#QUESTION ONE

#install and load necessary packages
library(fGarch)
## Warning: package 'fGarch' was built under R version 4.3.3
## NOTE: Packages 'fBasics', 'timeDate', and 'timeSeries' are no longer
## attached to the search() path when 'fGarch' is attached.
## 
## If needed attach them yourself in your R script by e.g.,
##         require("timeSeries")
library(rugarch)
## Warning: package 'rugarch' was built under R version 4.3.3
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma
library(fitdistrplus)
## Warning: package 'fitdistrplus' was built under R version 4.3.3
## Loading required package: MASS
## Loading required package: survival
## Warning: package 'survival' was built under R version 4.3.3
## 
## Attaching package: 'fitdistrplus'
## The following object is masked from 'package:rugarch':
## 
##     fitdist
library(timeSeries)
## Warning: package 'timeSeries' was built under R version 4.3.3
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 4.3.3
## 
## Attaching package: 'timeSeries'
## The following object is masked from 'package:rugarch':
## 
##     quantile
## The following objects are masked from 'package:graphics':
## 
##     lines, points
#load the data
Data1= read.csv("DATA25.csv");Data1
##     Year     Month STOCK   GDP   CPI PENSION INFLATION CLAIMS INTEREST
## 1   2025     April  3.74  4.11  6.12   13.50      5.58   4.59     4.12
## 2   2025     March  3.81  3.62  6.33   13.59      5.53   4.53     3.97
## 3   2025  February  3.98  3.45  6.47   13.49      5.70   4.53     4.07
## 4   2025   January  4.21  3.28  6.48   13.47      4.04   4.63     4.20
## 5   2024  December  4.50  2.99  6.51   13.70      4.35   4.95     4.44
## 6   2024  November  4.81  2.75  6.56   13.73      4.28   5.20     4.62
## 7   2024   October  5.14  2.72  6.57   13.71      3.95   5.61     4.45
## 8   2024 September  5.50  3.56  6.64   13.83      3.73   6.24     4.38
## 9   2024    August  5.77  4.36  6.66   13.85      4.18   6.89     4.42
## 10  2024      July  5.97  4.31  6.68   13.76      4.46   7.40     4.40
## 11  2024      June  4.64  6.22  6.68   13.66      4.83   7.79     4.37
## 12  2024       May  6.49  5.10  6.81   13.65      4.50   7.98     4.50
## 13  2024     April  6.73  5.00  7.06   13.61      4.73   8.15     4.21
## 14  2024     March  6.97  5.70  7.16   13.61      5.72   8.33     4.22
## 15  2024  February  7.26  6.31  7.19   13.81      7.06   8.40     4.30
## 16  2024   January  7.50  6.85  7.19   14.23      8.04   8.36     4.59
## 17  2023  December  7.67  6.63  7.20   14.29      7.47   8.21     4.73
## 18  2023  November  7.87  6.80  7.25   14.39      9.21   8.13     4.96
## 19  2023   October  8.10  6.92  7.23   14.24     11.70   7.84     4.78
## 20  2023 September  8.32  6.78  7.25   14.25     11.48   7.20     4.56
## 21  2023    August  8.52  6.73  7.27   14.45     10.28   6.76     4.56
## 22  2023      July  8.68  7.28  7.33   15.32      9.04   6.43     4.55
## 23  2023      June  8.77  7.88  7.36   15.49      6.99   6.26     4.57
## 24  2023       May  8.78  8.03  7.46   17.28      6.35   6.30     4.57
## 25  2023     April  8.71  7.90  7.62   18.47      6.68   6.43     5.70
## 26  2023     March  8.59  9.19  7.72   22.51      6.47   6.48     5.75
## 27  2023  February  8.30  9.23  7.75   23.03      6.34   6.50     5.52
## 28  2023   January  7.95  8.98  7.77   23.04      6.26   6.47     5.27
## 29  2022  December  7.66  9.06  7.78   23.43      6.40   6.44     5.53
## 30  2022  November  7.38  9.48  7.86   22.36      5.80   6.46     5.79
## 31  2022   October  7.48  9.59  7.87   23.27      5.00   6.59     5.04
## 32  2022 September  6.81  9.18  7.88   20.84      5.27   6.72     4.87
## 33  2022    August  6.61  8.53  7.95   19.98      6.45   6.88     4.71
## 34  2022      July  6.45  8.32  8.02   18.61      6.84   6.87     4.76
## 35  2022      June  6.29  7.91  8.06   17.76      7.78   6.77     4.91
## 36  2022       May  6.16  7.08  8.21   17.42      8.01   6.58     4.94
## 37  2022     April  6.05  6.47  8.41   16.69      7.32   6.42     4.83
## 38  2022     March  6.29  5.56  8.43   16.67      6.72   6.31     4.59
## 39  2022  February  6.23  5.08  8.60   16.76      5.97   6.29     4.53
## 40  2022   January  6.08  5.39  8.66   15.11      5.84   6.34     5.20
## 41  2021  December  5.62  5.73  8.69   14.05      6.62   6.54     4.74
## 42  2021  November  6.10  5.80  8.83   13.05      7.03   6.63     5.50
## 43  2021   October  6.07  6.45  8.84   12.20      6.87   6.65     5.04
## 44  2021 September  5.35  6.91  8.96   12.08      7.08   6.69     5.68
## 45  2021    August  5.71  6.57  9.13   11.30      6.31   6.63     6.57
## 46  2021      July  5.53  6.55  9.16   10.83      5.61   6.63     6.92
## 47  2021      June  5.35  6.32  9.19    9.81      5.53   6.74     9.25
## 48  2021       May  5.20  5.87  9.28   10.13      6.02   6.88     9.06
## 49  2021     April  4.66  5.76  9.57   10.32      6.09   6.97     9.15
## 50  2021     March  5.17  5.90  9.60   11.90      6.43   7.08     9.29
## 51  2021  February  5.16  5.78  9.76   11.80      6.60   7.19    10.22
## 52  2021   January  5.74  5.69  9.85   11.97      8.36   7.33    10.47
## 53  2020  December  5.41  5.62  9.92   12.46      7.67   7.19    11.03
## 54  2020  November  5.53  5.33 10.06   12.77      7.39   7.05    11.70
## 55  2020   October  5.67  4.84 10.16   13.33      7.30   6.85    10.85
## 56  2020 September  5.79  4.20 10.11   13.62      6.41   6.58     8.63
## 57  2020    August  5.87  4.36 10.23   13.89      6.27   6.39     7.64
## 58  2020      July  6.01  4.36 10.28   14.23      6.86   6.21     8.15
## 59  2020      June  6.16  4.59 10.34   14.19      7.21   6.01     9.32
## 60  2020       May  6.18  5.33 10.54   14.17      7.15   5.72     8.48
## 61  2020     April  6.03  6.01 10.92   14.05      7.36   5.39     7.29
## 62  2020     March  5.84  5.84 10.96   13.90      7.76   5.05     7.01
## 63  2020  February  5.72  7.17 11.17   14.28      8.29   4.75     6.84
## 64  2020   January  5.29  5.78 11.32   14.19      6.67   4.50     6.82
## 65  2019  December  5.20  5.82 11.28   