data_env <- new.env()
load("D:/OLC_733/final/PISA_STU_2022 (1).rda", envir = data_env)
veri <- data_env[[ls(data_env)[1]]]
# Gerekli paketler
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Warning: package 'haven' was built under R version 4.4.3
library(forcats) # fct_reorder için
# STRATUM değişkenini etiket isimlerine dönüştür
veri <- veri %>%
mutate(STRATUM = haven::as_factor(STRATUM))
# Ortalama matematik puanını her okul türü için hesapla
ortalama_math <- veri %>%
group_by(STRATUM) %>%
summarise(ortalama_puan = mean(PV1MATH, na.rm = TRUE)) %>%
arrange(desc(ortalama_puan))
# Tabloyu yazdır
print(ortalama_math)
## # A tibble: 36 × 2
## STRATUM ortalama_puan
## <fct> <dbl>
## 1 TUR - stratum 02: Science High School - A 635.
## 2 TUR - stratum 03: Science High School - B 599.
## 3 TUR - stratum 08: Anatolian High School- A 593.
## 4 TUR - stratum 19: Anatolian Imam and Preacher High School - A 575.
## 5 TUR - stratum 04: Science High School - C 573.
## 6 TUR - stratum 09: Anatolian High School- B 564.
## 7 TUR - stratum 06: Social Sciences High School - B 545.
## 8 TUR - stratum 20: Anatolian Imam and Preacher High School - B 539.
## 9 TUR - stratum 05: Social Sciences High School - A 538.
## 10 TUR - stratum 10: Anatolian High School- C 533.
## # ℹ 26 more rows
# Grafikle göster (okul türü adlarıyla)
ggplot(ortalama_math, aes(x = fct_reorder(STRATUM, ortalama_puan), y = ortalama_puan)) +
geom_col(fill = "steelblue") +
coord_flip() +
labs(title = "Okul Turune Göre Ortalama Matematik Başarısı (PV1MATH)",
x = "Okul Turu (STRATUM Etiketi)",
y = "Ortalama Matematik Puanı") +
theme_minimal()
Matematik başarısı yönünden bazı aykırılıklar olsa da genel olarak okulların en başarılıdan en az başarılıya doğru sıralaması şu şekilde gözükmektedir.Fen liseleri, anadolu liseleri,anadolu imam hatip liseleri ve mesleki ve teknik anadolu liseleleri.
# Cinsiyet değişkenini anlamlı hale getirelim
veri <- veri %>%
mutate(CINSIYET = case_when(
ST004D01T == 1 ~ "Erkek",
ST004D01T == 2 ~ "Kız",
TRUE ~ NA_character_
)) %>%
filter(!is.na(CINSIYET))
# Okul türü ve cinsiyet bazında ortalama puan hesapla
ortalama_cinsiyet <- veri %>%
group_by(STRATUM, CINSIYET) %>%
summarise(ortalama_puan = mean(PV1MATH, na.rm = TRUE)) %>%
arrange(STRATUM, CINSIYET)
## `summarise()` has grouped output by 'STRATUM'. You can override using the
## `.groups` argument.
# Grafik
ggplot(ortalama_cinsiyet, aes(x = fct_reorder(STRATUM, ortalama_puan, .fun = mean),
y = ortalama_puan, fill = CINSIYET)) +
geom_col(position = "dodge") +
coord_flip() +
labs(title = "Okul Turune Göre Cinsiyete Göre Ortalama Matematik Puanı",
x = "Okul TUru",
y = "Ortalama Matematik Puanı",
fill = "Cinsiyet") +
theme_minimal()
Hemen hemen her okul türünde kızlar erkeklerden daha yüksek bir matematik başarısı göstermiştir diyebiliriz. Buna istisna olarak spor liseleri ve güzel sanatlar liselerinde erkekler daha başarılıdır.
## Warning: package 'ggpubr' was built under R version 4.4.3
# Korelasyon hesapla
correlation <- cor(veri$ANXMAT, veri$PV1MATH, use = "complete.obs")
# Scatter plot + regresyon çizgisi + korelasyon katsayısı
ggscatter(veri, x = "ANXMAT", y = "PV1MATH",
add = "reg.line", # Regresyon çizgisi ekle
conf.int = TRUE, # Güven aralığı
cor.coef = TRUE, # Korelasyon katsayısını göster
cor.method = "pearson",
xlab = "Matematik Kaygısı (ANXMAT)",
ylab = "Matematik Basarısı (PV1MATH)",
title = "Matematik Kaygısı ile Matematik Başarısı Arasındaki İlişki") +
theme_minimal()
## Warning: Removed 191 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 191 rows containing non-finite outside the scale range
## (`stat_cor()`).
## Warning: Removed 191 rows containing missing values or values outside the scale range
## (`geom_point()`).
Korelasyon Katsayısı (R): -0.12 Negatif yönlü zayıf bir
ilişki olduğunu söyleyebiliriz. Bu, matematik kaygısı arttıkça matematik
başarısının hafifçe azalma eğiliminde olduğunu gösterir.
Anlamlılık Düzeyi (p) < 2.2e- 16 : Korelasyonun istatistiksel olarak son derece anlamlı olduğunu söyleyebiliriz (p değeri çok küçük). Ancak, korelasyonun gücü zayıf olduğundan kaygının başarı üzerindeki etkisi sınırlı olabilir.
library(ggplot2)
library(dplyr)
# STRATUM'u faktör yapalım (eğer değilse)
veri <- veri %>%
mutate(STRATUM = as.factor(STRATUM))
# Her okul türü için scatter + regresyon çizgisi, facet_wrap ile
ggplot(veri, aes(x = ANXMAT, y = PV1MATH)) +
geom_point(alpha = 0.4, color = "blue") +
geom_smooth(method = "lm", se = TRUE, color = "red") +
facet_wrap(~ STRATUM, scales = "free") + # Her okul türü için ayrı grafik
labs(title = "Okul Turune Göre Matematik Kaygısı ile Matematik Başarısı İlişkisi",
x = "Matematik Kaygısı (ANXMAT)",
y = "Matematik Basarısı (PV1MATH)") +
theme_minimal() +
theme(strip.text = element_text(size = 8)) # Facet etiketleri okunaklı olsun
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 191 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 191 rows containing missing values or values outside the scale range
## (`geom_point()`).
Çoğu okul türünde kırmızı çizgi negatif eğimli, bu da matematik kaygısı
arttıkça matematik başarısının azaldığını gösteriyor.Bununla birlikte bu
negatif ilişki özellikle bazı okul türlerinde daha belirgin. Fen ve
Anadolu liseleri gibi akademik başarı odaklı okullarda bu etkinin daha
güçlü olduğunu gözlemliyoruz. Bu okullarda yüksek başarıya rağmen
kaygının başarıyı düşürdüğünü söyleyebiliriz. Meslek liseleri gibi
görece daha az başarılı okullarda ise daha yatay bir çizgi var. Bu da bu
okullardaki öğrencilerin başarısızlık nedenlerinin kaygıdan daha çok
başka faktörlere bağlı olduğunu gösteriyor.
