R Markdown

Read in Data

laa_netmeta <- read.csv(file="C:/Users/14795/Desktop/NMA_amulet.csv", head=T)

Analysis

### Stroke Events
stroke_studies <- laa_netmeta %>% filter(stroke_out1 != "NA")
stroke_studies <- stroke_studies %>% filter(stroke_out2 != "NA")
###
p3 <- pairwise(list(treat1, treat2, treat3),
               list(stroke_out1, stroke_out2, stroke_out3),
               list(count1, count2, count3),
               data=stroke_studies, sm = "RR", studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Warfarin", method = "Inverse", title = "Stroke NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Stroke NMA
## 
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                                treat1   treat2      TE   seTE seTE.adj narms
## Mansour                        Amulet Watchman  2.1588 1.4647   1.5521     2
## Galea (Swiss-Apero)            Amulet Watchman -0.0090 0.9909   1.1160     2
## Protect-AF (Holmes)          Warfarin Watchman  0.3529 0.3736   0.6350     2
## PREVAIL (Belgaid)            Warfarin Watchman -0.2198 0.4367   0.6741     2
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman -0.0667 0.1750   0.5425     2
## Ozmancik                       Amulet     DOAC  0.5838 0.4096   0.6878     3
## Ozmancik                       Amulet Watchman  1.9369 1.0333   1.5583     3
## Ozmancik                         DOAC Watchman  1.3531 1.0352   1.5728     3
##                              multiarm
## Mansour                              
## Galea (Swiss-Apero)                  
## Protect-AF (Holmes)                  
## PREVAIL (Belgaid)                    
## Lakkireddy (Amulet IDE) 2024         
## Ozmancik                            *
## Ozmancik                            *
## Ozmancik                            *
## 
## Number of treatment arms (by study):
##                              narms
## Mansour                          2
## Galea (Swiss-Apero)              2
## Protect-AF (Holmes)              2
## PREVAIL (Belgaid)                2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         3
## 
## Results (random effects model):
## 
##                                treat1   treat2     RR           95%-CI
## Mansour                        Amulet Watchman 1.4836 [0.6366; 3.4572]
## Galea (Swiss-Apero)            Amulet Watchman 1.4836 [0.6366; 3.4572]
## Protect-AF (Holmes)          Warfarin Watchman 1.0872 [0.4394; 2.6899]
## PREVAIL (Belgaid)            Warfarin Watchman 1.0872 [0.4394; 2.6899]
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman 1.4836 [0.6366; 3.4572]
## Ozmancik                       Amulet     DOAC 1.3996 [0.4040; 4.8487]
## Ozmancik                       Amulet Watchman 1.4836 [0.6366; 3.4572]
## Ozmancik                         DOAC Watchman 1.0600 [0.2550; 4.4063]
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 8
## Number of observations: o = 3599
## Number of treatments: n = 4
## Number of designs: d = 3
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Warfarin'):
##              RR           95%-CI     z p-value
## Amulet   1.3646 [0.3951; 4.7133]  0.49  0.6230
## DOAC     0.9750 [0.1802; 5.2755] -0.03  0.9766
## Warfarin      .                .     .       .
## Watchman 0.9198 [0.3718; 2.2758] -0.18  0.8565
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.2636; tau = 0.5135; I^2 = 41.3% [0.0%; 78.4%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           6.81    4  0.1461
## Within designs  3.27    3  0.3519
## Between designs 3.54    1  0.0598
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##         comparison k prop    nma direct indir.     RoR    z p-value
##        Amulet:DOAC 1 0.93 1.3996 1.7928 0.0480 37.3453 1.44  0.1495
##    Amulet:Warfarin 0    0 1.3646      . 1.3646       .    .       .
##    Amulet:Watchman 4 1.00 1.4836 1.4836      .       .    .       .
##      DOAC:Warfarin 0    0 0.9750      . 0.9750       .    .       .
##      DOAC:Watchman 1 0.40 1.0600 3.8693 0.4540  8.5229 1.44  0.1495
##  Watchman:Warfarin 2 1.00 0.9198 0.9198      .       .    .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Stroke NMA
## 
##          P-score
## Watchman  0.6411
## DOAC      0.5606
## Warfarin  0.5350
## Amulet    0.2633
funnel(net3, order=(c("Warfarin", "Amulet", "Watchman", "DOAC")),studlab=T)

netgraph(net3)