14.29      6.03   4.44     7.23
## 66  2019  November  5.19  5.56 11.43   14.65      4.91   4.56     6.33
## 67  2019   October  5.19  4.95 11.46   14.54      4.05   4.96     5.98
## 68  2019 September  5.24  3.83 11.49   14.47      4.14   5.61     5.86
## 69  2019    August  5.40  5.00 11.77   14.33      4.11   6.33     5.00
## 70  2019      July  5.32  6.27 12.18   14.24      4.45   7.24     4.66
## 71  2019      June  5.16  5.70 12.47   14.95      3.67   8.20     4.43
## 72  2019       May  5.04  4.49 12.79   13.89      3.20   9.38     4.45
## 73  2019     April  4.91  6.58 12.73   14.11      3.25  10.67     4.06
## 74  2019     April  4.91  6.58 13.07   14.06      4.14  12.04     3.77
## 75  2019     March  4.67  4.35 13.31   14.53      5.32  13.29     4.22
## 76  2019  February  4.65  4.14 13.32   15.21      6.09  14.33     3.52
## 77  2019   January  4.68  4.70 13.67   15.88      7.74  15.27     3.85
## 78  2018  December  4.69  5.71 13.79   16.02     10.05  15.97     4.07
## 79  2018  November  4.59  5.58 13.96   15.94     12.22  16.40     3.88
## 80  2018   October  4.53  5.53 14.01   15.88     13.06  16.50     4.19
## 81  2018 September  4.53  5.70 14.38   15.89     15.61  16.45     3.88
## 82  2018    August  4.63  4.04 14.40   18.37     16.69  15.93     3.50
## 83  2018      July  4.95  4.35 14.48   17.85     18.31  15.10     3.53
## 84  2018      June  5.20  4.28 14.56   16.87     18.93  14.02     3.47
## 85  2018       May  5.61  3.95 14.83   16.67     19.72  12.82     3.31
## 86  2018     April  6.24  3.73 14.97   16.35     18.91  11.49     3.10
## 87  2018     March  6.89  4.18 16.27   15.96     17.32  10.18     3.01
## 88  2018  February  7.40  4.46 16.40   15.39     16.67   9.00     2.82
## 89  2018   January  7.79  4.83 16.94   14.67     15.53   7.88     2.59
## 90  2017  December  7.98  4.50 18.68   12.99     14.48   6.88     2.36
## 91  2017  November  8.15  4.73 18.46   11.25     12.95   5.96     2.21
## 92  2017   October  8.33  5.72 18.54    9.66     12.05   5.20     1.78
## 93  2017 September  8.40  7.06 18.85    8.93      9.19   4.49     1.65
## 94  2017    August  8.36  8.04 18.62    8.18      6.54   4.05     1.71
## 95  2017      July  8.21  7.47 18.92    7.55      5.42   3.93     1.38
## 96  2017      June  8.13  9.21 19.46    7.83      4.51   3.96     1.25
## 97  2017       May  7.84 11.70 19.59    7.65      3.84   4.02     1.16
## 98  2017     April  7.20 11.48 21.16    7.79      3.18   4.12     0.86
## 99  2017     March  6.76 10.28 21.83    8.44      3.21   4.40     0.75
## 100 2017  February  6.43  9.04 23.31    9.10      3.22   4.69     0.93
## 101 2017   January  6.26  6.99 24.16    9.48      3.57   5.03     1.26
## 102 2016  December  6.30  6.35 25.99    9.74      3.49   5.43     1.26
## 103 2016  November  6.43  6.68 26.47   10.38      3.88   5.85     1.18
## 104 2016   October  6.48  6.47 27.38    9.17      3.66   6.32     1.46
## 105 2016 September  6.50  6.34 29.02    8.01      3.97   7.03     1.24
## 106 2016    August  6.47  6.26 29.32    7.61      5.18   7.88     1.11
## 107 2016      July  6.44  6.40 29.63    7.21      5.95   8.64     1.00
## 108 2016      June  6.46  5.80 30.11    7.01      5.32   9.24     1.15
## 109 2016       May  6.59  5.00 31.64    6.67      5.00  10.24     0.96
## 110 2016     April  6.72  5.27 32.65    6.26      6.62  11.42     0.88
## 111 2016     March  6.88  6.45 33.54    6.22      6.74  12.41     0.73
## 112 2016  February  6.87  6.84 34.44    6.22      7.36  13.42     0.96
## 113 2016   January  6.77  7.78 34.09    6.20      8.44  14.35     0.76
## 114 2015  December  6.58  8.01 33.46    6.22      8.60  15.11     0.52
## 115 2015  November  6.42  7.32 33.70    6.54      9.61  15.93     0.43
## 116 2015   October  6.31  6.72 33.26    6.55     12.42  16.72     0.43
## 117 2015 September  6.29  5.97 32.75    6.92     14.60  17.07     0.32
## 118 2015    August  6.34  5.84 32.92    6.58     14.69  16.87     0.64
## 119 2015      July  6.54  6.62 32.12    6.44     13.22  16.56     0.88
Data2= Data1$STOCK;Data2
##   [1] 3.74 3.81 3.98 4.21 4.50 4.81 5.14 5.50 5.77 5.97 4.64 6.49 6.73 6.97 7.26
##  [16] 7.50 7.67 7.87 8.10 8.32 8.52 8.68 8.77 8.78 8.71 8.59 8.30 7.95 7.66 7.38
##  [31] 7.48 6.81 6.61 6.45 6.29 6.16 6.05 6.29 6.23 6.08 5.62 6.10 6.07 5.35 5.71
##  [46] 5.53 5.35 5.20 4.66 5.17 5.16 5.74 5.41 5.53 5.67 5.79 5.87 6.01 6.16 6.18
##  [61] 6.03 5.84 5.72 5.29 5.20 5.19 5.19 5.24 5.40 5.32 5.16 5.04 4.91 4.91 4.67
##  [76] 4.65 4.68 4.69 4.59 4.53 4.53 4.63 4.95 5.20 5.61 6.24 6.89 7.40 7.79 7.98
##  [91] 8.15 8.33 8.40 8.36 8.21 8.13 7.84 7.20 6.76 6.43 6.26 6.30 6.43 6.48 6.50
## [106] 6.47 6.44 6.46 6.59 6.72 6.88 6.87 6.77 6.58 6.42 6.31 6.29 6.34 6.54
#Model Fitting
M1=ugarchspec(variance.model = list(model = "eGARCH", garchOrder =c(1,2)), mean.model = list(armaOrder = c(1,2), include.mean = FALSE), distribution.model = "norm");M1
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : eGARCH(1,2)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(1,0,2)
## Include Mean     : FALSE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
#Summary
summary(M1)
##     Length      Class       Mode 
##          1 uGARCHspec         S4
#Log Returns
log_return = diff(Data2);log_return
##   [1]  0.07  0.17  0.23  0.29  0.31  0.33  0.36  0.27  0.20 -1.33  1.85  0.24
##  [13]  0.24  0.29  0.24  0.17  0.20  0.23  0.22  0.20  0.16  0.09  0.01 -0.07
##  [25] -0.12 -0.29 -0.35 -0.29 -0.28  0.10 -0.67 -0.20 -0.16 -0.16 -0.13 -0.11
##  [37]  0.24 -0.06 -0.15 -0.46  0.48 -0.03 -0.72  0.36 -0.18 -0.18 -0.15 -0.54
##  [49]  0.51 -0.01  0.58 -0.33  0.12  0.14  0.12  0.08  0.14  0.15  0.02 -0.15
##  [61] -0.19 -0.12 -0.43 -0.09 -0.01  0.00  0.05  0.16 -0.08 -0.16 -0.12 -0.13
##  [73]  0.00 -0.24 -0.02  0.03  0.01 -0.10 -0.06  0.00  0.10  0.32  0.25  0.41
##  [85]  0.63  0.65  0.51  0.39  0.19  0.17  0.18  0.07 -0.04 -0.15 -0.08 -0.29
##  [97] -0.64 -0.44 -0.33 -0.17  0.04  0.13  0.05  0.02 -0.03 -0.03  0.02  0.13
## [109]  0.13  0.16 -0.01 -0.10 -0.19 -0.16 -0.11 -0.02  0.05  0.20
#plot log returns
plot(log_return)