## Warning: package 'tidyr' was built under R version 4.4.3
library(dplyr)
library(stringr)
alt_veri <- veri %>%
filter(str_detect(as.character(STRATUM), "stratum 02|stratum 15|stratum 35")) %>%
select(STRATUM, PV1MATH, ANXMAT, STUDYHMW) %>%
drop_na()
## Warning: package 'lavaan' was built under R version 4.4.3
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
# Modeli tanımlayalım
model_mediation <- '
STUDYHMW ~ a*ANXMAT
PV1MATH ~ b*STUDYHMW + c_prime*ANXMAT
# Dolaylı ve toplam etkiler
indirect := a*b
total := c_prime + (a*b)
'
# Modeli fit edelim
fit_mediation <- sem(model_mediation, data=alt_veri, estimator="MLR")
# Sonuçları gösterelim
summary(fit_mediation, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 8 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 5
##
## Number of observations 1131
##
## Model Test User Model:
## Standard Scaled
## Test Statistic 0.000 0.000
## Degrees of freedom 0 0
##
## Model Test Baseline Model:
##
## Test statistic 5.592 5.382
## Degrees of freedom 3 3
## P-value 0.133 0.146
## Scaling correction factor 1.039
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.000 1.000
##
## Robust Comparative Fit Index (CFI) NA
## Robust Tucker-Lewis Index (TLI) NA
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -9623.568 -9623.568
## Loglikelihood unrestricted model (H1) NA NA
##
## Akaike (AIC) 19257.135 19257.135
## Bayesian (BIC) 19282.290 19282.290
## Sample-size adjusted Bayesian (SABIC) 19266.408 19266.408
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 NA
## 90 Percent confidence interval - lower 0.000 NA
## 90 Percent confidence interval - upper 0.000 NA
## P-value H_0: RMSEA <= 0.050 NA NA
## P-value H_0: RMSEA >= 0.080 NA NA
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
## P-value H_0: Robust RMSEA <= 0.050 NA
## P-value H_0: Robust RMSEA >= 0.080 NA
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.000 0.000
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## STUDYHMW ~
## ANXMAT (a) -0.085 0.090 -0.944 0.345 -0.085 -0.032
## PV1MATH ~
## STUDYHM (b) 0.411 0.732 0.561 0.575 0.411 0.016
## ANXMAT (c_pr) -4.276 2.100 -2.037 0.042 -4.276 -0.060
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .STUDYHMW 10.970 0.310 35.403 0.000 10.970 0.999
## .PV1MATH 7683.680 378.391 20.306 0.000 7683.680 0.996
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## indirect -0.035 0.070 -0.499 0.618 -0.035 -0.000
## total -4.311 2.098 -2.055 0.040 -4.311 -0.061
orneklem2 <- function(evren, size = 20, iterasyon = 100) {
ortalamalar <- numeric(iterasyon) # iterasyon sayısı kadar boş vektör oluştur
for (i in 1:iterasyon) {
ortalamalar[i] <- mean(sample(evren, size))
}
# Örneklem dağılımının ortalaması ve standart sapması
liste <- list(
orneklem_ortalamalari = ortalamalar,
ortalama = mean(ortalamalar),
standart_sapma = sd(ortalamalar)
)
return(liste)
}
## Warning: package 'mlmRev' was built under R version 4.4.3
## Zorunlu paket yükleniyor: lme4
## Zorunlu paket yükleniyor: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
attach(Exam)
# Daha önce tanımlanan orneklem2 fonksiyonu burada tekrar kullanılıyor
orneklem2 <- function(evren, size = 10, iterasyon = 100) {
ortalamalar <- numeric(iterasyon)
for (i in 1:iterasyon) {
ortalamalar[i] <- mean(sample(evren, size))
}
list(
orneklem_ortalamalari = ortalamalar,
ortalama = mean(ortalamalar),
standart_hata = sd(ortalamalar)
)
}
# 3 farklı iterasyonla örneklemler
set.seed(123) # Aynı sonuçlar için
orneklem_5 <- orneklem2(evren = normexam, size = 10, iterasyon = 5)
orneklem_30 <- orneklem2(evren = normexam, size = 10, iterasyon = 30)
orneklem_100 <- orneklem2(evren = normexam, size = 10, iterasyon = 100)
# Grafik için
par(mfrow = c(1, 3)) # 3 grafiği yan yana çiz
hist(orneklem_5$orneklem_ortalamalari, main = "n = 10, iterasyon = 5", xlab = "Örneklem Ortalamaları", col = "lightblue")
hist(orneklem_30$orneklem_ortalamalari, main = "n = 10, iterasyon = 30", xlab = "Örneklem Ortalamaları", col = "lightgreen")
hist(orneklem_100$orneklem_ortalamalari, main = "n = 10, iterasyon = 100", xlab = "Örneklem Ortalamaları", col = "lightcoral")
## [1] 0.03052185
## [1] 0.1660067
## [1] -0.03890927
## [1] 0.2703031
## [1] 0.04972833
## [1] 0.3072292
## The following objects are masked from Exam (pos = 3):
##
## intake, normexam, schavg, schgend, school, sex, standLRT, student,
## type, vr
# Fonksiyon tanımı (önceden verilmişti)
orneklem2 <- function(evren, size = 50, iterasyon = 100) {
ortalamalar <- numeric(iterasyon)
for (i in 1:iterasyon) {
ortalamalar[i] <- mean(sample(evren, size))
}
list(
orneklem_ortalamalari = ortalamalar,
ortalama = mean(ortalamalar),
standart_hata = sd(ortalamalar)
)
}
# 3 farklı iterasyonla örneklem
set.seed(42)
orneklem_5 <- orneklem2(evren = normexam, size = 50, iterasyon = 5)
orneklem_30 <- orneklem2(evren = normexam, size = 50, iterasyon = 30)
orneklem_100 <- orneklem2(evren = normexam, size = 50, iterasyon = 100)
# Grafikler
par(mfrow = c(1, 3)) # 3 grafiği yan yana
hist(orneklem_5$orneklem_ortalamalari, main = "n = 50, iterasyon = 5", xlab = "Örneklem Ortalamaları", col = "skyblue")
hist(orneklem_30$orneklem_ortalamalari, main = "n = 50, iterasyon = 30", xlab = "Örneklem Ortalamaları", col = "lightgreen")
hist(orneklem_100$orneklem_ortalamalari, main = "n = 50, iterasyon = 100", xlab = "Örneklem Ortalamaları", col = "salmon")
## [1] 0.1147119
## [1] 0.2479696
## [1] 0.01763558
## [1] 0.1277681
## [1] -0.007014406
## [1] 0.1382155
## Warning: package 'mirt' was built under R version 4.4.3
## Zorunlu paket yükleniyor: stats4
## Zorunlu paket yükleniyor: lattice
##
## Attaching package: 'mirt'
## The following object is masked from 'package:lme4':
##
## fixef
## Warning: package 'psych' was built under R version 4.4.3
##
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
##
## cor2cov
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
# Veri setini yükle
binary_data <- readRDS("D:/OLC_733/final/binary.Rds")
# 1 faktörlü model kur
mod1 <- mirt(binary_data, 1)
## Iteration: 1, Log-Lik: -23301.605, Max-Change: 0.36415Iteration: 2, Log-Lik: -23195.704, Max-Change: 0.12903Iteration: 3, Log-Lik: -23187.443, Max-Change: 0.05170Iteration: 4, Log-Lik: -23186.110, Max-Change: 0.02777Iteration: 5, Log-Lik: -23185.667, Max-Change: 0.01436Iteration: 6, Log-Lik: -23185.488, Max-Change: 0.00798Iteration: 7, Log-Lik: -23185.364, Max-Change: 0.00208Iteration: 8, Log-Lik: -23185.346, Max-Change: 0.00136Iteration: 9, Log-Lik: -23185.337, Max-Change: 0.00109Iteration: 10, Log-Lik: -23185.327, Max-Change: 0.00053Iteration: 11, Log-Lik: -23185.326, Max-Change: 0.00042Iteration: 12, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 13, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 14, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 15, Log-Lik: -23185.324, Max-Change: 0.00016Iteration: 16, Log-Lik: -23185.323, Max-Change: 0.00010
## Iteration: 1, Log-Lik: -23972.798, Max-Change: 0.37715Iteration: 2, Log-Lik: -23335.709, Max-Change: 0.21477Iteration: 3, Log-Lik: -23215.916, Max-Change: 0.13098Iteration: 4, Log-Lik: -23180.097, Max-Change: 0.08397Iteration: 5, Log-Lik: -23167.091, Max-Change: 0.05065Iteration: 6, Log-Lik: -23162.020, Max-Change: 0.03130Iteration: 7, Log-Lik: -23159.924, Max-Change: 0.02088Iteration: 8, Log-Lik: -23159.004, Max-Change: 0.01372Iteration: 9, Log-Lik: -23158.556, Max-Change: 0.01105Iteration: 10, Log-Lik: -23158.182, Max-Change: 0.00776Iteration: 11, Log-Lik: -23158.131, Max-Change: 0.00685Iteration: 12, Log-Lik: -23158.093, Max-Change: 0.00642Iteration: 13, Log-Lik: -23157.963, Max-Change: 0.00245Iteration: 14, Log-Lik: -23157.952, Max-Change: 0.00239Iteration: 