# ctrl+alt+i

getwd()
## [1] "D:/21. ADsP자격증/example"
# 디렉토리 옮겨지지 않음. 
#setwd('C:/data')

getwd()
## [1] "D:/21. ADsP자격증/example"
# 위에서 6개 읽어오기
#head(iris)

# 밑에서 6개 읽어오기
#tail(iris)


df1<-read.csv("Data1.csv")
head(df1)
##   Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Gender
## 1  4  4  2  3  4  2  2  4  4   4   4   4   4   4   4   4   4   4   4   4      0
## 2  4  4  4  4  4  3  2  4  4   4   4   4   4   4   4   4   3   4   2   1      0
## 3  4  4  4  4  2  4  4  4  4   2   4   4   4   4   3   4   4   4   4   3      0
## 4  5  4  4  4  4  4  4  4  4   4   4   4   4   4   4   4   4   4   4   4      0
## 5  4  4  4  4  4  4  4  4  2   4   4   4   4   4   4   4   4   4   4   4      0
## 6  4  4  4  4  4  4  4  4  4   4   4   4   4   4   4   4   4   4   4   4      0
##   EDU  BF  BM Happiness Peace
## 1   1 3.4 3.2       4.0   4.0
## 2   1 4.0 3.4       4.0   2.8
## 3   2 3.6 3.6       3.8   3.8
## 4   1 4.2 4.0       4.0   4.0
## 5   2 4.0 3.6       4.0   4.0
## 6   1 4.0 4.0       4.0   4.0
tail(df1)
##      Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
## 1920  4  4  3  4  4  2  2  3  4   2   2   4   3   4   4   3   4   4   3   4
## 1921  2  2  2  1  2  2  2  2  2   2   1   3   2   1   3   2   2   2   2   2
## 1922  3  2  2  2  3  1  1  1  1   1   3   3   3   4   4   4   4   5   2   2
## 1923  5  4  4  4  4  2  2  2  2   3   3   4   3   4   3   3   3   4   4   4
## 1924  4  4  4  2  2  4  2  4  4   3   3   2   3   4   3   4   4   4   3   4
## 1925  3  3  1  1  2  1  1  1  1   1   4   4   3   2   2   3   4   4   3   2
##      Gender EDU  BF  BM Happiness Peace
## 1920      1   3 3.8 2.6       3.4   3.6
## 1921      1   2 1.8 2.0       2.0   2.0
## 1922      0   2 2.4 1.0       3.4   3.4
## 1923      0   2 4.2 2.2       3.4   3.6
## 1924      1   2 3.2 3.4       3.0   3.8
## 1925      0   3 2.0 1.0       3.0   3.2
str(df1)
## 'data.frame':    1925 obs. of  26 variables:
##  $ Q1       : int  4 4 4 5 4 4 4 4 4 4 ...
##  $ Q2       : int  4 4 4 4 4 4 2 2 4 4 ...
##  $ Q3       : int  2 4 4 4 4 4 4 4 4 2 ...
##  $ Q4       : int  3 4 4 4 4 4 4 4 4 2 ...
##  $ Q5       : int  4 4 2 4 4 4 4 4 2 4 ...
##  $ Q6       : int  2 3 4 4 4 4 4 4 1 2 ...
##  $ Q7       : int  2 2 4 4 4 4 4 4 3 4 ...
##  $ Q8       : int  4 4 4 4 4 4 5 5 2 2 ...
##  $ Q9       : int  4 4 4 4 2 4 5 5 3 4 ...
##  $ Q10      : int  4 4 2 4 4 4 5 5 2 4 ...
##  $ Q11      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q12      : int  4 4 4 4 4 4 5 5 3 4 ...
##  $ Q13      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q14      : int  4 4 4 4 4 4 5 5 5 4 ...
##  $ Q15      : int  4 4 3 4 4 4 4 2 3 4 ...
##  $ Q16      : int  4 4 4 4 4 4 5 2 4 4 ...
##  $ Q17      : int  4 3 4 4 4 4 2 2 4 4 ...
##  $ Q18      : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Q19      : int  4 2 4 4 4 4 4 2 4 2 ...
##  $ Q20      : int  4 1 3 4 4 4 4 2 4 2 ...
##  $ Gender   : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ EDU      : int  1 1 2 1 2 1 1 1 4 3 ...
##  $ BF       : num  3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
##  $ BM       : num  3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
##  $ Happiness: num  4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
##  $ Peace    : num  4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
dim(df1)
## [1] 1925   26
# 객체 이름 
ls(df1)
##  [1] "BF"        "BM"        "EDU"       "Gender"    "Happiness" "Peace"    
##  [7] "Q1"        "Q10"       "Q11"       "Q12"       "Q13"       "Q14"      
## [13] "Q15"       "Q16"       "Q17"       "Q18"       "Q19"       "Q2"       
## [19] "Q20"       "Q3"        "Q4"        "Q5"        "Q6"        "Q7"       
## [25] "Q8"        "Q9"
# 변수 모두 삭제 
#rm(list = ls())