ts.plot(log_return)

#Remove the negatives
d= log_return^2;d
##   [1] 0.0049 0.0289 0.0529 0.0841 0.0961 0.1089 0.1296 0.0729 0.0400 1.7689
##  [11] 3.4225 0.0576 0.0576 0.0841 0.0576 0.0289 0.0400 0.0529 0.0484 0.0400
##  [21] 0.0256 0.0081 0.0001 0.0049 0.0144 0.0841 0.1225 0.0841 0.0784 0.0100
##  [31] 0.4489 0.0400 0.0256 0.0256 0.0169 0.0121 0.0576 0.0036 0.0225 0.2116
##  [41] 0.2304 0.0009 0.5184 0.1296 0.0324 0.0324 0.0225 0.2916 0.2601 0.0001
##  [51] 0.3364 0.1089 0.0144 0.0196 0.0144 0.0064 0.0196 0.0225 0.0004 0.0225
##  [61] 0.0361 0.0144 0.1849 0.0081 0.0001 0.0000 0.0025 0.0256 0.0064 0.0256
##  [71] 0.0144 0.0169 0.0000 0.0576 0.0004 0.0009 0.0001 0.0100 0.0036 0.0000
##  [81] 0.0100 0.1024 0.0625 0.1681 0.3969 0.4225 0.2601 0.1521 0.0361 0.0289
##  [91] 0.0324 0.0049 0.0016 0.0225 0.0064 0.0841 0.4096 0.1936 0.1089 0.0289
## [101] 0.0016 0.0169 0.0025 0.0004 0.0009 0.0009 0.0004 0.0169 0.0169 0.0256
## [111] 0.0001 0.0100 0.0361 0.0256 0.0121 0.0004 0.0025 0.0400
plot(d)

ts.plot(d)

#Model fitting
M1fit= ugarchfit(data = log_return, spec = M1);M1fit
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,2)
## Mean Model   : ARFIMA(1,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## ar1     0.311434    0.042572   7.3154 0.000000
## ma1     0.010609    0.018537   0.5723 0.567121
## ma2     0.073935    0.012835   5.7607 0.000000
## omega  -0.527684    0.313081  -1.6855 0.091901
## alpha1  0.299353    0.160045   1.8704 0.061424
## beta1   0.425412    0.122959   3.4598 0.000541
## beta2   0.338834    0.125646   2.6967 0.007002
## gamma1  1.196180    0.261571   4.5731 0.000005
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## ar1     0.311434    0.044898  6.93644 0.000000
## ma1     0.010609    0.001744  6.08321 0.000000
## ma2     0.073935    0.001853 39.89242 0.000000
## omega  -0.527684    0.561063 -0.94051 0.346957
## alpha1  0.299353    0.231491  1.29315 0.195959
## beta1   0.425412    0.116389  3.65509 0.000257
## beta2   0.338834    0.135398  2.50250 0.012332
## gamma1  1.196180    0.301857  3.96273 0.000074
## 
## LogLikelihood : -0.1537826 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       0.13820
## Bayes        0.32604
## Shibata      0.12976
## Hannan-Quinn 0.21447
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.2713  0.6025
## Lag[2*(p+q)+(p+q)-1][8]     4.5994  0.4182
## Lag[4*(p+q)+(p+q)-1][14]    8.5612  0.2816
## d.o.f=3
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                    0.004073  0.9491
## Lag[2*(p+q)+(p+q)-1][8]   0.457946  0.9971
## Lag[4*(p+q)+(p+q)-1][14]  0.884533  0.9998
## d.o.f=3
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[4]    0.1196 0.500 2.000  0.7295
## ARCH Lag[6]    0.2442 1.461 1.711  0.9587
## ARCH Lag[8]    0.4800 2.368 1.583  0.9834
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.06
## Individual Statistics:             
## ar1    0.3068
## ma1    0.4813
## ma2    0.1811
## omega  0.2880
## alpha1 0.1142
## beta1  0.3859
## beta2  0.3969
## gamma1 0.2344
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                      t-value   prob sig
## Sign Bias          0.1323865 0.8949    
## Negative Sign Bias 0.0001613 0.9999    
## Positive Sign Bias 0.5647460 0.5734    
## Joint Effect       0.3264686 0.9550    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     32.17      0.02991
## 2    30     41.15      0.06678
## 3    40     55.56      0.04147
## 4    50     68.62      0.03351
## 
## 
## Elapsed time : 0.374718
#Plot for M1
plot(M1fit, which=7)

plot(M1fit, which=9)

plot(M1fit, which=12)

#Summary for M1
summary(M1fit)
##    Length     Class      Mode 
##         1 uGARCHfit        S4