15, Log-Lik: -23157.944, Max-Change: 0.00233Iteration: 16, Log-Lik: -23157.912, Max-Change: 0.00209Iteration: 17, Log-Lik: -23157.908, Max-Change: 0.00197Iteration: 18, Log-Lik: -23157.904, Max-Change: 0.00191Iteration: 19, Log-Lik: -23157.885, Max-Change: 0.00136Iteration: 20, Log-Lik: -23157.883, Max-Change: 0.00129Iteration: 21, Log-Lik: -23157.881, Max-Change: 0.00124Iteration: 22, Log-Lik: -23157.870, Max-Change: 0.00102Iteration: 23, Log-Lik: -23157.868, Max-Change: 0.00102Iteration: 24, Log-Lik: -23157.867, Max-Change: 0.00101Iteration: 25, Log-Lik: -23157.857, Max-Change: 0.00090Iteration: 26, Log-Lik: -23157.856, Max-Change: 0.00088Iteration: 27, Log-Lik: -23157.854, Max-Change: 0.00086Iteration: 28, Log-Lik: -23157.846, Max-Change: 0.00076Iteration: 29, Log-Lik: -23157.845, Max-Change: 0.00075Iteration: 30, Log-Lik: -23157.844, Max-Change: 0.00074Iteration: 31, Log-Lik: -23157.837, Max-Change: 0.00067Iteration: 32, Log-Lik: -23157.836, Max-Change: 0.00066Iteration: 33, Log-Lik: -23157.835, Max-Change: 0.00066Iteration: 34, Log-Lik: -23157.828, Max-Change: 0.00060Iteration: 35, Log-Lik: -23157.827, Max-Change: 0.00060Iteration: 36, Log-Lik: -23157.826, Max-Change: 0.00060Iteration: 37, Log-Lik: -23157.820, Max-Change: 0.00060Iteration: 38, Log-Lik: -23157.819, Max-Change: 0.00060Iteration: 39, Log-Lik: -23157.819, Max-Change: 0.00060Iteration: 40, Log-Lik: -23157.813, Max-Change: 0.00060Iteration: 41, Log-Lik: -23157.812, Max-Change: 0.00059Iteration: 42, Log-Lik: -23157.811, Max-Change: 0.00059Iteration: 43, Log-Lik: -23157.806, Max-Change: 0.00059Iteration: 44, Log-Lik: -23157.806, Max-Change: 0.00059Iteration: 45, Log-Lik: -23157.805, Max-Change: 0.00059Iteration: 46, Log-Lik: -23157.800, Max-Change: 0.00058Iteration: 47, Log-Lik: -23157.799, Max-Change: 0.00058Iteration: 48, Log-Lik: -23157.799, Max-Change: 0.00058Iteration: 49, Log-Lik: -23157.794, Max-Change: 0.00058Iteration: 50, Log-Lik: -23157.794, Max-Change: 0.00058Iteration: 51, Log-Lik: -23157.793, Max-Change: 0.00058Iteration: 52, Log-Lik: -23157.789, Max-Change: 0.00057Iteration: 53, Log-Lik: -23157.788, Max-Change: 0.00057Iteration: 54, Log-Lik: -23157.787, Max-Change: 0.00057Iteration: 55, Log-Lik: -23157.783, Max-Change: 0.00027Iteration: 56, Log-Lik: -23157.783, Max-Change: 0.00027Iteration: 57, Log-Lik: -23157.783, Max-Change: 0.00028Iteration: 58, Log-Lik: -23157.780, Max-Change: 0.00031Iteration: 59, Log-Lik: -23157.780, Max-Change: 0.00031Iteration: 60, Log-Lik: -23157.780, Max-Change: 0.00031Iteration: 61, Log-Lik: -23157.777, Max-Change: 0.00031Iteration: 62, Log-Lik: -23157.777, Max-Change: 0.00031Iteration: 63, Log-Lik: -23157.777, Max-Change: 0.00031Iteration: 64, Log-Lik: -23157.775, Max-Change: 0.00031Iteration: 65, Log-Lik: -23157.774, Max-Change: 0.00031Iteration: 66, Log-Lik: -23157.774, Max-Change: 0.00031Iteration: 67, Log-Lik: -23157.772, Max-Change: 0.00031Iteration: 68, Log-Lik: -23157.772, Max-Change: 0.00031Iteration: 69, Log-Lik: -23157.771, Max-Change: 0.00031Iteration: 70, Log-Lik: -23157.769, Max-Change: 0.00031Iteration: 71, Log-Lik: -23157.769, Max-Change: 0.00031Iteration: 72, Log-Lik: -23157.769, Max-Change: 0.00031Iteration: 73, Log-Lik: -23157.767, Max-Change: 0.00031Iteration: 74, Log-Lik: -23157.766, Max-Change: 0.00031Iteration: 75, Log-Lik: -23157.766, Max-Change: 0.00031Iteration: 76, Log-Lik: -23157.764, Max-Change: 0.00031Iteration: 77, Log-Lik: -23157.764, Max-Change: 0.00031Iteration: 78, Log-Lik: -23157.763, Max-Change: 0.00030Iteration: 79, Log-Lik: -23157.762, Max-Change: 0.00030Iteration: 80, Log-Lik: -23157.761, Max-Change: 0.00030Iteration: 81, Log-Lik: -23157.761, Max-Change: 0.00030Iteration: 82, Log-Lik: -23157.759, Max-Change: 0.00030Iteration: 83, Log-Lik: -23157.759, Max-Change: 0.00030Iteration: 84, Log-Lik: -23157.759, Max-Change: 0.00030Iteration: 85, Log-Lik: -23157.757, Max-Change: 0.00030Iteration: 86, Log-Lik: -23157.756, Max-Change: 0.00030Iteration: 87, Log-Lik: -23157.756, Max-Change: 0.00030Iteration: 88, Log-Lik: -23157.754, Max-Change: 0.00029Iteration: 89, Log-Lik: -23157.754, Max-Change: 0.00029Iteration: 90, Log-Lik: -23157.754, Max-Change: 0.00029Iteration: 91, Log-Lik: -23157.752, Max-Change: 0.00029Iteration: 92, Log-Lik: -23157.752, Max-Change: 0.00029Iteration: 93, Log-Lik: -23157.752, Max-Change: 0.00029Iteration: 94, Log-Lik: -23157.750, Max-Change: 0.00029Iteration: 95, Log-Lik: -23157.750, Max-Change: 0.00029Iteration: 96, Log-Lik: -23157.749, Max-Change: 0.00029Iteration: 97, Log-Lik: -23157.748, Max-Change: 0.00029Iteration: 98, Log-Lik: -23157.748, Max-Change: 0.00029Iteration: 99, Log-Lik: -23157.747, Max-Change: 0.00029Iteration: 100, Log-Lik: -23157.746, Max-Change: 0.00028Iteration: 101, Log-Lik: -23157.745, Max-Change: 0.00028Iteration: 102, Log-Lik: -23157.745, Max-Change: 0.00028Iteration: 103, Log-Lik: -23157.744, Max-Change: 0.00028Iteration: 104, Log-Lik: -23157.743, Max-Change: 0.00028Iteration: 105, Log-Lik: -23157.743, Max-Change: 0.00028Iteration: 106, Log-Lik: -23157.742, Max-Change: 0.00028Iteration: 107, Log-Lik: -23157.741, Max-Change: 0.00028Iteration: 108, Log-Lik: -23157.741, Max-Change: 0.00028Iteration: 109, Log-Lik: -23157.740, Max-Change: 0.00027Iteration: 110, Log-Lik: -23157.739, Max-Change: 0.00027Iteration: 111, Log-Lik: -23157.739, Max-Change: 0.00027Iteration: 112, Log-Lik: -23157.738, Max-Change: 0.00027Iteration: 113, Log-Lik: -23157.737, Max-Change: 0.00027Iteration: 114, Log-Lik: -23157.737, Max-Change: 0.00027Iteration: 115, Log-Lik: -23157.736, Max-Change: 0.00027Iteration: 116, Log-Lik: -23157.736, Max-Change: 0.00027Iteration: 117, Log-Lik: -23157.735, Max-Change: 0.00027Iteration: 118, Log-Lik: -23157.734, Max-Change: 0.00027Iteration: 119, Log-Lik: -23157.734, Max-Change: 0.00027Iteration: 120, Log-Lik: -23157.734, Max-Change: 0.00026Iteration: 121, Log-Lik: -23157.732, Max-Change: 0.00026Iteration: 122, Log-Lik: -23157.732, Max-Change: 0.00026Iteration: 123, Log-Lik: -23157.732, Max-Change: 0.00026Iteration: 124, Log-Lik: -23157.730, Max-Change: 0.00026Iteration: 125, Log-Lik: -23157.730, Max-Change: 0.00026Iteration: 126, Log-Lik: -23157.730, Max-Change: 0.00026Iteration: 127, Log-Lik: -23157.729, Max-Change: 0.00026Iteration: 128, Log-Lik: -23157.729, Max-Change: 0.00026Iteration: 129, Log-Lik: -23157.728, Max-Change: 0.00026Iteration: 130, Log-Lik: -23157.727, Max-Change: 0.00025Iteration: 131, Log-Lik: -23157.727, Max-Change: 0.00025Iteration: 132, Log-Lik: -23157.727, Max-Change: 0.00025Iteration: 133, Log-Lik: -23157.725, Max-Change: 0.00025Iteration: 134, Log-Lik: -23157.725, Max-Change: 0.00025Iteration: 135, Log-Lik: -23157.725, Max-Change: 0.00025Iteration: 136, Log-Lik: -23157.724, Max-Change: 0.00025Iteration: 137, Log-Lik: -23157.724, Max-Change: 0.00025Iteration: 138, Log-Lik: -23157.724, Max-Change: 0.00025Iteration: 139, Log-Lik: -23157.722, Max-Change: 0.00025Iteration: 140, Log-Lik: -23157.722, Max-Change: 0.00025Iteration: 141, Log-Lik: -23157.722, Max-Change: 0.00025Iteration: 142, Log-Lik: -23157.721, Max-Change: 0.00024Iteration: 143, Log-Lik: -23157.721, Max-Change: 0.00024Iteration: 144, Log-Lik: -23157.720, Max-Change: 0.00024Iteration: 145, Log-Lik: -23157.719, Max-Change: 0.00024Iteration: 146, Log-Lik: -23157.719, Max-Change: 0.00024Iteration: 147, Log-Lik: -23157.719, Max-Change: 0.00024Iteration: 148, Log-Lik: -23157.718, Max-Change: 0.00024Iteration: 149, Log-Lik: -23157.718, Max-Change: 0.00024Iteration: 150, Log-Lik: -23157.718, Max-Change: 0.00024Iteration: 151, Log-Lik: -23157.716, Max-Change: 0.00024Iteration: 152, Log-Lik: -23157.716, Max-Change: 0.00024Iteration: 153, Log-Lik: -23157.716, Max-Change: 0.00023Iteration: 154, Log-Lik: -23157.715, Max-Change: 0.00023Iteration: 155, Log-Lik: -23157.715, Max-Change: 0.00023Iteration: 156, Log-Lik: -23157.715, Max-Change: 0.00023Iteration: 157, Log-Lik: -23157.714, Max-Change: 0.00023Iteration: 158, Log-Lik: -23157.714, Max-Change: 0.00023Iteration: 159, Log-Lik: -23157.713, Max-Change: 0.00023Iteration: 160, Log-Lik: -23157.712, Max-Change: 0.00023Iteration: 161, Log-Lik: -23157.712, Max-Change: 0.00023Iteration: 162, Log-Lik: -23157.712, Max-Change: 0.00023Iteration: 163, Log-Lik: -23157.711, Max-Change: 0.00023Iteration: 164, Log-Lik: -23157.711, Max-Change: 0.00022Iteration: 165, Log-Lik: -23157.711, Max-Change: 0.00022Iteration: 166, Log-Lik: -23157.710, Max-Change: 0.00022Iteration: 167, Log-Lik: -23157.710, Max-Change: 0.00022Iteration: 168, Log-Lik: -23157.710, Max-Change: 0.00022Iteration: 169, Log-Lik: -23157.709, Max-Change: 0.00022Iteration: 170, Log-Lik: -23157.709, Max-Change: 0.00022Iteration: 171, Log-Lik: -23157.708, Max-Change: 0.00022Iteration: 172, Log-Lik: -23157.707, Max-Change: 0.00022Iteration: 173, Log-Lik: -23157.707, Max-Change: 0.00022Iteration: 174, Log-Lik: -23157.707, Max-Change: 0.00022Iteration: 175, Log-Lik: -23157.706, Max-Change: 0.00022Iteration: 176, Log-Lik: -23157.706, Max-Change: 0.00022Iteration: 177, Log-Lik: -23157.706, Max-Change: 0.00021Iteration: 178, Log-Lik: -23157.705, Max-Change: 0.00021Iteration: 179, Log-Lik: -23157.705, Max-Change: 0.00021Iteration: 180, Log-Lik: -23157.705, Max-Change: 0.00021Iteration: 181, Log-Lik: -23157.704, Max-Change: 0.00021Iteration: 182, Log-Lik: -23157.704, Max-Change: 0.00021Iteration: 183, Log-Lik: -23157.704, Max-Change: 0.00021Iteration: 184, Log-Lik: -23157.703, Max-Change: 0.00021Iteration: 185, Log-Lik: -23157.703, Max-Change: 0.00021Iteration: 186, Log-Lik: -23157.703, Max-Change: 0.00021Iteration: 187, Log-Lik: -23157.702, Max-Change: 0.00021Iteration: 188, Log-Lik: -23157.702, Max-Change: 0.00021Iteration: 189, Log-Lik: -23157.702, Max-Change: 0.00021Iteration: 190, Log-Lik: -23157.701, Max-Change: 0.00020Iteration: 191, Log-Lik: -23157.701, Max-Change: 0.00020Iteration: 192, Log-Lik: -23157.701, Max-Change: 0.00020Iteration: 193, Log-Lik: -23157.700, Max-Change: 0.00020Iteration: 194, Log-Lik: -23157.700, Max-Change: 0.00020Iteration: 195, Log-Lik: -23157.700, Max-Change: 0.00020Iteration: 196, Log-Lik: -23157.699, Max-Change: 0.00020Iteration: 197, Log-Lik: -23157.699, Max-Change: 0.00020Iteration: 198, Log-Lik: -23157.699, Max-Change: 0.00020Iteration: 199, Log-Lik: -23157.698, Max-Change: 0.00020Iteration: 200, Log-Lik: -23157.698, Max-Change: 0.00020Iteration: 201, Log-Lik: -23157.698, Max-Change: 0.00020Iteration: 202, Log-Lik: -23157.697, Max-Change: 0.00019Iteration: 203, Log-Lik: -23157.697, Max-Change: 0.00019Iteration: 204, Log-Lik: -23157.697, Max-Change: 0.00019Iteration: 205, Log-Lik: -23157.696, Max-Change: 0.00019Iteration: 206, Log-Lik: -23157.696, Max-Change: 0.00019Iteration: 207, Log-Lik: -23157.696, Max-Change: 0.00019Iteration: 208, Log-Lik: -23157.695, Max-Change: 0.00019Iteration: 209, Log-Lik: -23157.695, Max-Change: 0.00019Iteration: 210, Log-Lik: -23157.695, Max-Change: 0.00019Iteration: 211, Log-Lik: -23157.694, Max-Change: 0.00019Iteration: 212, Log-Lik: -23157.694, Max-Change: 0.00019Iteration: 213, Log-Lik: -23157.694, Max-Change: 0.00019Iteration: 214, Log-Lik: -23157.693, Max-Change: 0.00019Iteration: 215, Log-Lik: -23157.693, Max-Change: 0.00019Iteration: 216, Log-Lik: -23157.693, Max-Change: 0.00019Iteration: 217, Log-Lik: -23157.692, Max-Change: 0.00018Iteration: 218, Log-Lik: -23157.692, Max-Change: 0.00018Iteration: 219, Log-Lik: -23157.692, Max-Change: 0.00018Iteration: 220, Log-Lik: -23157.692, Max-Change: 0.00018Iteration: 221, Log-Lik: -23157.692, Max-Change: 0.00018Iteration: 222, Log-Lik: -23157.691, Max-Change: 0.00018Iteration: 223, Log-Lik: -23157.691, Max-Change: 0.00018Iteration: 224, Log-Lik: -23157.691, Max-Change: 0.00018Iteration: 225, Log-Lik: -23157.691, Max-Change: 0.00018Iteration: 226, Log-Lik: -23157.690, Max-Change: 0.00018Iteration: 227, Log-Lik: -23157.690, Max-Change: 0.00018Iteration: 228, Log-Lik: -23157.690, Max-Change: 0.00018Iteration: 229, Log-Lik: -23157.689, Max-Change: 0.00018Iteration: 230, Log-Lik: -23157.689, Max-Change: 0.00018Iteration: 231, Log-Lik: -23157.689, Max-Change: 0.00018Iteration: 232, Log-Lik: -23157.689, Max-Change: 0.00017Iteration: 233, Log-Lik: -23157.688, Max-Change: 0.00017Iteration: 234, Log-Lik: -23157.688, Max-Change: 0.00017Iteration: 235, Log-Lik: -23157.688, Max-Change: 0.00017Iteration: 236, Log-Lik: -23157.688, Max-Change: 0.00017Iteration: 237, Log-Lik: -23157.688, Max-Change: 0.00017Iteration: 238, Log-Lik: -23157.687, Max-Change: 0.00017Iteration: 239, Log-Lik: -23157.687, Max-Change: 0.00017Iteration: 240, Log-Lik: -23157.687, Max-Change: 0.00017Iteration: 241, Log-Lik: -23157.686, Max-Change: 0.00017Iteration: 242, Log-Lik: -23157.686, Max-Change: 0.00017Iteration: 243, Log-Lik: -23157.686, Max-Change: 0.00017Iteration: 244, Log-Lik: -23157.686, Max-Change: 0.00017Iteration: 245, Log-Lik: -23157.686, Max-Change: 0.00017Iteration: 246, Log-Lik: -23157.686, Max-Change: 0.00017Iteration: 247, Log-Lik: -23157.685, Max-Change: 0.00017Iteration: 248, Log-Lik: -23157.685, Max-Change: 0.00016Iteration: 249, Log-Lik: -23157.685, Max-Change: 0.00016Iteration: 250, Log-Lik: -23157.684, Max-Change: 0.00016Iteration: 251, Log-Lik: -23157.684, Max-Change: 0.00016Iteration: 252, Log-Lik: -23157.684, Max-Change: 0.00016Iteration: 253, Log-Lik: -23157.684, Max-Change: 0.00016Iteration: 254, Log-Lik: -23157.684, Max-Change: 0.00016Iteration: 255, Log-Lik: -23157.684, Max-Change: 0.00016Iteration: 256, Log-Lik: -23157.683, Max-Change: 0.00016Iteration: 257, Log-Lik: -23157.683, Max-Change: 0.00016Iteration: 258, Log-Lik: -23157.683, Max-Change: 0.00016Iteration: 259, Log-Lik: -23157.682, Max-Change: 0.00016Iteration: 260, Log-Lik: -23157.682, Max-Change: 0.00016Iteration: 261, Log-Lik: -23157.682, Max-Change: 0.00016Iteration: 262, Log-Lik: -23157.682, Max-Change: 0.00016Iteration: 263, Log-Lik: -23157.682, Max-Change: 0.00016Iteration: 264, Log-Lik: -23157.682, Max-Change: 0.00016Iteration: 265, Log-Lik: -23157.681, Max-Change: 0.00015Iteration: 266, Log-Lik: -23157.681, Max-Change: 0.00015Iteration: 267, Log-Lik: -23157.681, Max-Change: 0.00015Iteration: 268, Log-Lik: -23157.681, Max-Change: 0.00015Iteration: 269, Log-Lik: -23157.681, Max-Change: 0.00015Iteration: 270, Log-Lik: -23157.681, Max-Change: 0.00015Iteration: 271, Log-Lik: -23157.680, Max-Change: 0.00015Iteration: 272, Log-Lik: -23157.680, Max-Change: 0.00015Iteration: 273, Log-Lik: -23157.680, Max-Change: 0.00015Iteration: 274, Log-Lik: -23157.680, Max-Change: 0.00015Iteration: 275, Log-Lik: -23157.680, Max-Change: 0.00015Iteration: 276, Log-Lik: -23157.680, Max-Change: 0.00015Iteration: 277, Log-Lik: -23157.679, Max-Change: 0.00015Iteration: 278, Log-Lik: -23157.679, Max-Change: 0.00015Iteration: 279, Log-Lik: -23157.679, Max-Change: 0.00015Iteration: 280, Log-Lik: -23157.679, Max-Change: 0.00015Iteration: 281, Log-Lik: -23157.679, Max-Change: 0.00015Iteration: 282, Log-Lik: -23157.678, Max-Change: 0.00015Iteration: 283, Log-Lik: -23157.678, Max-Change: 0.00015Iteration: 284, Log-Lik: -23157.678, Max-Change: 0.00014Iteration: 285, Log-Lik: -23157.678, Max-Change: 0.00014Iteration: 286, Log-Lik: -23157.678, Max-Change: 0.00014Iteration: 287, Log-Lik: -23157.678, Max-Change: 0.00014Iteration: 288, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 289, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 290, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 291, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 292, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 293, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 294, Log-Lik: -23157.677, Max-Change: 0.00014Iteration: 295, Log-Lik: -23157.676, Max-Change: 0.00014Iteration: 296, Log-Lik: -23157.676, Max-Change: 0.00014Iteration: 297, Log-Lik: -23157.676, Max-Change: 0.00014Iteration: 298, Log-Lik: -23157.676, Max-Change: 0.00014Iteration: 299, Log-Lik: -23157.676, Max-Change: 0.00014Iteration: 300, Log-Lik: -23157.676, Max-Change: 0.00014Iteration: 301, Log-Lik: -23157.675, Max-Change: 0.00014Iteration: 302, Log-Lik: -23157.675, Max-Change: 0.00014Iteration: 303, Log-Lik: -23157.675, Max-Change: 0.00014Iteration: 304, Log-Lik: -23157.675, Max-Change: 0.00013Iteration: 305, Log-Lik: -23157.675, Max-Change: 0.00013Iteration: 306, Log-Lik: -23157.675, Max-Change: 0.00013Iteration: 307, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 308, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 309, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 310, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 311, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 312, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 313, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 314, Log-Lik: -23157.674, Max-Change: 0.00013Iteration: 315, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 316, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 317, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 318, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 319, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 320, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 321, Log-Lik: -23157.673, Max-Change: 0.00013Iteration: 322, Log-Lik: -23157.672, Max-Change: 0.00013Iteration: 323, Log-Lik: -23157.672, Max-Change: 0.00013Iteration: 324, Log-Lik: -23157.672, Max-Change: 0.00013Iteration: 325, Log-Lik: -23157.672, Max-Change: 0.00013Iteration: 326, Log-Lik: -23157.672, Max-Change: 0.00012Iteration: 327, Log-Lik: -23157.672, Max-Change: 0.00012Iteration: 328, Log-Lik: -23157.672, Max-Change: 0.00012Iteration: 329, Log-Lik: -23157.672, Max-Change: 0.00012Iteration: 330, Log-Lik: -23157.672, Max-Change: 0.00012Iteration: 331, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 332, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 333, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 334, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 335, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 336, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 337, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 338, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 339, Log-Lik: -23157.671, Max-Change: 0.00012Iteration: 340, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 341, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 342, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 343, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 344, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 345, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 346, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 347, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 348, Log-Lik: -23157.670, Max-Change: 0.00012Iteration: 349, Log-Lik: -23157.669, Max-Change: 0.00012Iteration: 350, Log-Lik: -23157.669, Max-Change: 0.00012Iteration: 351, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 352, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 353, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 354, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 355, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 356, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 357, Log-Lik: -23157.669, Max-Change: 0.00011Iteration: 358, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 359, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 360, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 361, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 362, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 363, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 364, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 365, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 366, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 367, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 368, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 369, Log-Lik: -23157.668, Max-Change: 0.00011Iteration: 370, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 371, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 372, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 373, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 374, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 375, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 376, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 377, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 378, Log-Lik: -23157.667, Max-Change: 0.00011Iteration: 379, Log-Lik: -23157.667, Max-Change: 0.00010Iteration: 380, Log-Lik: -23157.667, Max-Change: 0.00010Iteration: 381, Log-Lik: -23157.667, Max-Change: 0.00010Iteration: 382, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 383, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 384, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 385, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 386, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 387, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 388, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 389, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 390, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 391, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 392, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 393, Log-Lik: -23157.666, Max-Change: 0.00010Iteration: 394, Log-Lik: -23157.665, Max-Change: 0.00010
## AIC SABIC HQ BIC logLik X2 df p
## mod1 46470.65 46576.50 46569.35 46735.33 -23185.32
## mod2 46463.33 46619.99 46609.41 46855.06 -23157.67 55.316 24 0
Veride tek boyutluluk varsayımının yaklaşık olarak sağlandığını söyleyebiliriz, çünkü 1 faktörlü model daha sade ve bilgi kriterlerine göre tercih edilebilir durumdadır. Ancak istatistiksel olarak 2 faktörlü modelin anlamlı fark yaratması, sınırlı çok boyutluluk olabileceğini düşünmemizi sağlıyor.
## Q3 summary statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.161 -0.057 -0.036 -0.034 -0.010 0.098
##
## madde_1 madde_2 madde_3 madde_4 madde_5 madde_6 madde_7 madde_8
## madde_1 1.000 -0.061 -0.027 0.002 -0.023 -0.107 -0.161 -0.048
## madde_2 -0.061 1.000 0.041 -0.050 -0.073 -0.036 -0.044 -0.026
## madde_3 -0.027 0.041 1.000 0.024 -0.054 -0.036 -0.057 0.006
## madde_4 0.002 -0.050 0.024 1.000 0.004 0.001 -0.038 -0.074
## madde_5 -0.023 -0.073 -0.054 0.004 1.000 0.014 -0.024 -0.056
## madde_6 -0.107 -0.036 -0.036 0.001 0.014 1.000 0.098 -0.052
## madde_7 -0.161 -0.044 -0.057 -0.038 -0.024 0.098 1.000 0.018
## madde_8 -0.048 -0.026 0.006 -0.074 -0.056 -0.052 0.018 1.000
## madde_9 -0.064 -0.072 -0.021 0.003 -0.075 -0.032 -0.066 -0.090
## madde_10 0.008 -0.055 -0.003 -0.057 -0.094 -0.079 -0.008 0.030
## madde_11 -0.056 0.022 -0.062 -0.052 -0.052 -0.026 -0.047 -0.030
## madde_12 -0.111 0.009 -0.035 -0.038 -0.054 -0.094 -0.016 0.002
## madde_13 -0.045 -0.010 0.003 -0.052 -0.061 0.045 -0.034 -0.006
## madde_14 -0.031 0.022 0.035 -0.023 -0.008 -0.008 -0.040 -0.066
## madde_15 -0.060 -0.007 -0.030 -0.013 -0.046 -0.065 -0.053 -0.087
## madde_16 -0.037 -0.041 -0.049 -0.074 0.005 -0.117 -0.004 -0.034
## madde_17 -0.047 -0.014 0.003 -0.070 -0.116 -0.104 -0.033 -0.051
## madde_18 -0.040 -0.061 -0.012 -0.070 -0.045 -0.020 -0.041 -0.023
## madde_19 -0.079 -0.020 -0.036 -0.040 -0.073 -0.022 -0.021 -0.005
## madde_20 -0.008 -0.020 0.016 -0.066 -0.098 -0.035 -0.110 -0.048
## madde_21 -0.016 -0.001 0.002 -0.048 -0.046 -0.045 -0.072 0.004
## madde_22 -0.051 -0.044 -0.029 -0.036 -0.048 -0.068 -0.034 -0.071
## madde_23 -0.039 0.009 -0.017 -0.020 -0.060 -0.022 -0.034 -0.086
## madde_24 -0.048 -0.070 -0.014 -0.092 0.029 0.014 -0.008 -0.034
## madde_25 -0.076 -0.059 -0.015 -0.022 -0.021 0.009 -0.029 0.011
## madde_9 madde_10 madde_11 madde_12 madde_13 madde_14 madde_15 madde_16
## madde_1 -0.064 0.008 -0.056 -0.111 -0.045 -0.031 -0.060 -0.037
## madde_2 -0.072 -0.055 0.022 0.009 -0.010 0.022 -0.007 -0.041
## madde_3 -0.021 -0.003 -0.062 -0.035 0.003 0.035 -0.030 -0.049
## madde_4 0.003 -0.057 -0.052 -0.038 -0.052 -0.023 -0.013 -0.074
## madde_5 -0.075 -0.094 -0.052 -0.054 -0.061 -0.008 -0.046 0.005
## madde_6 -0.032 -0.079 -0.026 -0.094 0.045 -0.008 -0.065 -0.117
## madde_7 -0.066 -0.008 -0.047 -0.016 -0.034 -0.040 -0.053 -0.004
## madde_8 -0.090 0.030 -0.030 0.002 -0.006 -0.066 -0.087 -0.034
## madde_9 1.000 -0.036 0.015 0.009 0.037 0.016 -0.002 -0.050
## madde_10 -0.036 1.000 -0.051 -0.098 -0.035 -0.036 -0.067 -0.114
## madde_11 0.015 -0.051 1.000 -0.046 0.047 -0.045 0.034 0.024
## madde_12 0.009 -0.098 -0.046 1.000 0.019 -0.045 -0.029 -0.069
## madde_13 0.037 -0.035 0.047 0.019 1.000 0.095 0.002 -0.056
## madde_14 0.016 -0.036 -0.045 -0.045 0.095 1.000 -0.010 -0.022
## madde_15 -0.002 -0.067 0.034 -0.029 0.002 -0.010 1.000 0.009
## madde_16 -0.050 -0.114 0.024 -0.069 -0.056 -0.022 0.009 1.000
## madde_17 -0.023 -0.083 -0.036 -0.032 -0.027 0.012 -0.021 -0.029
## madde_18 0.013 0.041 -0.057 -0.018 -0.032 -0.041 -0.084 -0.086
## madde_19 0.000 -0.028 -0.044 -0.012 -0.074 0.005 -0.057 0.001
## madde_20 -0.039 -0.012 -0.054 -0.001 -0.019 -0.013 -0.065 -0.034
## madde_21 -0.029 -0.047 -0.048 -0.013 -0.076 -0.068 -0.065 -0.071
## madde_22 0.026 -0.008 -0.018 -0.059 -0.027 -0.022 -0.013 -0.052
## madde_23 0.020 -0.061 -0.030 -0.011 0.003 -0.032 -0.027 -0.122
## madde_24 -0.004 -0.036 -0.017 -0.079 -0.069 -0.028 -0.054 -0.031
## madde_25 -0.044 -0.050 -0.054 -0.052 -0.011 0.004 0.004 -0.076
## madde_17 madde_18 madde_19 madde_20 madde_21 madde_22 madde_23
## madde_1 -0.047 -0.040 -0.079 -0.008 -0.016 -0.051 -0.039
## madde_2 -0.014 -0.061 -0.020 -0.020 -0.001 -0.044 0.009
## madde_3 0.003 -0.012 -0.036 0.016 0.002 -0.029 -0.017
## madde_4 -0.070 -0.070 -0.040 -0.066 -0.048 -0.036 -0.020
## madde_5 -0.116 -0.045 -0.073 -0.098 -0.046 -0.048 -0.060
## madde_6 -0.104 -0.020 -0.022 -0.035 -0.045 -0.068 -0.022
## madde_7 -0.033 -0.041 -0.021 -0.110 -0.072 -0.034 -0.034
## madde_8 -0.051 -0.023 -0.005 -0.048 0.004 -0.071 -0.086
## madde_9 -0.023 0.013 0.000 -0.039 -0.029 0.026 0.020
## madde_10 -0.083 0.041 -0.028 -0.012 -0.047 -0.008 -0.061
## madde_11 -0.036 -0.057 -0.044 -0.054 -0.048 -0.018 -0.030
## madde_12 -0.032 -0.018 -0.012 -0.001 -0.013 -0.059 -0.011
## madde_13 -0.027 -0.032 -0.074 -0.019 -0.076 -0.027 0.003
## madde_14 0.012 -0.041 0.005 -0.013 -0.068 -0.022 -0.032
## madde_15 -0.021 -0.084 -0.057 -0.065 -0.065 -0.013 -0.027
## madde_16 -0.029 -0.086 0.001 -0.034 -0.071 -0.052 -0.122
## madde_17 1.000 -0.061 0.034 -0.068 0.027 -0.044 -0.030
## madde_18 -0.061 1.000 -0.057 -0.048 -0.086 0.035 -0.030
## madde_19 0.034 -0.057 1.000 -0.083 -0.055 -0.062 -0.064
## madde_20 -0.068 -0.048 -0.083 1.000 -0.074 -0.070 -0.008
## madde_21 0.027 -0.086 -0.055 -0.074 1.000 -0.114 -0.048
## madde_22 -0.044 0.035 -0.062 -0.070 -0.114 1.000 0.024
## madde_23 -0.030 -0.030 -0.064 -0.008 -0.048 0.024 1.000
## madde_24 -0.035 -0.044 -0.042 0.010 -0.047 -0.005 -0.043
## madde_25 -0.023 -0.060 -0.004 -0.055 -0.039 -0.046 -0.071
## madde_24 madde_25
## madde_1 -0.048 -0.076
## madde_2 -0.070 -0.059
## madde_3 -0.014 -0.015
## madde_4 -0.092 -0.022
## madde_5 0.029 -0.021
## madde_6 0.014 0.009
## madde_7 -0.008 -0.029
## madde_8 -0.034 0.011
## madde_9 -0.004 -0.044
## madde_10 -0.036 -0.050
## madde_11 -0.017 -0.054
## madde_12 -0.079 -0.052
## madde_13 -0.069 -0.011
## madde_14 -0.028 0.004
## madde_15 -0.054 0.004
## madde_16 -0.031 -0.076
## madde_17 -0.035 -0.023
## madde_18 -0.044 -0.060
## madde_19 -0.042 -0.004
## madde_20 0.010 -0.055
## madde_21 -0.047 -0.039
## madde_22 -0.005 -0.046
## madde_23 -0.043 -0.071
## madde_24 1.000 -0.114
## madde_25 -0.114 1.000
## madde_1 madde_2 madde_3
## Min. :-0.161164 Min. :-0.0727385 Min. :-0.061608
## 1st Qu.:-0.061074 1st Qu.:-0.0547764 1st Qu.:-0.035027
## Median :-0.047160 Median :-0.0263697 Median :-0.014935
## Mean :-0.009025 Mean : 0.0135711 Mean : 0.025352
## 3rd Qu.:-0.026609 3rd Qu.:-0.0005257 3rd Qu.: 0.003354
## Max. : 1.000000 Max. : 1.0000000 Max. : 1.000000
## madde_4 madde_5 madde_6
## Min. :-0.092497 Min. :-0.115529 Min. :-0.1171432
## 1st Qu.:-0.056617 1st Qu.:-0.060661 1st Qu.:-0.0653351
## Median :-0.038224 Median :-0.048377 Median :-0.0317518
## Mean : 0.003951 Mean :-0.002959 Mean : 0.0085484
## 3rd Qu.:-0.012907 3rd Qu.:-0.021006 3rd Qu.: 0.0008488
## Max. : 1.000000 Max. : 1.000000 Max. : 1.0000000
## madde_7 madde_8 madde_9
## Min. :-0.161164 Min. :-0.089871 Min. :-0.08987
## 1st Qu.:-0.046954 1st Qu.:-0.056109 1st Qu.:-0.04368
## Median :-0.033966 Median :-0.034022 Median :-0.02073
## Mean : 0.005719 Mean : 0.007291 Mean : 0.01970
## 3rd Qu.:-0.016037 3rd Qu.: 0.001783 3rd Qu.: 0.01336
## Max. : 1.000000 Max. : 1.000000 Max. : 1.00000
## madde_10 madde_11 madde_12
## Min. :-0.1143308 Min. :-0.06161 Min. :-0.110695
## 1st Qu.:-0.0608230 1st Qu.:-0.05183 1st Qu.:-0.053587
## Median :-0.0360150 Median :-0.04392 Median :-0.032432
## Mean : 0.0008512 Mean : 0.01261 Mean : 0.004967
## 3rd Qu.:-0.0083731 3rd Qu.:-0.01730 3rd Qu.:-0.011230
## Max. : 1.0000000 Max. : 1.00000 Max. : 1.000000
## madde_13 madde_14 madde_15
## Min. :-0.075675 Min. :-0.068274 Min. :-0.087040
## 1st Qu.:-0.044654 1st Qu.:-0.036015 1st Qu.:-0.059863
## Median :-0.018638 Median :-0.021621 Median :-0.028686
## Mean : 0.024757 Mean : 0.025939 Mean : 0.007759
## 3rd Qu.: 0.003354 3rd Qu.: 0.005306 3rd Qu.:-0.007446
## Max. : 1.000000 Max. : 1.000000 Max. : 1.000000
## madde_16 madde_17 madde_18
## Min. :-0.122419 Min. :-0.115529 Min. :-0.086373
## 1st Qu.:-0.071059 1st Qu.:-0.051246 1st Qu.:-0.059708
## Median :-0.040583 Median :-0.032432 Median :-0.040981
## Mean :-0.005227 Mean : 0.005197 Mean : 0.002971
## 3rd Qu.:-0.022271 3rd Qu.:-0.020542 3rd Qu.:-0.020056
## Max. : 1.000000 Max. : 1.000000 Max. : 1.000000
## madde_19 madde_20 madde_21
## Min. :-0.083002 Min. :-0.1099056 Min. :-0.114401
## 1st Qu.:-0.056825 1st Qu.:-0.0662455 1st Qu.:-0.068274
## Median :-0.035888 Median :-0.0390570 Median :-0.047020
## Mean : 0.006562 Mean :-0.0001591 Mean :-0.003059
## 3rd Qu.:-0.004650 3rd Qu.:-0.0120648 3rd Qu.:-0.015601
## Max. : 1.000000 Max. : 1.0000000 Max. : 1.000000
## madde_22 madde_23 madde_24
## Min. :-0.114401 Min. :-0.122419 Min. :-0.114234
## 1st Qu.:-0.052130 1st Qu.:-0.048057 1st Qu.:-0.048206
## Median :-0.035520 Median :-0.029672 Median :-0.034989
## Mean : 0.006547 Mean : 0.008037 Mean : 0.005551
## 3rd Qu.:-0.012944 3rd Qu.:-0.011230 3rd Qu.:-0.007898
## Max. : 1.000000 Max. : 1.000000 Max. : 1.000000
## madde_25
## Min. :-0.114234
## 1st Qu.:-0.055340
## Median :-0.038739
## Mean : 0.004271
## 3rd Qu.:-0.011323
## Max. : 1.000000
Ortalama Q3 (-0.034) ≈ 0 → Yerel bağımsızlık genelde sağlanıyor diyebiliriz. Artık korelasyonlar küçük ve beklenen sınırlar içindedir.
