nilai= rnorm(240, mean=75, sd=10)
data.frame(nilai)
##         nilai
## 1    76.48547
## 2    79.70389
## 3    55.02897
## 4    87.65361
## 5    85.73402
## 6    78.86601
## 7    50.21749
## 8    63.79583
## 9    79.90121
## 10   62.21173
## 11   80.55499
## 12   73.04405
## 13   91.77758
## 14   76.49389
## 15   83.31299
## 16   59.14221
## 17   88.29855
## 18   72.47366
## 19   67.27490
## 20   74.36079
## 21   69.03950
## 22   58.21296
## 23   72.36363
## 24   84.28784
## 25   67.52065
## 26   73.38703
## 27   86.36226
## 28   72.75185
## 29   83.09218
## 30   83.29095
## 31   70.30281
## 32   79.92569
## 33   90.36530
## 34   67.76040
## 35   74.06063
## 36   62.50319
## 37   79.76051
## 38   82.99425
## 39   75.50308
## 40   81.43357
## 41   71.79169
## 42   67.11775
## 43   70.50557
## 44   94.01138
## 45   61.96397
## 46   75.75672
## 47   63.98775
## 48   79.97102
## 49   70.85461
## 50   69.58422
## 51   75.34806
## 52   56.75332
## 53   61.08254
## 54   67.45049
## 55   71.74342
## 56   88.74276
## 57  100.48682
## 58   88.71008
## 59   75.59005
## 60   62.05434
## 61   54.84919
## 62   72.06515
## 63   45.96627
## 64   72.79570
## 65   84.56979
## 66   62.81397
## 67   87.26464
## 68   62.20136
## 69   64.69431
## 70   72.45503
## 71   70.86540
## 72   73.89394
## 73   76.57041
## 74   60.38963
## 75   96.85415
## 76   63.30129
## 77   92.95461
## 78   63.15441
## 79   68.55914
## 80   83.15472
## 81   79.11322
## 82   68.72469
## 83   82.89546
## 84   69.86520
## 85   77.63564
## 86   83.91041
## 87   68.80076
## 88   58.01167
## 89   76.41816
## 90   76.77539
## 91   79.67621
## 92   89.06648
## 93   46.52147
## 94   74.82020
## 95   73.39535
## 96   77.62403
## 97   58.03619
## 98   76.12061
## 99   78.02452
## 100  76.56174
## 101  83.66924
## 102  76.24315
## 103  81.16329
## 104  80.57372
## 105  68.10656
## 106  76.27756
## 107  65.10939
## 108  89.80711
## 109  64.81644
## 110  74.20170
## 111  86.13627
## 112  57.02310
## 113  60.42528
## 114  66.80062
## 115  86.13144
## 116  70.35538
## 117  65.48593
## 118  89.89893
## 119  73.22673
## 120  74.83872
## 121  64.52261
## 122  68.41611
## 123  73.66362
## 124  79.52381
## 125  79.36734
## 126  83.41571
## 127  54.58469
## 128  61.25738
## 129  82.68280
## 130  87.66856
## 131  91.07345
## 132  77.73098
## 133  44.55570
## 134  82.49303
## 135  78.10471
## 136  82.09219
## 137  60.55604
## 138  88.65134
## 139  86.10376
## 140  76.03482
## 141  66.86100
## 142  81.49412
## 143  70.78176
## 144  97.76658
## 145  70.32187
## 146  69.32046
## 147  91.23399
## 148  69.07500
## 149  92.60433
## 150  84.61519
## 151  85.47080
## 152  65.68540
## 153  68.90065
## 154  69.24682
## 155  73.09958
## 156  69.98201
## 157  82.19036
## 158  81.23659
## 159  87.82006
## 160  68.30229
## 161  68.13040
## 162  61.45293
## 163  74.24992
## 164  74.25467
## 165  92.70902
## 166  86.11873
## 167  79.18462
## 168  77.86005
## 169  72.73980
## 170  80.65235
## 171  78.86561
## 172  64.88057
## 173  84.88284
## 174  88.36553
## 175  84.41856
## 176  69.98473
## 177  56.20900
## 178  80.27073
## 179  74.56734
## 180  70.89046
## 181  79.41763
## 182  62.85761
## 183  61.44105
## 184  88.74322
## 185  86.23451
## 186  64.89226
## 187  70.50758
## 188  79.47720
## 189  78.50684
## 190  75.85676
## 191  72.15096
## 192  74.60864
## 193  76.99760
## 194  83.90969
## 195  72.32477
## 196  85.83045
## 197  78.75649
## 198  89.07154
## 199  72.44366
## 200  81.73406
## 201  79.26205
## 202  72.39343
## 203  56.79712
## 204  70.95376
## 205  77.99251
## 206  69.27762
## 207  87.14989
## 208  71.02603
## 209  84.20161
## 210  69.14617
## 211  83.25165
## 212  65.07587
## 213  68.15080
## 214  90.37854
## 215  72.58197
## 216  82.92891
## 217  83.55644
## 218  84.70588
## 219  72.25829
## 220  94.80698
## 221  68.31143
## 222  66.65696
## 223  61.31580
## 224  90.77063
## 225  82.02684
## 226  86.96812
## 227  80.08065
## 228  72.91450
## 229  82.51650
## 230  72.25396
## 231  65.66912
## 232  86.13270
## 233  74.83901
## 234 100.19175
## 235  57.48978
## 236  78.30926
## 237  64.87206
## 238  74.60686
## 239  87.64558
## 240  73.04780