#QUESTION TWO

library(survival)
# Load the AML dataset
data(aml)
## Warning in data(aml): data set 'aml' not found
# View the first few rows of the dataset
head(aml)
##   time status          x
## 1    9      1 Maintained
## 2   13      1 Maintained
## 3   13      0 Maintained
## 4   18      1 Maintained
## 5   23      1 Maintained
## 6   28      0 Maintained
# Fit the Kaplan-Meier survival model
km_fit <- survfit(Surv(time, status) ~ x, data = aml)
# Print summary of Kaplan-Meier model
summary(km_fit)
## Call: survfit(formula = Surv(time, status) ~ x, data = aml)
## 
##                 x=Maintained 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     9     11       1    0.909  0.0867       0.7541        1.000
##    13     10       1    0.818  0.1163       0.6192        1.000
##    18      8       1    0.716  0.1397       0.4884        1.000
##    23      7       1    0.614  0.1526       0.3769        0.999
##    31      5       1    0.491  0.1642       0.2549        0.946
##    34      4       1    0.368  0.1627       0.1549        0.875
##    48      2       1    0.184  0.1535       0.0359        0.944
## 
##                 x=Nonmaintained 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     5     12       2   0.8333  0.1076       0.6470        1.000
##     8     10       2   0.6667  0.1361       0.4468        0.995
##    12      8       1   0.5833  0.1423       0.3616        0.941
##    23      6       1   0.4861  0.1481       0.2675        0.883
##    27      5       1   0.3889  0.1470       0.1854        0.816
##    30      4       1   0.2917  0.1387       0.1148        0.741
##    33      3       1   0.1944  0.1219       0.0569        0.664
##    43      2       1   0.0972  0.0919       0.0153        0.620
##    45      1       1   0.0000     NaN           NA           NA
# Plot Kaplan-Meier survival curves
plot(km_fit, col = c("blue", "red"), lwd = 2, xlab = "Time", ylab = "Survival Probability",
     main = "Kaplan-Meier Survival Curves for AML Patients")
legend("topright", legend = c("Maintained", "Non-maintained"), col = c("blue", "red"), lwd = 2)

# Log-Rank Test for statistical comparison
survdiff(Surv(time, status) ~ x, data = aml)
## Call:
## survdiff(formula = Surv(time, status) ~ x, data = aml)
## 
##                  N Observed Expected (O-E)^2/E (O-E)^2/V
## x=Maintained    11        7    10.69      1.27       3.4
## x=Nonmaintained 12       11     7.31      1.86       3.4
## 
##  Chisq= 3.4  on 1 degrees of freedom, p= 0.07