## Iteration: 1, Log-Lik: -23303.739, Max-Change: 0.09815Iteration: 2, Log-Lik: -23297.714, Max-Change: 0.03942Iteration: 3, Log-Lik: -23296.554, Max-Change: 0.01672Iteration: 4, Log-Lik: -23296.277, Max-Change: 0.00737Iteration: 5, Log-Lik: -23296.188, Max-Change: 0.00328Iteration: 6, Log-Lik: -23296.148, Max-Change: 0.00197Iteration: 7, Log-Lik: -23296.093, Max-Change: 0.00090Iteration: 8, Log-Lik: -23296.089, Max-Change: 0.00060Iteration: 9, Log-Lik: -23296.087, Max-Change: 0.00047Iteration: 10, Log-Lik: -23296.083, Max-Change: 0.00014Iteration: 11, Log-Lik: -23296.083, Max-Change: 0.00009
## Iteration: 1, Log-Lik: -23301.605, Max-Change: 0.36415Iteration: 2, Log-Lik: -23195.704, Max-Change: 0.12903Iteration: 3, Log-Lik: -23187.443, Max-Change: 0.05170Iteration: 4, Log-Lik: -23186.110, Max-Change: 0.02777Iteration: 5, Log-Lik: -23185.667, Max-Change: 0.01436Iteration: 6, Log-Lik: -23185.488, Max-Change: 0.00798Iteration: 7, Log-Lik: -23185.364, Max-Change: 0.00208Iteration: 8, Log-Lik: -23185.346, Max-Change: 0.00136Iteration: 9, Log-Lik: -23185.337, Max-Change: 0.00109Iteration: 10, Log-Lik: -23185.327, Max-Change: 0.00053Iteration: 11, Log-Lik: -23185.326, Max-Change: 0.00042Iteration: 12, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 13, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 14, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 15, Log-Lik: -23185.324, Max-Change: 0.00016Iteration: 16, Log-Lik: -23185.323, Max-Change: 0.00010
## Iteration: 1, Log-Lik: -23475.118, Max-Change: 0.87773Iteration: 2, Log-Lik: -23196.171, Max-Change: 0.70725Iteration: 3, Log-Lik: -23131.871, Max-Change: 0.52430Iteration: 4, Log-Lik: -23108.030, Max-Change: 0.27898Iteration: 5, Log-Lik: -23096.875, Max-Change: 0.19118Iteration: 6, Log-Lik: -23090.447, Max-Change: 0.13125Iteration: 7, Log-Lik: -23086.142, Max-Change: 0.12323Iteration: 8, Log-Lik: -23083.646, Max-Change: 0.09615Iteration: 9, Log-Lik: -23082.131, Max-Change: 0.06493Iteration: 10, Log-Lik: -23080.478, Max-Change: 0.08297Iteration: 11, Log-Lik: -23079.866, Max-Change: 0.07340Iteration: 12, Log-Lik: -23079.373, Max-Change: 0.02644Iteration: 13, Log-Lik: -23078.931, Max-Change: 0.06015Iteration: 14, Log-Lik: -23078.693, Max-Change: 0.04940Iteration: 15, Log-Lik: -23078.516, Max-Change: 0.04514Iteration: 16, Log-Lik: -23078.019, Max-Change: 0.01058Iteration: 17, Log-Lik: -23077.994, Max-Change: 0.00197Iteration: 18, Log-Lik: -23077.990, Max-Change: 0.00148Iteration: 19, Log-Lik: -23077.987, Max-Change: 0.00154Iteration: 20, Log-Lik: -23077.982, Max-Change: 0.00122Iteration: 21, Log-Lik: -23077.978, Max-Change: 0.00128Iteration: 22, Log-Lik: -23077.971, Max-Change: 0.00260Iteration: 23, Log-Lik: -23077.971, Max-Change: 0.00101Iteration: 24, Log-Lik: -23077.970, Max-Change: 0.00030Iteration: 25, Log-Lik: -23077.970, Max-Change: 0.00027Iteration: 26, Log-Lik: -23077.970, Max-Change: 0.00076Iteration: 27, Log-Lik: -23077.970, Max-Change: 0.00086Iteration: 28, Log-Lik: -23077.970, Max-Change: 0.00033Iteration: 29, Log-Lik: -23077.970, Max-Change: 0.00039Iteration: 30, Log-Lik: -23077.970, Max-Change: 0.00052Iteration: 31, Log-Lik: -23077.970, Max-Change: 0.00021
## AIC SABIC HQ BIC logLik X2 df p
## mod_1pl 46644.17 46699.21 46695.49 46781.80 -23296.08
## mod_2pl 46470.65 46576.50 46569.35 46735.33 -23185.32 221.519 24 0
## mod_3pl 46305.94 46464.71 46453.99 46702.97 -23077.97 214.707 25 0
3PL modelinin AIC, SABIC, HQ, BIC değerleri daha düşük olduğundan ve logLik değeri daha yüksek olduğundan, diğer modellere göre model veri uyumu daha iyi durumdadır diyebiliriz. Ayrıca, 3PL modelinin X² değeri 2PL modeline göre daha düşüktür, yani bu kriter açısından da veriye daha uygun olan modelin 3PL olduğunu söyleyebiliriz. Son olarak, p-değerleri 0 çıktığı için, her iki karmaşık modelin daha basit modellere göre anlamlı derecede daha iyi uyum sağladığı anlaşılır (yani 2PL > 1PL, 3PL > 2PL).
## Iteration: 1, Log-Lik: -23301.605, Max-Change: 0.36415Iteration: 2, Log-Lik: -23195.704, Max-Change: 0.12903Iteration: 3, Log-Lik: -23187.443, Max-Change: 0.05170Iteration: 4, Log-Lik: -23186.110, Max-Change: 0.02777Iteration: 5, Log-Lik: -23185.667, Max-Change: 0.01436Iteration: 6, Log-Lik: -23185.488, Max-Change: 0.00798Iteration: 7, Log-Lik: -23185.364, Max-Change: 0.00208Iteration: 8, Log-Lik: -23185.346, Max-Change: 0.00136Iteration: 9, Log-Lik: -23185.337, Max-Change: 0.00109Iteration: 10, Log-Lik: -23185.327, Max-Change: 0.00053Iteration: 11, Log-Lik: -23185.326, Max-Change: 0.00042Iteration: 12, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 13, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 14, Log-Lik: -23185.325, Max-Change: 0.00017Iteration: 15, Log-Lik: -23185.324, Max-Change: 0.00016Iteration: 16, Log-Lik: -23185.323, Max-Change: 0.00010
## a b g u
## madde_1 1.364 -0.382 0 1
## madde_2 0.780 0.290 0 1
## madde_3 0.414 0.306 0 1
## madde_4 1.008 0.215 0 1
## madde_5 1.157 -0.380 0 1
## madde_6 0.931 0.148 0 1
## madde_7 0.938 0.189 0 1
## madde_8 0.845 0.038 0 1
## madde_9 0.605 0.662 0 1
## madde_10 1.096 -0.316 0 1
## madde_11 0.759 0.054 0 1
## madde_12 1.016 0.132 0 1
## madde_13 0.555 0.996 0 1
## madde_14 0.518 1.906 0 1
## madde_15 0.919 0.193 0 1
## madde_16 1.277 0.112 0 1
## madde_17 1.010 -0.396 0 1
## madde_18 1.036 0.113 0 1
## madde_19 0.930 0.338 0 1
## madde_20 1.148 -0.255 0 1
## madde_21 1.221 0.362 0 1
## madde_22 1.058 0.882 0 1
## madde_23 0.921 0.035 0 1
## madde_24 0.914 0.050 0 1
## madde_25 1.038 0.346 0 1
## F1
## [1,] -0.800
## [2,] -0.721
## [3,] 0.510
## [4,] -0.812
## [5,] -1.057
## [6,] -0.985
Madde karakteristik eğrilerine baktığımızda 1.,16. ve 21. maddelerin grafiklerinin daha dikey olduğunu gözlemliyoruz. Bu maddelerin ayırıcılık değerlerinin en yükseklerden olduğunu söyleyebiliriz. Bunun aksine, 3., 9. ve 2. maddelerin ise gragikleri daha yatay bir görünümde. Bu da bu maddelerin ayırıcılık güçlerinin az olduğunu gösteriyor. 14., 13. ve 9. maddelerin grafikleri diğerlerine göre daha sağa kaymış gibi gözükmektedir. Bu maddelerin güçlük düzeyleri yüksek olarak yorumlanabilir. 1.,5. ve 17. maddelerin grafikleri ise sola kaymış gözüküyor. Bu maddelerin diğerlerine göre daha kolay maddeler olduğunu söyleyebiliriz.