Data berdistribusi normal dengan mean 75 dan standar deviasi 10. Data berukuran 1x240

A=matrix(c("A"),nrow=60)
B=matrix(c("B"),nrow=60)
C=matrix(c("C"),nrow=60)
D=matrix(c("D"),nrow=60)
kelas=rbind(A,B,C,D)
data=data.frame(nilai,kelas)
data
##         nilai kelas
## 1    76.48547     A
## 2    79.70389     A
## 3    55.02897     A
## 4    87.65361     A
## 5    85.73402     A
## 6    78.86601     A
## 7    50.21749     A
## 8    63.79583     A
## 9    79.90121     A
## 10   62.21173     A
## 11   80.55499     A
## 12   73.04405     A
## 13   91.77758     A
## 14   76.49389     A
## 15   83.31299     A
## 16   59.14221     A
## 17   88.29855     A
## 18   72.47366     A
## 19   67.27490     A
## 20   74.36079     A
## 21   69.03950     A
## 22   58.21296     A
## 23   72.36363     A
## 24   84.28784     A
## 25   67.52065     A
## 26   73.38703     A
## 27   86.36226     A
## 28   72.75185     A
## 29   83.09218     A
## 30   83.29095     A
## 31   70.30281     A
## 32   79.92569     A
## 33   90.36530     A
## 34   67.76040     A
## 35   74.06063     A
## 36   62.50319     A
## 37   79.76051     A
## 38   82.99425     A
## 39   75.50308     A
## 40   81.43357     A
## 41   71.79169     A
## 42   67.11775     A
## 43   70.50557     A
## 44   94.01138     A
## 45   61.96397     A
## 46   75.75672     A
## 47   63.98775     A
## 48   79.97102     A
## 49   70.85461     A
## 50   69.58422     A
## 51   75.34806     A
## 52   56.75332     A
## 53   61.08254     A
## 54   67.45049     A
## 55   71.74342     A
## 56   88.74276     A
## 57  100.48682     A
## 58   88.71008     A
## 59   75.59005     A
## 60   62.05434     A
## 61   54.84919     B
## 62   72.06515     B
## 63   45.96627     B
## 64   72.79570     B
## 65   84.56979     B
## 66   62.81397     B
## 67   87.26464     B
## 68   62.20136     B
## 69   64.69431     B
## 70   72.45503     B
## 71   70.86540     B
## 72   73.89394     B
## 73   76.57041     B
## 74   60.38963     B
## 75   96.85415     B
## 76   63.30129     B
## 77   92.95461     B
## 78   63.15441     B
## 79   68.55914     B
## 80   83.15472     B
## 81   79.11322     B
## 82   68.72469     B
## 83   82.89546     B
## 84   69.86520     B
## 85   77.63564     B
## 86   83.91041     B
## 87   68.80076     B
## 88   58.01167     B
## 89   76.41816     B
## 90   76.77539     B
## 91   79.67621     B
## 92   89.06648     B
## 93   46.52147     B
## 94   74.82020     B
## 95   73.39535     B
## 96   77.62403     B
## 97   58.03619     B
## 98   76.12061     B
## 99   78.02452     B
## 100  76.56174     B
## 101  83.66924     B
## 102  76.24315     B
## 103  81.16329     B
## 104  80.57372     B
## 105  68.10656     B
## 106  76.27756     B
## 107  65.10939     B
## 108  89.80711     B
## 109  64.81644     B
## 110  74.20170     B
## 111  86.13627     B
## 112  57.02310     B
## 113  60.42528     B
## 114  66.80062     B
## 115  86.13144     B