#QUESTION THREE

library(fGarch)
library(rugarch)
library(fitdistrplus)
library(timeSeries)
#load the data
E1= read.csv("DATA25.csv");E1
##     Year     Month STOCK   GDP   CPI PENSION INFLATION CLAIMS INTEREST
## 1   2025     April  3.74  4.11  6.12   13.50      5.58   4.59     4.12
## 2   2025     March  3.81  3.62  6.33   13.59      5.53   4.53     3.97
## 3   2025  February  3.98  3.45  6.47   13.49      5.70   4.53     4.07
## 4   2025   January  4.21  3.28  6.48   13.47      4.04   4.63     4.20
## 5   2024  December  4.50  2.99  6.51   13.70      4.35   4.95     4.44
## 6   2024  November  4.81  2.75  6.56   13.73      4.28   5.20     4.62
## 7   2024   October  5.14  2.72  6.57   13.71      3.95   5.61     4.45
## 8   2024 September  5.50  3.56  6.64   13.83      3.73   6.24     4.38
## 9   2024    August  5.77  4.36  6.66   13.85      4.18   6.89     4.42
## 10  2024      July  5.97  4.31  6.68   13.76      4.46   7.40     4.40
## 11  2024      June  4.64  6.22  6.68   13.66      4.83   7.79     4.37
## 12  2024       May  6.49  5.10  6.81   13.65      4.50   7.98     4.50
## 13  2024     April  6.73  5.00  7.06   13.61      4.73   8.15     4.21
## 14  2024     March  6.97  5.70  7.16   13.61      5.72   8.33     4.22
## 15  2024  February  7.26  6.31  7.19   13.81      7.06   8.40     4.30
## 16  2024   January  7.50  6.85  7.19   14.23      8.04   8.36     4.59
## 17  2023  December  7.67  6.63  7.20   14.29      7.47   8.21     4.73
## 18  2023  November  7.87  6.80  7.25   14.39      9.21   8.13     4.96
## 19  2023   October  8.10  6.92  7.23   14.24     11.70   7.84     4.78
## 20  2023 September  8.32  6.78  7.25   14.25     11.48   7.20     4.56
## 21  2023    August  8.52  6.73  7.27   14.45     10.28   6.76     4.56
## 22  2023      July  8.68  7.28  7.33   15.32      9.04   6.43     4.55
## 23  2023      June  8.77  7.88  7.36   15.49      6.99   6.26     4.57
## 24  2023       May  8.78  8.03  7.46   17.28      6.35   6.30     4.57
## 25  2023     April  8.71  7.90  7.62   18.47      6.68   6.43     5.70
## 26  2023     March  8.59  9.19  7.72   22.51      6.47   6.48     5.75
## 27  2023  February  8.30  9.23  7.75   23.03      6.34   6.50     5.52
## 28  2023   January  7.95  8.98  7.77   23.04      6.26   6.47     5.27
## 29  2022  December  7.66  9.06  7.78   23.43      6.40   6.44     5.53
## 30  2022  November  7.38  9.48  7.86   22.36      5.80   6.46     5.79
## 31  2022   October  7.48  9.59  7.87   23.27      5.00   6.59     5.04
## 32  2022 September  6.81  9.18  7.88   20.84      5.27   6.72     4.87
## 33  2022    August  6.61  8.53  7.95   19.98      6.45   6.88     4.71
## 34  2022      July  6.45  8.32  8.02   18.61      6.84   6.87     4.76
## 35  2022      June  6.29  7.91  8.06   17.76      7.78   6.77     4.91
## 36  2022       May  6.16  7.08  8.21   17.42      8.01   6.58     4.94
## 37  2022     April  6.05  6.47  8.41   16.69      7.32   6.42     4.83
## 38  2022     March  6.29  5.56  8.43   16.67      6.72   6.31     4.59
## 39  2022  February  6.23  5.08  8.60   16.76      5.97   6.29     4.53
## 40  2022   January  6.08  5.39  8.66   15.11      5.84   6.34     5.20
## 41  2021  December  5.62  5.73  8.69   14.05      6.62   6.54     4.74
## 42  2021  November  6.10  5.80  8.83   13.05      7.03   6.63     5.50
## 43  2021   October  6.07  6.45  8.84   12.20      6.87   6.65     5.04
## 44  2021 September  5.35  6.91  8.96   12.08      7.08   6.69     5.68
## 45  2021    August  5.71  6.57  9.13   11.30      6.31   6.63     6.57
## 46  2021      July  5.53  6.55  9.16   10.83      5.61   6.63     6.92
## 47  2021      June  5.35  6.32  9.19    9.81      5.53   6.74     9.25
## 48  2021       May  5.20  5.87  9.28   10.13      6.02   6.88     9.06
## 49  2021     April  4.66  5.76  9.57   10.32      6.09   6.97     9.15
## 50  2021     March  5.17  5.90  9.60   11.90      6.43   7.08     9.29
## 51  2021  February  5.16  5.78  9.76   11.80      6.60   7.19    10.22
## 52  2021   January  5.74  5.69  9.85   11.97      8.36   7.33    10.47
## 53  2020  December  5.41  5.62  9.92   12.46      7.67   7.19    11.03
## 54  2020  November  5.53  5.33 10.06   12.77      7.39   7.05    11.70
## 55  2020   October  5.67  4.84 10.16   13.33      7.30   6.85    10.85
## 56  2020 September  5.79  4.20 10.11   13.62      6.41   6.58     8.63
## 57  2020    August  5.87  4.36 10.23   13.89      6.27   6.39     7.64
## 58  2020      July  6.01  4.36 10.28   14.23      6.86   6.21     8.15
## 59  2020      June  6.16  4.59 10.34   14.19      7.21   6.01     9.32
## 60  2020       May  6.18  5.33 10.54   14.17      7.15   5.72     8.48
## 61  2020     April  6.03  6.01 10.92   14.05      7.36   5.39     7.29
## 62  2020     March  5.84  5.84 10.96   13.90      7.76   5.05     7.01
## 63  2020  February  5.72  7.17 11.17   14.28      8.29   4.75     6.84
## 64  2020   January  5.29  5.78 11.32   14.19      6.67   4.50     6.82
## 65  2019  December  5.20  5.82 11.28   14.29      6.03   4.44     7.23
## 66  2019  November  5.19  5.56 11.43   14.65      4.91   4.56     6.33
## 67  2019   October  5.19  4.95 11.46   14.54      4.05   4.96     5.98
## 68  2019 September  5.24  3.83 11.49   14.47      4.14   5.61     5.86
## 69  2019    August  5.40  5.00 11.77   14.33      4.11   6.33     5.00
## 70  2019      July  5.32  6.27 12.18   14.24      4.45   7.24     4.66
## 71  2019      June  5.16  5.70 12.47   14.95      3.67   8.20     4.43
## 72  2019       May  5.04  4.49 12.79   13.89      3.20   9.38     4.45
## 73  2019     April  4.91  6.58 12.73   14.11      3.25  10.67     4.06
## 74  2019     April  4.91  6.58 13.07   14.06      4.14  12.04     3.77
## 75  2019     March  4.67  4.35 13.31   14.53      5.32  13.29     4.22
## 76  2019  February  4.65  4.14 13.32   15.21      6.09  14.33     3.52
## 77  2019   January  4.68  4.70 13.67   15.88      7.74  15.27     3.85
## 78  2018  December  4.69  5.71 13.79   16.02     10.05  15.97     4.07
## 79  2018  November  4.59  5.58 13.96   15.94     12.22  16.40     3.88
## 80  2018   October  4.53  5.53 14.01   15.88     13.06  16.50     4.19
## 81  2018 September  4.53  5.70 14.38   15.89     15.61  16.45     3.88
## 82  2018    August  4.63  4.04 14.40   18.37     16.69  15.93     3.50
## 83  2018      July  4.95  4.35 14.48   17.85     18.31  15.10     3.53
## 84  2018      June  5.20  4.28 14.56   16.87     18.93  14.02     3.47
## 85  2018       May  5.61  3.95 14.83   16.67     19.72  12.82     3.31
## 86  2018     April  6.24  3.73 14.97   16.35     18.91  11.49     3.10
## 87  2018     March  6.89  4.18 16.27   15.96     17.32  10.18     3.01
## 88  2018  February  7.40  4.46 16.40   15.39     16.67   9.00     2.82
## 89  2018   January  7.79  4.83 16.94   14.67     15.53   7.88     2.59
## 90  2017  December  7.98  4.50 18.68   12.99     14.48   6.88     2.36
## 91  2017  November  8.15  4.73 18.46   11.25     12.95   5.96     2.21
## 92  2017   October  8.33  5.72 18.54    9.66     12.05   5.20     1.78
## 93  2017 September  8.40  7.06 18.85    8.93      9.19   4.49     1.65
## 94  2017    August  8.36  8.04 18.62    8.18      6.54   4.05     1.71
## 95  2017      July  8.21  7.47 18.92    7.55      5.42   3.93     1.38
## 96  2017      June  8.13  9.21 19.46    7.83      4.51   3.96     1.25
## 97  2017       May  7.84 11.70 19.59    7.65      3.84   4.02     1.16
## 98  2017     April  7.20 11.48 21.16    7.79      3.18   4.12     0.86
## 99  2017     March  6.76 10.28 21.83    8.44      3.21   4.40     0.75
## 100 2017  February  6.43  9.04 23.31    9.10      3.22   4.69     0.93
## 101 2017   January  6.26  6.99 24.16    9.48      3.57   5.03     1.26
## 102 2016  December  6.30  6.35 25.99    9.74      3.49   5.43     1.26
## 103 2016  November  6.43  6.68 26.47   10.38      3.88   5.85     1.18
## 104 2016   October  6.48  6.47 27.38    9.17      3.66   6.32     1.46
## 105 2016 September  6.50  6.34 29.02    8.01      3.97   7.03     1.24
## 106 2016    August  6.47  6.26 29.32    7.61      5.18   7.88     1.11
## 107 2016      July  6.44  6.40 29.63    7.21      5.95   8.64     1.00
## 108 2016      June  6.46  5.80 30.11    7.01      5.32   9.24     1.15
## 109 2016       May  6.59  5.00 31.64    6.67      5.00  10.24     0.96
## 110 2016     April  6.72  5.27 32.65    6.26      6.62  11.42     0.88
## 111 2016     March  6.88  6.45 33.54    6.22      6.74  12.41     0.73
## 112 2016  February  6.87  6.84 34.44    6.22      7.36  13.42     0.96
## 113 2016   January  6.77  7.78 34.09    6.20      8.44  14.35     0.76
## 114 2015  December  6.58  8.01 33.46    6.22      8.60  15.11     0.52
## 115 2015  November  6.42  7.32 33.70    6.54      9.61  15.93     0.43
## 116 2015   October  6.31  6.72 33.26    6.55     12.42  16.72     0.43
## 117 2015 September  6.29  5.97 32.75    6.92     14.60  17.07     0.32
## 118 2015    August  6.34  5.84 32.92    6.58     14.69  16.87     0.64
## 119 2015      July  6.54  6.62 32.12    6.44     13.22  16.56     0.88
E2= E1$PENSION;E2
##   [1] 13.50 13.59 13.49 13.47 13.70 13.73 13.71 13.83 13.85 13.76 13.66 13.65
##  [13] 13.61 13.61 13.81 14.23 14.29 14.39 14.24 14.25 14.45 15.32 15.49 17.28
##  [25] 18.47 22.51 23.03 23.04 23.43 22.36 23.27 20.84 19.98 18.61 17.76 17.42
##  [37] 16.69 16.67 16.76 15.11 14.05 13.05 12.20 12.08 11.30 10.83  9.81 10.13
##  [49] 10.32 11.90 11.80 11.97 12.46 12.77 13.33 13.62 13.89 14.23 14.19 14.17
##  [61] 14.05 13.90 14.28 14.19 14.29 14.65 14.54 14.47 14.33 14.24 14.95 13.89
##  [73] 14.11 14.06 14.53 15.21 15.88 16.02 15.94 15.88 15.89 18.37 17.85 16.87
##  [85] 16.67 16.35 15.96 15.39 14.67 12.99 11.25  9.66  8.93  8.18  7.55  7.83
##  [97]  7.65  7.79  8.44  9.10  9.48  9.74 10.38  9.17  8.01  7.61  7.21  7.01
## [109]  6.67  6.26  6.22  6.22  6.20  6.22  6.54  6.55  6.92  6.58  6.44
E3= diff(E2);E3
##   [1]  0.09 -0.10 -0.02  0.23  0.03 -0.02  0.12  0.02 -0.09 -0.10 -0.01 -0.04
##  [13]  0.00  0.20  0.42  0.06  0.10 -0.15  0.01  0.20  0.87  0.17  1.79  1.19
##  [25]  4.04  0.52  0.01  0.39 -1.07  0.91 -2.43 -0.86 -1.37 -0.85 -0.34 -0.73
##  [37] -0.02  0.09 -1.65 -1.06 -1.00 -0.85 -0.12 -0.78 -0.47 -1.02  0.32  0.19
##  [49]  1.58 -0.10  0.17  0.49  0.31  0.56  0.29  0.27  0.34 -0.04 -0.02 -0.12
##  [61] -0.15  0.38 -0.09  0.10  0.36 -0.11 -0.07 -0.14 -0.09  0.71 -1.06  0.22
##  [73] -0.05  0.47  0.68  0.67  0.14 -0.08 -0.06  0.01  2.48 -0.52 -0.98 -0.20
##  [85] -0.32 -0.39 -0.57 -0.72 -1.68 -1.74 -1.59 -0.73 -0.75 -0.63  0.28 -0.18
##  [97]  0.14  0.65  0.66  0.38  0.26  0.64 -1.21 -1.16 -0.40 -0.40 -0.20 -0.34
## [109] -0.41 -0.04  0.00 -0.02  0.02  0.32  0.01  0.37 -0.34 -0.14
#Maximum likelihood estimator
E3_positive = E3[E3 > 0]
fit_ln= fitdist(data = E3_positive, distr = "lnorm", method = c("mle"))
summary(fit_ln)
## Fitting of the distribution ' lnorm ' by maximum likelihood 
## Parameters : 
##          estimate Std. Error
## meanlog -1.447937  0.1898052
## sdlog    1.381802  0.1342122
## Loglikelihood:  -15.60268   AIC:  35.20536   BIC:  39.14594 
## Correlation matrix:
##               meanlog         sdlog
## meanlog  1.000000e+00 -4.684208e-11
## sdlog   -4.684208e-11  1.000000e+00
plot(fit_ln)