# Madde güçlükleri (p-değeri): Her maddenin ortalaması
p_values <- colMeans(binary_data)
# Madde toplam korelasyonu (ayırt edicilik)
# Toplam puanı hesapla
total_score <- rowSums(binary_data)
# Her madde ile toplam puan arasındaki korelasyon
r_it <- sapply(binary_data, function(x) cor(x, total_score))
print(p_values)
## madde_1 madde_2 madde_3 madde_4 madde_5 madde_6 madde_7 madde_8
## 0.5873555 0.4473148 0.4690687 0.4500340 0.5798776 0.4663494 0.4581917 0.4894630
## madde_9 madde_10 madde_11 madde_12 madde_13 madde_14 madde_15 madde_16
## 0.4072060 0.5635622 0.4881033 0.4670292 0.3725357 0.2821210 0.4581917 0.4643100
## madde_17 madde_18 madde_19 madde_20 madde_21 madde_22 madde_23 madde_24
## 0.5771584 0.4704283 0.4296397 0.5513256 0.4078858 0.3140721 0.4887831 0.4860639
## madde_25
## 0.4214820
## madde_1 madde_2 madde_3 madde_4 madde_5 madde_6 madde_7 madde_8
## 0.4953716 0.3972788 0.2713392 0.4556106 0.4612861 0.4384830 0.4364790 0.4062495
## madde_9 madde_10 madde_11 madde_12 madde_13 madde_14 madde_15 madde_16
## 0.3406210 0.4573527 0.3864341 0.4579579 0.3243673 0.2943838 0.4333691 0.5113066
## madde_17 madde_18 madde_19 madde_20 madde_21 madde_22 madde_23 madde_24
## 0.4382446 0.4590592 0.4364781 0.4749399 0.5014369 0.4609499 0.4322469 0.4269816
## madde_25
## 0.4668952
KTK ve MTK ile elde ettiğimiz madde parametrelerinin büyük oranda paralellik gösterdiğini söyleyebiriz. MTK da en ayırt edici maddeler 1,16 ve 21. maddeler iken KTK da da bu maddeler en ayırt edici maddeler olarak gözükmekte.MTK da en az ayırt edici maddeler 2,3 ve 9. maddeler iken KTK da 3,14 ve 9. maddeler en az ayırt edici maddeler olmuştur. MTK da en zor maddeler 9,13 ve 14. maddeler iken KTK da 13,14 ve 22. maddeler en zor maddelerdir. Son olarak MTK değerlerine göre en kolay maddeler 1,5 ve 17. maddeler iken KTK da ise 1,10 ve 17. maddeler en kolay maddeler olarak karşımıza çıkmaktadır. Her iki kuramla hesaplanan değerler açısından da 1.soru hem çok ayırt edici hem de orta güçlü bir madde olarak değerlendirilebilir.
madde_par <- readRDS("D:/OLC_733/final/maddepar.Rds")
# Parametreleri ayır
a_true <- madde_par[, "a"]
b_true <- madde_par[, "b"]
# Simülasyon ve tahmin (örnek)
library(mirt)
simulate_2PL <- function(n_persons, a, b) {
theta <- rnorm(n_persons, 0, 1)
n_items <- length(a)
P <- sapply(1:n_items, function(i) 1 / (1 + exp(-a[i] * (theta - b[i]))))
responses <- matrix(rbinom(n_persons * n_items, 1, as.vector(P)), nrow = n_persons, ncol = n_items)
colnames(responses) <- paste0("Item", 1:n_items)
list(responses = as.data.frame(responses), theta = theta)
}
# Replikasyon sayıları
replikasyon_sayilari <- c(10, 50, 100, 200)
n_persons <- 1000
results <- data.frame(Replikasyon = integer(), RMSE_a = double(), RMSE_b = double())
set.seed(123)
for (rep_count in replikasyon_sayilari) {
rmse_a_vec <- numeric(rep_count)
rmse_b_vec <- numeric(rep_count)
for (i in 1:rep_count) {
sim <- simulate_2PL(n_persons, a_true, b_true)
mod <- mirt(sim$responses, 1, itemtype = "2PL", verbose = FALSE)
est_par <- coef(mod, IRTpars = TRUE, simplify = TRUE)$items
a_est <- est_par[, "a"]
b_est <- est_par[, "b"]
rmse_a_vec[i] <- sqrt(mean((a_est - a_true)^2))
rmse_b_vec[i] <- sqrt(mean((b_est - b_true)^2))
}
results <- rbind(results, data.frame(
Replikasyon = rep_count,
RMSE_a = mean(rmse_a_vec),
RMSE_b = mean(rmse_b_vec)
))
}
print(results)
## Replikasyon RMSE_a RMSE_b
## 1 10 0.1286859 0.1466589
## 2 50 0.1256007 0.1453437
## 3 100 0.1265617 0.1615920
## 4 200 0.1262707 0.1493059
library(tidyr)
library(ggplot2)
# Örnek olarak mevcut tabloyu kullanalım
results <- data.frame(
Replikasyon = c(10, 50),
RMSE_a = c(0.1286859, 0.1256007),
RMSE_b = c(0.1466589, 0.1453437)
)
results_long <- results %>%
pivot_longer(cols = c("RMSE_a", "RMSE_b"), names_to = "Parametre", values_to = "RMSE") %>%
mutate(log_RMSE = log(RMSE))
ggplot(results_long, aes(x = Replikasyon, y = log_RMSE, color = Parametre)) +
geom_line(size = 1.2) +
geom_point(size = 3) +
scale_x_continuous(breaks = results$Replikasyon) +
labs(
title = "Replikasyon Sayısına Göre Madde Parametre Tahmin Hatası (Log(RMSE))",
x = "Replikasyon Sayısı",
y = "Log(RMSE)",
color = "Parametre"
) +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Tablodaki sonuçlara göre, replikasyon sayısı arttıkça madde parametrelerinin tahmin hatası (RMSE) biraz azalıyor, yani tahminler biraz daha doğru oluyor diyebiliriz. a parametresi için hata b parametresine göre biraz daha düşük. Genel olarak, daha çok replikasyon yapıldığında parametre tahminlerinin daha güvenilir olduğu söylenebilir.Bununla birlikte, a parametresi modelin ayırt ediciliğini gösterdiği için, genellikle daha net ve stabil sonuçlar verir.Buna karşın, b parametresi ise madde zorluğu olarak daha değişken ve hassas olduğu için tahmin hatasının biraz daha yüksek olduğunu söyleyebiliriz.
set.seed(123)
n <- 1000 # birey sayısı
theta_true <- rnorm(n, mean = 0, sd = 1)
# madde_par bir 20x2 matris: [,1] = a, [,2] = b
a <- madde_par[,1]
b <- madde_par[,2]
# Her birey için 20 maddeye yanıt üret
sim_data <- sapply(1:length(a), function(i) {
p <- 1 / (1 + exp(-1.7 * a[i] * (theta_true - b[i])))
rbinom(n, size = 1, prob = p)
})
sim_data <- as.data.frame(sim_data)
model <- mirt(sim_data, 1, itemtype = "2PL", verbose = FALSE)
## Warning: EM cycles terminated after 500 iterations.
theta_EAP <- fscores(model, method = "EAP")[,1]
theta_MAP <- fscores(model, method = "MAP")[,1]
theta_MLE <- fscores(model, method = "ML")[,1]
rmse <- function(true, est) sqrt(mean((true - est)^2))
rmse_EAP <- rmse(theta_true, theta_EAP)
rmse_MAP <- rmse(theta_true, theta_MAP)
rmse_MLE <- rmse(theta_true, theta_MLE)
rmse_table <- data.frame(
Yontem = c("EAP", "MAP", "MLE"),
RMSE = c(rmse_EAP, rmse_MAP, rmse_MLE)
)
print(rmse_table)
## Yontem RMSE
## 1 EAP 0.3607144
## 2 MAP 0.3611647
## 3 MLE Inf
RMSE (Root Mean Square Error) değerleri gerçek yetenek değerleri ile kestirilen yetenek değerleri arasındaki ortalama hata büyüklüğü olduğundan küçük değerlerin daha iyi kestirim anlamına geldiğini söyleyebiliriz. EAP ve MAP sonuçlarına göre (yaklaşık 0.36 civarında) gerçek yetenek değerlerine ortalama 0.36 hata ile yaklaşıyorlar. Bunun normal bir hata büyüklüğü olduğunu yani kestirimlerin başarılı olduğunu söyleyebiliriz.