## 116  70.35538     B
## 117  65.48593     B
## 118  89.89893     B
## 119  73.22673     B
## 120  74.83872     B
## 121  64.52261     C
## 122  68.41611     C
## 123  73.66362     C
## 124  79.52381     C
## 125  79.36734     C
## 126  83.41571     C
## 127  54.58469     C
## 128  61.25738     C
## 129  82.68280     C
## 130  87.66856     C
## 131  91.07345     C
## 132  77.73098     C
## 133  44.55570     C
## 134  82.49303     C
## 135  78.10471     C
## 136  82.09219     C
## 137  60.55604     C
## 138  88.65134     C
## 139  86.10376     C
## 140  76.03482     C
## 141  66.86100     C
## 142  81.49412     C
## 143  70.78176     C
## 144  97.76658     C
## 145  70.32187     C
## 146  69.32046     C
## 147  91.23399     C
## 148  69.07500     C
## 149  92.60433     C
## 150  84.61519     C
## 151  85.47080     C
## 152  65.68540     C
## 153  68.90065     C
## 154  69.24682     C
## 155  73.09958     C
## 156  69.98201     C
## 157  82.19036     C
## 158  81.23659     C
## 159  87.82006     C
## 160  68.30229     C
## 161  68.13040     C
## 162  61.45293     C
## 163  74.24992     C
## 164  74.25467     C
## 165  92.70902     C
## 166  86.11873     C
## 167  79.18462     C
## 168  77.86005     C
## 169  72.73980     C
## 170  80.65235     C
## 171  78.86561     C
## 172  64.88057     C
## 173  84.88284     C
## 174  88.36553     C
## 175  84.41856     C
## 176  69.98473     C
## 177  56.20900     C
## 178  80.27073     C
## 179  74.56734     C
## 180  70.89046     C
## 181  79.41763     D
## 182  62.85761     D
## 183  61.44105     D
## 184  88.74322     D
## 185  86.23451     D
## 186  64.89226     D
## 187  70.50758     D
## 188  79.47720     D
## 189  78.50684     D
## 190  75.85676     D
## 191  72.15096     D
## 192  74.60864     D
## 193  76.99760     D
## 194  83.90969     D
## 195  72.32477     D
## 196  85.83045     D
## 197  78.75649     D
## 198  89.07154     D
## 199  72.44366     D
## 200  81.73406     D
## 201  79.26205     D
## 202  72.39343     D
## 203  56.79712     D
## 204  70.95376     D
## 205  77.99251     D
## 206  69.27762     D
## 207  87.14989     D
## 208  71.02603     D
## 209  84.20161     D
## 210  69.14617     D
## 211  83.25165     D
## 212  65.07587     D
## 213  68.15080     D
## 214  90.37854     D
## 215  72.58197     D
## 216  82.92891     D
## 217  83.55644     D
## 218  84.70588     D
## 219  72.25829     D
## 220  94.80698     D
## 221  68.31143     D
## 222  66.65696     D
## 223  61.31580     D
## 224  90.77063     D
## 225  82.02684     D
## 226  86.96812     D
## 227  80.08065     D
## 228  72.91450     D
## 229  82.51650     D
## 230  72.25396     D
## 231  65.66912     D
## 232  86.13270     D
## 233  74.83901     D
## 234 100.19175     D
## 235  57.48978     D
## 236  78.30926     D
## 237  64.87206     D
## 238  74.60686     D
## 239  87.64558     D
## 240  73.04780     D
colnames(data)<-c("nilai","kelas")