E3_positive= E3[E3 > 0]
fit_gm= fitdist(data = E3_positive, distr = "gamma", method = c("mle"))
summary(fit_gm)
## Fitting of the distribution ' gamma ' by maximum likelihood 
## Parameters : 
##        estimate Std. Error
## shape 0.8084506  0.1356321
## rate  1.6523797  0.3749279
## Loglikelihood:  -14.25895   AIC:  32.51789   BIC:  36.45847 
## Correlation matrix:
##           shape      rate
## shape 1.0000000 0.7393854
## rate  0.7393854 1.0000000
plot(fit_gm)

#moment matching estimation
fitln_mme = fitdist(data = E3_positive, distr = "lnorm", method = c("mme"))
summary(fitln_mme)
## Fitting of the distribution ' lnorm ' by matching moments 
## Parameters : 
##          estimate Std. Error
## meanlog -1.248413  0.4414005
## sdlog    1.032978  0.4616989
## Loglikelihood:  -22.09074   AIC:  48.18148   BIC:  52.12206 
## Correlation matrix:
##            meanlog      sdlog
## meanlog  1.0000000 -0.9175477
## sdlog   -0.9175477  1.0000000
plot(fitln_mme)

E3_positive= E3[E3 > 0]
fitgm_mme = fitdist(data = E3_positive, distr = "gamma", method = c("mme"))
summary(fitgm_mme)
## Fitting of the distribution ' gamma ' by matching moments 
## Parameters : 
##        estimate Std. Error
## shape 0.5244463  0.1736935
## rate  1.0719496  0.4091231
## Loglikelihood:  -17.2375   AIC:  38.47499   BIC:  42.41558 
## Correlation matrix:
##           shape      rate
## shape 1.0000000 0.8677666
## rate  0.8677666 1.0000000
plot(fitgm_mme)

