#Introduccion En este documento se realizara una “Tabla 1” sobre “Framingham Heart Study”, el cual trata sobre el estudio de las enfermedades cardiovasculares de una poblacion en Framinghan, Massachusetts. Es una investigacion de las mas durareas en la historia de la epidemiologia, la cual su proposito fue identificar factores de riesgo en enfermedades cardiovasculares a largo plazo de una cohorte de personas. El data set que se manejara para este proyecto sera un subconjunto mas pequeño de datos que la original, conteniendo asi 4240 observaciones con 16 variables.

#En esta seccion se importaran la base de datos

FHS <- read.csv("framingham_dataset.csv", header = TRUE)
head(FHS, 10)
##     X randid sex totchol age sysbp diabp cursmoke cigpday   bmi diabetes bpmeds
## 1   1   2448   1     195  39 106.0  70.0        0       0 26.97        0      0
## 2   2   2448   1     209  52 121.0  66.0        0       0    NA        0      0
## 3   3   6238   2     250  46 121.0  81.0        0       0 28.73        0      0
## 4   4   6238   2     260  52 105.0  69.5        0       0 29.43        0      0
## 5   5   6238   2     237  58 108.0  66.0        0       0 28.50        0      0
## 6   6   9428   1     245  48 127.5  80.0        1      20 25.34        0      0
## 7   7   9428   1     283  54 141.0  89.0        1      30 25.34        0      0
## 8   8  10552   2     225  61 150.0  95.0        1      30 28.58        0      0
## 9   9  10552   2     232  67 183.0 109.0        1      20 30.18        0      0
## 10 10  11252   2     285  46 130.0  84.0        1      23 23.10        0      0
##    heartrte glucose educ prevchd prevap prevmi prevstrk prevhyp time period
## 1        80      77    4       0      0      0        0       0    0      1
## 2        69      92    4       0      0      0        0       0 4628      3
## 3        95      76    2       0      0      0        0       0    0      1
## 4        80      86    2       0      0      0        0       0 2156      2
## 5        80      71    2       0      0      0        0       0 4344      3
## 6        75      70    1       0      0      0        0       0    0      1
## 7        75      87    1       0      0      0        0       0 2199      2
## 8        65     103    3       0      0      0        0       1    0      1
## 9        60      89    3       0      0      0        0       1 1977      2
## 10       85      85    3       0      0      0        0       0    0      1
##    hdlc ldlc death angina hospmi mi_fchd anychd stroke cvd hyperten timeap
## 1    NA   NA     0      0      1       1      1      0   1        0   8766
## 2    31  178     0      0      1       1      1      0   1        0   8766
## 3    NA   NA     0      0      0       0      0      0   0        0   8766
## 4    NA   NA     0      0      0       0      0      0   0        0   8766
## 5    54  141     0      0      0       0      0      0   0        0   8766
## 6    NA   NA     0      0      0       0      0      0   0        0   8766
## 7    NA   NA     0      0      0       0      0      0   0        0   8766
## 8    NA   NA     1      0      0       0      0      1   1        1   2956
## 9    NA   NA     1      0      0       0      0      1   1        1   2956
## 10   NA   NA     0      0      0       0      0      0   0        1   8766
##    timemi timemifc timechd timestrk timecvd timedth timehyp
## 1    6438     6438    6438     8766    6438    8766    8766
## 2    6438     6438    6438     8766    6438    8766    8766
## 3    8766     8766    8766     8766    8766    8766    8766
## 4    8766     8766    8766     8766    8766    8766    8766
## 5    8766     8766    8766     8766    8766    8766    8766
## 6    8766     8766    8766     8766    8766    8766    8766
## 7    8766     8766    8766     8766    8766    8766    8766
## 8    2956     2956    2956     2089    2089    2956       0
## 9    2956     2956    2956     2089    2089    2956       0
## 10   8766     8766    8766     8766    8766    8766    4285

Como primer paso daremos categoria a variables binarias, por ejemplo, para la variable “sex” unicamente arroja valores 2 y 1, las cuales representan femenino y masculino respectivamente, se realizara el mismo ejercicio para las demas variables con la misma situacion de valores binarios:

#Se generan intervalos de la edad, estas se escojieron a partir del
#primer y tecer quartil, teniendo tres intervalos de edades
edad <- cut(FHS$age ,
                        breaks = c(-Inf, 48, 62, Inf),
                        labels = c("menos de 48 años", "De 48 a 62 años" , " mas de 62 años"))

sexo <- factor(FHS$sex, levels = c(1,2),
               labels = c("Male", "Female"))
educacion <- factor(FHS$educ,
                    levels =c(1,2,3,4),
                    labels = c("Some high school", "High school diploma/GED", "Some college, vocational school", "College (BS,BA) degree or more"))

prevelant_stroke <- factor(FHS$prevstrk, levels = c(0,1),
                           labels = c("Free of disease","Prevelant disease"))
prevelant_hyp <- factor(FHS$prevhyp, levels = c(0,1),
                           labels = c("Free of disease","Prevelant disease"))
diabetic <- factor(FHS$diabetes, levels = c(0,1),
                           labels = c("No a diabetic","Diabetic"))

#variables a comparar con los estratos
variable_fchd <- factor(FHS$mi_fchd, levels = c(0,1),
                 labels = c("Hospitalized MI - Fatal CHD","Angina"))
angina_pecho <- factor(FHS$angina, levels = c(0,1), labels =  c("No","Yes") )
#Se colocan las etiquetas para cada variable
label(FHS$age) <- "Age(Years)"
label(sexo) <- "Sex"
label(edad) <- "Age"
label(educacion) <- "education"
label(prevelant_stroke) <- "Prevelant Stroke"
label(prevelant_hyp) <- "Prevelant Hipertensive"
label(diabetic) <- "Diabetes"
label(variable_fchd) <- "Hospitalized MI - Fatal CHD"
label(angina_pecho) <- "Angina"