Klasifikasi data menjadi 4 kelas, sehingga setiap kelas memiliki 60 data

nilaikelasA=data.frame(data$nilai[1:60])
nilaikelasB=data.frame(data$nilai[61:120])
nilaikelasC=data.frame(data$nilai[121:180])
nilaikelasD=data.frame(data$nilai[181:240])
kelasA=cbind(nilaikelasA,A)
kelasB=cbind(nilaikelasB,B)
kelasC=cbind(nilaikelasC,C)
kelasD=cbind(nilaikelasD,D)
dA=data.frame(kelasA); dA
##    data.nilai.1.60. A
## 1          76.48547 A
## 2          79.70389 A
## 3          55.02897 A
## 4          87.65361 A
## 5          85.73402 A
## 6          78.86601 A
## 7          50.21749 A
## 8          63.79583 A
## 9          79.90121 A
## 10         62.21173 A
## 11         80.55499 A
## 12         73.04405 A
## 13         91.77758 A
## 14         76.49389 A
## 15         83.31299 A
## 16         59.14221 A
## 17         88.29855 A
## 18         72.47366 A
## 19         67.27490 A
## 20         74.36079 A
## 21         69.03950 A
## 22         58.21296 A
## 23         72.36363 A
## 24         84.28784 A
## 25         67.52065 A
## 26         73.38703 A
## 27         86.36226 A
## 28         72.75185 A
## 29         83.09218 A
## 30         83.29095 A
## 31         70.30281 A
## 32         79.92569 A
## 33         90.36530 A
## 34         67.76040 A
## 35         74.06063 A
## 36         62.50319 A
## 37         79.76051 A
## 38         82.99425 A
## 39         75.50308 A
## 40         81.43357 A
## 41         71.79169 A
## 42         67.11775 A
## 43         70.50557 A
## 44         94.01138 A
## 45         61.96397 A
## 46         75.75672 A
## 47         63.98775 A
## 48         79.97102 A
## 49         70.85461 A
## 50         69.58422 A
## 51         75.34806 A
## 52         56.75332 A
## 53         61.08254 A
## 54         67.45049 A
## 55         71.74342 A
## 56         88.74276 A
## 57        100.48682 A
## 58         88.71008 A
## 59         75.59005 A
## 60         62.05434 A
dB=data.frame(kelasB); dB
##    data.nilai.61.120. B
## 1            54.84919 B
## 2            72.06515 B
## 3            45.96627 B
## 4            72.79570 B
## 5            84.56979 B
## 6            62.81397 B
## 7            87.26464 B
## 8            62.20136 B
## 9            64.69431 B
## 10           72.45503 B
## 11           70.86540 B
## 12           73.89394 B
## 13           76.57041 B
## 14           60.38963 B
## 15           96.85415 B
## 16           63.30129 B
## 17           92.95461 B
## 18           63.15441 B
## 19           68.55914 B
## 20           83.15472 B
## 21           79.11322 B
## 22           68.72469 B
## 23           82.89546 B
## 24           69.86520 B
## 25           77.63564 B
## 26           83.91041 B
## 27           68.80076 B
## 28           58.01167 B
## 29           76.41816 B
## 30           76.77539 B
## 31           79.67621 B
## 32           89.06648 B
## 33           46.52147 B
## 34           74.82020 B
## 35           73.39535 B
## 36           77.62403 B
## 37           58.03619 B
## 38           76.12061 B
## 39           78.02452 B
## 40           76.56174 B
## 41           83.66924 B
## 42           76.24315 B
## 43           81.16329 B
## 44           80.57372 B
## 45           68.10656 B
## 46           76.27756 B
## 47           65.10939 B
## 48           89.80711 B
## 49           64.81644 B
## 50           74.20170 B
## 51           86.13627 B
## 52           57.02310 B
## 53           60.42528 B
## 54           66.80062 B
## 55           86.13144 B
## 56           70.35538 B
## 57           65.48593 B
## 58           89.89893 B
## 59           73.22673 B
## 60           74.83872 B
dC=data.frame(kelasC); dC