#QUESTION FOUR

library(goftest)
library(fGarch)
library(fitdistrplus)
Data_F= read.csv("DATA25.csv");Data_F
##     Year     Month STOCK   GDP   CPI PENSION INFLATION CLAIMS INTEREST
## 1   2025     April  3.74  4.11  6.12   13.50      5.58   4.59     4.12
## 2   2025     March  3.81  3.62  6.33   13.59      5.53   4.53     3.97
## 3   2025  February  3.98  3.45  6.47   13.49      5.70   4.53     4.07
## 4   2025   January  4.21  3.28  6.48   13.47      4.04   4.63     4.20
## 5   2024  December  4.50  2.99  6.51   13.70      4.35   4.95     4.44
## 6   2024  November  4.81  2.75  6.56   13.73      4.28   5.20     4.62
## 7   2024   October  5.14  2.72  6.57   13.71      3.95   5.61     4.45
## 8   2024 September  5.50  3.56  6.64   13.83      3.73   6.24     4.38
## 9   2024    August  5.77  4.36  6.66   13.85      4.18   6.89     4.42
## 10  2024      July  5.97  4.31  6.68   13.76      4.46   7.40     4.40
## 11  2024      June  4.64  6.22  6.68   13.66      4.83   7.79     4.37
## 12  2024       May  6.49  5.10  6.81   13.65      4.50   7.98     4.50
## 13  2024     April  6.73  5.00  7.06   13.61      4.73   8.15     4.21
## 14  2024     March  6.97  5.70  7.16   13.61      5.72   8.33     4.22
## 15  2024  February  7.26  6.31  7.19   13.81      7.06   8.40     4.30
## 16  2024   January  7.50  6.85  7.19   14.23      8.04   8.36     4.59
## 17  2023  December  7.67  6.63  7.20   14.29      7.47   8.21     4.73
## 18  2023  November  7.87  6.80  7.25   14.39      9.21   8.13     4.96
## 19  2023   October  8.10  6.92  7.23   14.24     11.70   7.84     4.78
## 20  2023 September  8.32  6.78  7.25   14.25     11.48   7.20     4.56
## 21  2023    August  8.52  6.73  7.27   14.45     10.28   6.76     4.56
## 22  2023      July  8.68  7.28  7.33   15.32      9.04   6.43     4.55
## 23  2023      June  8.77  7.88  7.36   15.49      6.99   6.26     4.57
## 24  2023       May  8.78  8.03  7.46   17.28      6.35   6.30     4.57
## 25  2023     April  8.71  7.90  7.62   18.47      6.68   6.43     5.70
## 26  2023     March  8.59  9.19  7.72   22.51      6.47   6.48     5.75
## 27  2023  February  8.30  9.23  7.75   23.03      6.34   6.50     5.52
## 28  2023   January  7.95  8.98  7.77   23.04      6.26   6.47     5.27
## 29  2022  December  7.66  9.06  7.78   23.43      6.40   6.44     5.53
## 30  2022  November  7.38  9.48  7.86   22.36      5.80   6.46     5.79
## 31  2022   October  7.48  9.59  7.87   23.27      5.00   6.59     5.04
## 32  2022 September  6.81  9.18  7.88   20.84      5.27   6.72     4.87
## 33  2022    August  6.61  8.53  7.95   19.98      6.45   6.88     4.71
## 34  2022      July  6.45  8.32  8.02   18.61      6.84   6.87     4.76
## 35  2022      June  6.29  7.91  8.06   17.76      7.78   6.77     4.91
## 36  2022       May  6.16  7.08  8.21   17.42      8.01   6.58     4.94
## 37  2022     April  6.05  6.47  8.41   16.69      7.32   6.42     4.83
## 38  2022     March  6.29  5.56  8.43   16.67      6.72   6.31     4.59
## 39  2022  February  6.23  5.08  8.60   16.76      5.97   6.29     4.53
## 40  2022   January  6.08  5.39  8.66   15.11      5.84   6.34     5.20
## 41  2021  December  5.62  5.73  8.69   14.05      6.62   6.54     4.74
## 42  2021  November  6.10  5.80  8.83   13.05      7.03   6.63     5.50
## 43  2021   October  6.07  6.45  8.84   12.20      6.87   6.65     5.04
## 44  2021 September  5.35  6.91  8.96   12.08      7.08   6.69     5.68
## 45  2021    August  5.71  6.57  9.13   11.30      6.31   6.63     6.57
## 46  2021      July  5.53  6.55  9.16   10.83      5.61   6.63     6.92
## 47  2021      June  5.35  6.32  9.19    9.81      5.53   6.74     9.25
## 48  2021       May  5.20  5.87  9.28   10.13      6.02   6.88     9.06
## 49  2021     April  4.66  5.76  9.57   10.32      6.09   6.97     9.15
## 50  2021     March  5.17  5.90  9.60   11.90      6.43   7.08     9.29
## 51  2021  February  5.16  5.78  9.76   11.80      6.60   7.19    10.22
## 52  2021   January  5.74  5.69  9.85   11.97      8.36   7.33    10.47
## 53  2020  December  5.41  5.62  9.92   12.46      7.67   7.19    11.03
## 54  2020  November  5.53  5.33 10.06   12.77      7.39   7.05    11.70
## 55  2020   October  5.67  4.84 10.16   13.33      7.30   6.85    10.85
## 56  2020 September  5.79  4.20 10.11   13.62      6.41   6.58     8.63
## 57  2020    August  5.87  4.36 10.23   13.89      6.27   6.39     7.64
## 58  2020      July  6.01  4.36 10.28   14.23      6.86   6.21     8.15
## 59  2020      June  6.16  4.59 10.34   14.19      7.21   6.01     9.32
## 60  2020       May  6.18  5.33 10.54   14.17      7.15   5.72     8.48
## 61  2020     April  6.03  6.01 10.92   14.05      7.36   5.39     7.29
## 62  2020     March  5.84  5.84 10.96   13.90      7.76   5.05     7.01
## 63  2020  February  5.72  7.17 11.17   14.28      8.29   4.75     6.84
## 64  2020   January  5.29  5.78 11.32   14.19      6.67   4.50     6.82
## 65  2019  December  5.20  5.82 11.28   14.29      6.03   4.44     7.23
## 66  2019  November  5.19  5.56 11.43   14.65      4.91   4.56     6.33
## 67  2019   October  5.19  4.95 11.46   14.54      4.05   4.96     5.98
## 68  2019 September  5.24  3.83 11.49   14.47      4.14   5.61     5.86
## 69  2019    August  5.40  5.00 11.77   14.33      4.11   6.33     5.00
## 70  2019      July  5.32  6.27 12.18   14.24      4.45   7.24     4.66
## 71  2019      June  5.16  5.70 12.47   14.95      3.67   8.20     4.43
## 72  2019       May  5.04  4.49 12.79   13.89      3.20   9.38     4.45
## 73  2019     April  4.91  6.58 12.73   14.11      3.25  10.67     4.06
## 74  2019     April  4.91  6.58 13.07   14.06      4.14  12.04     3.77
## 75  2019     March  4.67  4.35 13.31   14.53      5.32  13.29     4.22
## 76  2019  February  4.65  4.14 13.32   15.21      6.09  14.33     3.52
## 