En esta Tabla 1, se comparan los estratos con la variable my_fchd y la variable angina las cuales representan las tasas de incidencias de angina de pecho y de la cardiopatía isquémica fatal hospitalizada

table1(~ sexo + age + edad + educacion + prevelant_hyp + prevelant_stroke + diabetic | variable_fchd*angina_pecho,
       data = FHS,
       render.continuous = c(.="Mean (SD)", .="Median [Q1, Q3]"),
       overall = FALSE,
       caption = "Specific Angina and Hospitalized MI-Fatal CHD Incidence Rates")
Specific Angina and Hospitalized MI-Fatal CHD Incidence Rates
Hospitalized MI - Fatal CHD
Angina
No
(N=8777)
Yes
(N=1062)
No
(N=948)
Yes
(N=840)
Sex
Male 3440 (39.2%) 398 (37.5%) 602 (63.5%) 582 (69.3%)
Female 5337 (60.8%) 664 (62.5%) 346 (36.5%) 258 (30.7%)
Age(Years)
Mean (SD) 54.0 (9.47) 57.1 (9.48) 57.4 (9.47) 57.2 (9.41)
Median [Q1, Q3] 53.0 [47.0, 61.0] 58.0 [50.0, 64.0] 57.0 [50.0, 64.0] 57.0 [50.0, 64.0]
Age
menos de 48 años 2736 (31.2%) 204 (19.2%) 188 (19.8%) 168 (20.0%)
De 48 a 62 años 4241 (48.3%) 528 (49.7%) 459 (48.4%) 403 (48.0%)
mas de 62 años 1800 (20.5%) 330 (31.1%) 301 (31.8%) 269 (32.0%)
education
Some high school 3372 (38.4%) 506 (47.6%) 443 (46.7%) 369 (43.9%)
High school diploma/GED 2692 (30.7%) 254 (23.9%) 278 (29.3%) 186 (22.1%)
Some college, vocational school 1508 (17.2%) 140 (13.2%) 106 (11.2%) 131 (15.6%)
College (BS,BA) degree or more 987 (11.2%) 128 (12.1%) 99 (10.4%) 133 (15.8%)
Missing 218 (2.5%) 34 (3.2%) 22 (2.3%) 21 (2.5%)
Prevelant Hipertensive
Free of disease 5128 (58.4%) 466 (43.9%) 372 (39.2%) 317 (37.7%)
Prevelant disease 3649 (41.6%) 596 (56.1%) 576 (60.8%) 523 (62.3%)
Prevelant Stroke
Free of disease 8690 (99.0%) 1045 (98.4%) 919 (96.9%) 821 (97.7%)
Prevelant disease 87 (1.0%) 17 (1.6%) 29 (3.1%) 19 (2.3%)
Diabetes
No a diabetic 8501 (96.9%) 998 (94.0%) 845 (89.1%) 753 (89.6%)
Diabetic 276 (3.1%) 64 (6.0%) 103 (10.9%) 87 (10.4%)

Para finalizar se realizara una ultima comparacion con los accidentes cerebrovasculares y enfermedades cardiovaculares (mortales y no mortales).

strk <- factor(FHS$stroke, levels = c(0,1),
              labels = c("CVD", "Stroke"))

carvd <- factor(FHS$cvd, levels = c(0,1), labels = c("event did not occur", "event did occur"))

label(strk) <- "Stroke"
label(carvd) <-  "CVD"

table1(~ sexo + age + edad + educacion + prevelant_hyp + diabetic | strk*carvd,
       data = FHS,
       render.continuous = c(.="Mean (SD)", .="Median [Q1, Q3]"),
       overall = FALSE,
       caption = "Specific Stroke and Cardiovascular Disease (Fatal and Non-Fatal) Incidence Rates")
Specific Stroke and Cardiovascular Disease (Fatal and Non-Fatal) Incidence Rates
CVD
Stroke
event did not occur
(N=8728)
event did occur
(N=1838)
event did occur
(N=1061)
Sex
Male 3333 (38.2%) 1201 (65.3%) 488 (46.0%)
Female 5395 (61.8%) 637 (34.7%) 573 (54.0%)
Age(Years)
Mean (SD) 53.6 (9.35) 57.1 (9.40) 60.4 (8.90)
Median [Q1, Q3] 53.0 [47.0, 60.0] 57.0 [50.0, 64.0] 61.0 [55.0, 67.0]
Age
menos de 48 años 2801 (32.1%) 376 (20.5%) 119 (11.2%)
De 48 a 62 años 4264 (48.9%) 897 (48.8%) 470 (44.3%)
mas de 62 años 1663 (19.1%) 565 (30.7%) 472 (44.5%)
education
Some high school 3311 (37.9%) 835 (45.4%) 544 (51.3%)
High school diploma/GED 2636 (30.2%) 513 (27.9%) 261 (24.6%)
Some college, vocational school 1537 (17.6%) 215 (11.7%) 133 (12.5%)
College (BS,BA) degree or more 1025 (11.7%) 225 (12.2%) 97 (9.1%)
Missing 219 (2.5%) 50 (2.7%) 26 (2.5%)
Prevelant Hipertensive
Free of disease 5235 (60.0%) 760 (41.3%) 288 (27.1%)
Prevelant disease 3493 (40.0%) 1078 (58.7%) 773 (72.9%)
Diabetes
No a diabetic 8494 (97.3%) 1670 (90.9%) 933 (87.9%)
Diabetic 234 (2.7%) 168 (9.1%) 128 (12.1%)