16850.0, 4244.0, 611.0, 758…
$ cellphonedb.pvalue     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0…
$ cellphonedb.rank       <dbl> 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0, 1337.0…

Ligand Receptor analysis plot aggregate


liana_output %>%
  liana_dotplot(source_groups = c("2"),
                target_groups = c("6"),
                ntop = 20)


liana_output %>%
  liana_dotplot(source_groups = c("6"),
                target_groups = c("2"),
                ntop = 20)


liana_output %>%
  liana_dotplot(source_groups = c("2"),
                target_groups = c("8"),
                ntop = 20)


liana_output %>%
  liana_dotplot(source_groups = c("8"),
                target_groups = c("2"),
                ntop = 20)



liana_output %>%
  liana_dotplot(source_groups = c("6"),
                target_groups = c("8"),
                ntop = 20)


liana_output %>%
  liana_dotplot(source_groups = c("8"),
                target_groups = c("6"),
                ntop = 20)

NA
NA
NA
NA
NA
NA
NA
LS0tCnRpdGxlOiAiTElBTkEgQW5hbHlzaXMiCmF1dGhvcjogIk5hc2lyIE1haG1vb2QgQWJiYXNpIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICB0b2NfY29sbGFwc2VkOiB5ZXMKICB3b3JkX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCnN1cHByZXNzUGFja2FnZVN0YXJ0dXBNZXNzYWdlcyh7CiAgICBsaWJyYXJ5KFNldXJhdCkKICAgIGxpYnJhcnkoZHBseXIpCiAgICBsaWJyYXJ5KHBhdGNod29yaykKICAgIGxpYnJhcnkoZ2dwbG90MikKICAgIGxpYnJhcnkocGhlYXRtYXApCiAgICBsaWJyYXJ5KGVucmljaFIpCiAgICBsaWJyYXJ5KE1hdHJpeCkKICAgIGxpYnJhcnkoZWRnZVIpCiAgICBsaWJyYXJ5KE1BU1QpCiAgbGlicmFyeShTQ3B1YnIpCiAgbGlicmFyeShsaWFuYSkKfSkKCmBgYAoKCiMgMi4gbG9hZCBzZXVyYXQgb2JqZWN0CmBgYHtyIGxvYWRfc2V1cmF0fQojTG9hZCBTZXVyYXQgT2JqZWN0CmxvYWQoIi9ob21lL25hYmJhc2kvaXNpbG9uL1RvX1RyYW5zZmVyX2JldHdlZW5fY29tcHV0ZXJzLzIzLUhhcm1vbnlfSW50ZWdyYXRpb24vMC1yb2JqLzUtSGFybW9ueV9JbnRlZ3JhdGVkX0FsbF9zYW1wbGVzX01lcmdlZF9DRDRUY2VsbHNfZmluYWxfUmVzb2x1dGlvbl9TZWxlY3RlZF8wLjhfQURUX05vcm1hbGl6ZWRfY2xlYW5lZF9tdC5yb2JqIikKCgpEZWZhdWx0QXNzYXkoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAiU0NUIgoKYGBgCgojIDMuIExpYW5hIGFuYWx5c2lzIHVzaW5nIHNjUHVicgpgYGB7ciAsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xOH0KCkwzX29ubHkgPC0gc3Vic2V0KEFsbF9zYW1wbGVzX01lcmdlZCwgc3Vic2V0ID0gY2VsbF9saW5lID09ICJMMyIpCgoKCgoKbGlhbmFfb3V0cHV0IDwtIGxpYW5hOjpsaWFuYV93cmFwKHNjZSA9IEwzX29ubHksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2QgPSBjKCJuYXRtaSIsICJjb25uZWN0b21lIiwgImxvZ2ZjIiwgInNjYSIsICJjZWxscGhvbmVkYiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWRlbnRzX2NvbCA9IE5VTEwsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2ZXJib3NlID0gRkFMU0UsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhc3NheSA9ICJTQ1QiKQoKYGBgCiMjIExpZ2FuZCBSZWNlcHRvciBhbmFseXNpcyBwbG90CmBgYHtyICwgZmlnLmhlaWdodD0xNCwgZmlnLndpZHRoPTE4fQpsaWJyYXJ5KFNDcHVicikKCiMgTGlnYW5kIFJlY2VwdG9yIGFuYWx5c2lzIHBsb3QuCnAgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QobGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0KQpwCgoKZm9yIChuYW1lIGluIG5hbWVzKGxpYW5hX291dHB1dCkpIHsKICAgICMgU2F2ZSBlYWNoIGNvbXBvbmVudCB0byBhIENTViBmaWxlCiAgICB3cml0ZS5jc3YobGlhbmFfb3V0cHV0W1tuYW1lXV0sIHBhc3RlMCgibGlhbmFfTDNfIiwgbmFtZSwgIl9MM19yZXN1bHRzLmNzdiIpLCByb3cubmFtZXMgPSBGQUxTRSkKfQoKYGBgCgoKCiMjIExpZ2FuZCBSZWNlcHRvciBhbmFseXNpcyBwbG90IGFnZ3JlZ2F0ZQpgYGB7ciAsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xOH0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkobWFncml0dHIpCmxpYnJhcnkobGlhbmEpCgoKc2hvd19yZXNvdXJjZXMoKQojIFJlc291cmNlIGN1cnJlbnRseSBpbmNsdWRlZCBpbiBPbW5pUGF0aFIgKGFuZCBoZW5jZSBgbGlhbmFgKSBpbmNsdWRlOgpzaG93X21ldGhvZHMoKQoKCmxpYW5hX291dHB1dCAlPiUgZHBseXI6OmdsaW1wc2UoKQoKCiMgbGlhbmFfb3V0cHV0IDwtIGxpYW5hX291dHB1dCAlPiUKIyAgIGxpYW5hX2FnZ3JlZ2F0ZSgpCiM+IE5vdyBhZ2dyZWdhdGluZyBuYXRtaQojPiBOb3cgYWdncmVnYXRpbmcgY29ubmVjdG9tZQojPiBOb3cgYWdncmVnYXRpbmcgbG9nZmMKIz4gTm93IGFnZ3JlZ2F0aW5nIHNjYQojPiBOb3cgYWdncmVnYXRpbmcgY2VsbHBob25lZGIKIz4gQWdncmVnYXRpbmcgUmFua3MKCmRwbHlyOjpnbGltcHNlKGxpYW5hX291dHB1dCkKCgoKYGBgCgoKCgoKIyMgTGlnYW5kIFJlY2VwdG9yIGFuYWx5c2lzIHBsb3QgYWdncmVnYXRlCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgpsaWFuYV9vdXRwdXQgJT4lCiAgbGlhbmFfZG90cGxvdChzb3VyY2VfZ3JvdXBzID0gYygiMiIpLAogICAgICAgICAgICAgICAgdGFyZ2V0X2dyb3VwcyA9IGMoIjYiKSwKICAgICAgICAgICAgICAgIG50b3AgPSAyMCkKCmxpYW5hX291dHB1dCAlPiUKICBsaWFuYV9kb3RwbG90KHNvdXJjZV9ncm91cHMgPSBjKCI2IiksCiAgICAgICAgICAgICAgICB0YXJnZXRfZ3JvdXBzID0gYygiMiIpLAogICAgICAgICAgICAgICAgbnRvcCA9IDIwKQoKbGlhbmFfb3V0cHV0ICU+JQogIGxpYW5hX2RvdHBsb3Qoc291cmNlX2dyb3VwcyA9IGMoIjIiKSwKICAgICAgICAgICAgICAgIHRhcmdldF9ncm91cHMgPSBjKCI4IiksCiAgICAgICAgICAgICAgICBudG9wID0gMjApCgpsaWFuYV9vdXRwdXQgJT4lCiAgbGlhbmFfZG90cGxvdChzb3VyY2VfZ3JvdXBzID0gYygiOCIpLAogICAgICAgICAgICAgICAgdGFyZ2V0X2dyb3VwcyA9IGMoIjIiKSwKICAgICAgICAgICAgICAgIG50b3AgPSAyMCkKCgpsaWFuYV9vdXRwdXQgJT4lCiAgbGlhbmFfZG90cGxvdChzb3VyY2VfZ3JvdXBzID0gYygiNiIpLAogICAgICAgICAgICAgICAgdGFyZ2V0X2dyb3VwcyA9IGMoIjgiKSwKICAgICAgICAgICAgICAgIG50b3AgPSAyMCkKCmxpYW5hX291dHB1dCAlPiUKICBsaWFuYV9kb3RwbG90KHNvdXJjZV9ncm91cHMgPSBjKCI4IiksCiAgICAgICAgICAgICAgICB0YXJnZXRfZ3JvdXBzID0gYygiNiIpLAogICAgICAgICAgICAgICAgbnRvcCA9IDIwKQoKCgoKCgoKYGBg