# 평균
mean(df1$Q10)
## [1] 2.882597
# 중앙값
median(df1$Q10)
## [1] 3
#분산
var(df1$Q10)
## [1] 0.8926544
#분위수
quantile(df1$Q10)
##   0%  25%  50%  75% 100% 
##    1    2    3    4    5
#사분위수범위
IQR(df1$Q10)
## [1] 2
# 최소값(min), 최대값 (max), 평균(mean), 1사분위수(1st Qu,25%), 2사분위수(Median, 50%, 중위수), 3사분 위수(3rd Qu, 75%)통계량을 출력

summary(df1)
##        Q1              Q2              Q3              Q4       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :4.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :3.536   Mean   :3.291   Mean   :2.928   Mean   :3.061  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##        Q5              Q6              Q7              Q8       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :3.041   Mean   :2.796   Mean   :3.086   Mean   :3.049  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##        Q9             Q10             Q11            Q12             Q13       
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000  
##  Median :3.000   Median :3.000   Median :4.00   Median :4.000   Median :4.000  
##  Mean   :3.066   Mean   :2.883   Mean   :3.47   Mean   :3.421   Mean   :3.588  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.00   Max.   :5.000   Max.   :5.000  
##       Q14             Q15             Q16             Q17       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.716   Mean   :3.542   Mean   :3.791   Mean   :3.516  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       Q18             Q19             Q20            Gender      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.0000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:0.0000  
##  Median :4.000   Median :3.000   Median :3.000   Median :0.0000  
##  Mean   :3.804   Mean   :3.364   Mean   :3.349   Mean   :0.4099  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:1.0000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :1.0000  
##       EDU              BF              BM          Happiness    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.400  
##  1st Qu.:2.000   1st Qu.:2.600   1st Qu.:2.400   1st Qu.:3.000  
##  Median :3.000   Median :3.200   Median :3.000   Median :3.600  
##  Mean   :2.616   Mean   :3.172   Mean   :2.976   Mean   :3.547  
##  3rd Qu.:3.000   3rd Qu.:3.800   3rd Qu.:3.600   3rd Qu.:4.000  
##  Max.   :4.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##      Peace      
##  Min.   :1.200  
##  1st Qu.:3.200  
##  Median :3.600  
##  Mean   :3.564  
##  3rd Qu.:4.000  
##  Max.   :5.000
summary(df1$Q10)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   3.000   2.883   4.000   5.000
df2 = read.csv("mtcars.csv")

head(df2)
##                   X  mpg cyl disp  hp drat    wt  qsec vs am gear carb
## 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## 6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
tail(df2)
##                 X  mpg cyl  disp  hp drat    wt qsec vs am gear carb
## 27  Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## 28   Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
## 29 Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
## 30   Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
## 31  Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8
## 32     Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.6  1  1    4    2
str(df2)
## 'data.frame':    32 obs. of  12 variables:
##  $ X   : chr  "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : int  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : int  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : int  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : int  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: int  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: int  4 4 1 1 2 1 4 2 2 4 ...
# 행, 열 
dim(df2)
## [1] 32 12
# 평균
mean(df2$mpg)
## [1] 20.09062
# 중앙값
median(df2$mpg)
## [1] 19.2
#분산
var(df2$mpg)
## [1] 36.3241
#분위수
quantile(df2$mpg)
##     0%    25%    50%    75%   100% 
## 10.400 15.425 19.200 22.800 33.900
#사분위수범위
IQR(df2$mpg)
## [1] 7.375
summary(df2)
##       X                  mpg             cyl             disp      
##  Length:32          Min.   :10.40   Min.   :4.000   Min.   : 71.1  
##  Class :character   1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8  
##  Mode  :character   Median :19.20   Median :6.000   Median :196.3  
##                     Mean   :20.09   Mean   :6.188   Mean   :230.7  
##                     3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0  
##                     Max.   :33.90   Max.   :8.000   Max.   :472.0  
##        hp             drat             wt             qsec      
##  Min.   : 52.0   Min.   :2.760   Min.   :1.513   Min.   :14.50  
##  1st Qu.: 96.5   1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89  
##  Median :123.0   Median :3.695   Median :3.325   Median :17.71  
##  Mean   :146.7   Mean   :3.597   Mean   :3.217   Mean   :17.85  
##  3rd Qu.:180.0   3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90  
##  Max.   :335.0   Max.   :4.930   Max.   :5.424   Max.   :22.90  
##        vs               am              gear            carb      
##  Min.   :0.0000   Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4375   Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :5.000   Max.   :8.000
summary(df2$mpg)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.40   15.43   19.20   20.09   22.80   33.90