77  2019   January  4.68  4.70 13.67   15.88      7.74  15.27     3.85
## 78  2018  December  4.69  5.71 13.79   16.02     10.05  15.97     4.07
## 79  2018  November  4.59  5.58 13.96   15.94     12.22  16.40     3.88
## 80  2018   October  4.53  5.53 14.01   15.88     13.06  16.50     4.19
## 81  2018 September  4.53  5.70 14.38   15.89     15.61  16.45     3.88
## 82  2018    August  4.63  4.04 14.40   18.37     16.69  15.93     3.50
## 83  2018      July  4.95  4.35 14.48   17.85     18.31  15.10     3.53
## 84  2018      June  5.20  4.28 14.56   16.87     18.93  14.02     3.47
## 85  2018       May  5.61  3.95 14.83   16.67     19.72  12.82     3.31
## 86  2018     April  6.24  3.73 14.97   16.35     18.91  11.49     3.10
## 87  2018     March  6.89  4.18 16.27   15.96     17.32  10.18     3.01
## 88  2018  February  7.40  4.46 16.40   15.39     16.67   9.00     2.82
## 89  2018   January  7.79  4.83 16.94   14.67     15.53   7.88     2.59
## 90  2017  December  7.98  4.50 18.68   12.99     14.48   6.88     2.36
## 91  2017  November  8.15  4.73 18.46   11.25     12.95   5.96     2.21
## 92  2017   October  8.33  5.72 18.54    9.66     12.05   5.20     1.78
## 93  2017 September  8.40  7.06 18.85    8.93      9.19   4.49     1.65
## 94  2017    August  8.36  8.04 18.62    8.18      6.54   4.05     1.71
## 95  2017      July  8.21  7.47 18.92    7.55      5.42   3.93     1.38
## 96  2017      June  8.13  9.21 19.46    7.83      4.51   3.96     1.25
## 97  2017       May  7.84 11.70 19.59    7.65      3.84   4.02     1.16
## 98  2017     April  7.20 11.48 21.16    7.79      3.18   4.12     0.86
## 99  2017     March  6.76 10.28 21.83    8.44      3.21   4.40     0.75
## 100 2017  February  6.43  9.04 23.31    9.10      3.22   4.69     0.93
## 101 2017   January  6.26  6.99 24.16    9.48      3.57   5.03     1.26
## 102 2016  December  6.30  6.35 25.99    9.74      3.49   5.43     1.26
## 103 2016  November  6.43  6.68 26.47   10.38      3.88   5.85     1.18
## 104 2016   October  6.48  6.47 27.38    9.17      3.66   6.32     1.46
## 105 2016 September  6.50  6.34 29.02    8.01      3.97   7.03     1.24
## 106 2016    August  6.47  6.26 29.32    7.61      5.18   7.88     1.11
## 107 2016      July  6.44  6.40 29.63    7.21      5.95   8.64     1.00
## 108 2016      June  6.46  5.80 30.11    7.01      5.32   9.24     1.15
## 109 2016       May  6.59  5.00 31.64    6.67      5.00  10.24     0.96
## 110 2016     April  6.72  5.27 32.65    6.26      6.62  11.42     0.88
## 111 2016     March  6.88  6.45 33.54    6.22      6.74  12.41     0.73
## 112 2016  February  6.87  6.84 34.44    6.22      7.36  13.42     0.96
## 113 2016   January  6.77  7.78 34.09    6.20      8.44  14.35     0.76
## 114 2015  December  6.58  8.01 33.46    6.22      8.60  15.11     0.52
## 115 2015  November  6.42  7.32 33.70    6.54      9.61  15.93     0.43
## 116 2015   October  6.31  6.72 33.26    6.55     12.42  16.72     0.43
## 117 2015 September  6.29  5.97 32.75    6.92     14.60  17.07     0.32
## 118 2015    August  6.34  5.84 32.92    6.58     14.69  16.87     0.64
## 119 2015      July  6.54  6.62 32.12    6.44     13.22  16.56     0.88
f1= Data_F$CPI;f1
##   [1]  6.12  6.33  6.47  6.48  6.51  6.56  6.57  6.64  6.66  6.68  6.68  6.81
##  [13]  7.06  7.16  7.19  7.19  7.20  7.25  7.23  7.25  7.27  7.33  7.36  7.46
##  [25]  7.62  7.72  7.75  7.77  7.78  7.86  7.87  7.88  7.95  8.02  8.06  8.21
##  [37]  8.41  8.43  8.60  8.66  8.69  8.83  8.84  8.96  9.13  9.16  9.19  9.28
##  [49]  9.57  9.60  9.76  9.85  9.92 10.06 10.16 10.11 10.23 10.28 10.34 10.54
##  [61] 10.92 10.96 11.17 11.32 11.28 11.43 11.46 11.49 11.77 12.18 12.47 12.79
##  [73] 12.73 13.07 13.31 13.32 13.67 13.79 13.96 14.01 14.38 14.40 14.48 14.56
##  [85] 14.83 14.97 16.27 16.40 16.94 18.68 18.46 18.54 18.85 18.62 18.92 19.46
##  [97] 19.59 21.16 21.83 23.31 24.16 25.99 26.47 27.38 29.02 29.32 29.63 30.11
## [109] 31.64 32.65 33.54 34.44 34.09 33.46 33.70 33.26 32.75 32.92 32.12
f2= diff(f1);f2
##   [1]  0.21  0.14  0.01  0.03  0.05  0.01  0.07  0.02  0.02  0.00  0.13  0.25
##  [13]  0.10  0.03  0.00  0.01  0.05 -0.02  0.02  0.02  0.06  0.03  0.10  0.16
##  [25]  0.10  0.03  0.02  0.01  0.08  0.01  0.01  0.07  0.07  0.04  0.15  0.20
##  [37]  0.02  0.17  0.06  0.03  0.14  0.01  0.12  0.17  0.03  0.03  0.09  0.29
##  [49]  0.03  0.16  0.09  0.07  0.14  0.10 -0.05  0.12  0.05  0.06  0.20  0.38
##  [61]  0.04  0.21  0.15 -0.04  0.15  0.03  0.03  0.28  0.41  0.29  0.32 -0.06
##  [73]  0.34  0.24  0.01  0.35  0.12  0.17  0.05  0.37  0.02  0.08  0.08  0.27
##  [85]  0.14  1.30  0.13  0.54  1.74 -0.22  0.08  0.31 -0.23  0.30  0.54  0.13
##  [97]  1.57  0.67  1.48  0.85  1.83  0.48  0.91  1.64  0.30  0.31  0.48  1.53
## [109]  1.01  0.89  0.90 -0.35 -0.63  0.24 -0.44 -0.51  0.17 -0.80
#Fit the distribution
f2_positive= f2[f2 > 0]
fitlnMGEKS = fitdist(data = f2_positive, distr = "weibull", method = "mge", gof = "KS")
summary(fitlnMGEKS)
## Fitting of the distribution ' weibull ' by maximum goodness-of-fit 
## Parameters : 
##        estimate
## shape 0.8401815
## scale 0.2120730
## Loglikelihood:  34.87007   AIC:  -65.74015   BIC:  -60.43222
fitlnMGCvM = fitdist(data = f2_positive, distr = "weibull", method = "mge", gof = "CvM")
summary(fitlnMGCvM)
## Fitting of the distribution ' weibull ' by maximum goodness-of-fit 
## Parameters : 
##        estimate
## shape 0.8263981
## scale 0.1991286
## Loglikelihood:  34.45488   AIC:  -64.90977   BIC:  -59.60185
fitlnMGEAD = fitdist(data = f2_positive, distr = "weibull", method = "mge", gof = "AD")
summary(fitlnMGEAD)
## Fitting of the distribution ' weibull ' by maximum goodness-of-fit 
## Parameters : 
##        estimate
## shape 0.7634249
## scale 0.2174130
## Loglikelihood:  36.49133   AIC:  -68.98267   BIC:  -63.67475