##    data.nilai.121.180. C
## 1             64.52261 C
## 2             68.41611 C
## 3             73.66362 C
## 4             79.52381 C
## 5             79.36734 C
## 6             83.41571 C
## 7             54.58469 C
## 8             61.25738 C
## 9             82.68280 C
## 10            87.66856 C
## 11            91.07345 C
## 12            77.73098 C
## 13            44.55570 C
## 14            82.49303 C
## 15            78.10471 C
## 16            82.09219 C
## 17            60.55604 C
## 18            88.65134 C
## 19            86.10376 C
## 20            76.03482 C
## 21            66.86100 C
## 22            81.49412 C
## 23            70.78176 C
## 24            97.76658 C
## 25            70.32187 C
## 26            69.32046 C
## 27            91.23399 C
## 28            69.07500 C
## 29            92.60433 C
## 30            84.61519 C
## 31            85.47080 C
## 32            65.68540 C
## 33            68.90065 C
## 34            69.24682 C
## 35            73.09958 C
## 36            69.98201 C
## 37            82.19036 C
## 38            81.23659 C
## 39            87.82006 C
## 40            68.30229 C
## 41            68.13040 C
## 42            61.45293 C
## 43            74.24992 C
## 44            74.25467 C
## 45            92.70902 C
## 46            86.11873 C
## 47            79.18462 C
## 48            77.86005 C
## 49            72.73980 C
## 50            80.65235 C
## 51            78.86561 C
## 52            64.88057 C
## 53            84.88284 C
## 54            88.36553 C
## 55            84.41856 C
## 56            69.98473 C
## 57            56.20900 C
## 58            80.27073 C
## 59            74.56734 C
## 60            70.89046 C
dD=data.frame(kelasD); dD
##    data.nilai.181.240. D
## 1             79.41763 D
## 2             62.85761 D
## 3             61.44105 D
## 4             88.74322 D
## 5             86.23451 D
## 6             64.89226 D
## 7             70.50758 D
## 8             79.47720 D
## 9             78.50684 D
## 10            75.85676 D
## 11            72.15096 D
## 12            74.60864 D
## 13            76.99760 D
## 14            83.90969 D
## 15            72.32477 D
## 16            85.83045 D
## 17            78.75649 D
## 18            89.07154 D
## 19            72.44366 D
## 20            81.73406 D
## 21            79.26205 D
## 22            72.39343 D
## 23            56.79712 D
## 24            70.95376 D
## 25            77.99251 D
## 26            69.27762 D
## 27            87.14989 D
## 28            71.02603 D
## 29            84.20161 D
## 30            69.14617 D
## 31            83.25165 D
## 32            65.07587 D
## 33            68.15080 D
## 34            90.37854 D
## 35            72.58197 D
## 36            82.92891 D
## 37            83.55644 D
## 38            84.70588 D
## 39            72.25829 D
## 40            94.80698 D
## 41            68.31143 D
## 42            66.65696 D
## 43            61.31580 D
## 44            90.77063 D
## 45            82.02684 D
## 46            86.96812 D
## 47            80.08065 D
## 48            72.91450 D
## 49            82.51650 D
## 50            72.25396 D
## 51            65.66912 D
## 52            86.13270 D
## 53            74.83901 D
## 54           100.19175 D
## 55            57.48978 D
## 56            78.30926 D
## 57            64.87206 D
## 58            74.60686 D
## 59            87.64558 D
## 60            73.04780 D

Pemisahan data kelas dan dibuat dataframe tiap kelas

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
ga=ggplot(dA,aes(data.nilai.1.60.))
ga+geom_histogram(col="white",fill="pink")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

gb=ggplot(dB,aes(data.nilai.61.120.))
gb+geom_histogram(col="white",fill="pink")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

gc=ggplot(dC,aes(data.nilai.121.180.))
gc+geom_histogram(col="white",fill="pink")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

gd=ggplot(dD,aes(data.nilai.181.240.))
gd+geom_histogram(col="white",fill="pink")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Plot untuk melihat sebaran data nilai setiap kelas