rankogram(net3)
## Rankogram (based on 1000 simulations)
## 
## Random effects model: 
## 
##               1      2      3      4
## Amulet   0.0410 0.1580 0.3380 0.4630
## DOAC     0.3400 0.1960 0.2080 0.2560
## Warfarin 0.3070 0.2220 0.2350 0.2360
## Watchman 0.3120 0.4240 0.2190 0.0450
# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Stroke NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Stroke NMA
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 8
## Number of observations: o = 3599
## Number of treatments: n = 4
## Number of designs: d = 3
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   1.4836 [0.6366; 3.4572] 0.91  0.3608
## DOAC     1.0600 [0.2550; 4.4063] 0.08  0.9361
## Warfarin 1.0872 [0.4394; 2.6899] 0.18  0.8565
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.2636; tau = 0.5135; I^2 = 41.3% [0.0%; 78.4%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           6.81    4  0.1461
## Within designs  3.27    3  0.3519
## Between designs 3.54    1  0.0598
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                                                 
##                Amulet 1.793 [0.495;  6.496]                    .
##  1.400 [0.404; 4.849]                  DOAC                    .
##  1.365 [0.395; 4.713]  0.975 [0.180; 5.275]             Warfarin
##  1.484 [0.637; 3.457]  1.060 [0.255; 4.406] 1.087 [0.439; 2.690]
##                       
##  1.484 [0.637;  3.457]
##  3.869 [0.402; 37.258]
##  1.087 [0.439;  2.690]
##               Watchman
### Death Events
death_studies <- laa_netmeta %>% filter(death_out1 != "NA") 
death_studies <- death_studies %>% filter(death_out2 != "NA") 
###
p3 <- pairwise(list(treat1, treat2, treat3),
               list(death_out1, death_out2, death_out3),
               list(count1, count2, count3),
               data=death_studies, sm = "RR",  studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Warfarin", method = "Inverse", title = "Death NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Death NMA
## 
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                                treat1   treat2      TE   seTE seTE.adj narms
## Mansour                        Amulet Watchman  1.0601 1.6093   1.6421     2
## Galea (Swiss-Apero)            Amulet Watchman -0.7022 0.8555   0.9158     2
## Protect-AF (Holmes)          Warfarin Watchman  0.4864 0.3113   0.4513     2
## PREVAIL (Belgaid)            Warfarin Watchman  0.2754 0.2368   0.4035     2
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman -0.3006 0.1595   0.3636     2
## Ozmancik                       Amulet     DOAC -0.0192 0.1983   0.4291     3
## Ozmancik                       Amulet Watchman  0.6037 0.3334   0.6173     3
## Ozmancik                         DOAC Watchman  0.6229 0.3155   0.5700     3
##                              multiarm
## Mansour                              
## Galea (Swiss-Apero)                  
## Protect-AF (Holmes)                  
## PREVAIL (Belgaid)                    
## Lakkireddy (Amulet IDE) 2024         
## Ozmancik                            *
## Ozmancik                            *
## Ozmancik                            *
## 
## Number of treatment arms (by study):
##                              narms
## Mansour                          2
## Galea (Swiss-Apero)              2
## Protect-AF (Holmes)              2
## PREVAIL (Belgaid)                2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         3
## 
## Results (random effects model):
## 
##                                treat1   treat2     RR           95%-CI
## Mansour                        Amulet Watchman 1.0038 [0.5913; 1.7040]
## Galea (Swiss-Apero)            Amulet Watchman 1.0038 [0.5913; 1.7040]
## Protect-AF (Holmes)          Warfarin Watchman 1.4465 [0.8022; 2.6083]
## PREVAIL (Belgaid)            Warfarin Watchman 1.4465 [0.8022; 2.6083]
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman 1.0038 [0.5913; 1.7040]
## Ozmancik                       Amulet     DOAC 0.7896 [0.3926; 1.5879]
## Ozmancik                       Amulet Watchman 1.0038 [0.5913; 1.7040]
## Ozmancik                         DOAC Watchman 1.2713 [0.5993; 2.6968]
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 8
## Number of observations: o = 3599
## Number of treatments: n = 4
## Number of designs: d = 3
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Warfarin'):
##              RR           95%-CI     z p-value
## Amulet   0.6939 [0.3142; 1.5324] -0.90  0.3660
## DOAC     0.8789 [0.3380; 2.2852] -0.26  0.7912
## Warfarin      .                .     .       .
## Watchman 0.6913 [0.3834; 1.2466] -1.23  0.2197
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1067; tau = 0.3267; I^2 = 45% [0.0%; 79.8%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           7.27    4  0.1225
## Within designs  1.23    3  0.7467
## Between designs 6.04    1  0.0140
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##         comparison k prop    nma direct indir.    RoR    z p-value
##        Amulet:DOAC 1 0.87 0.7896 0.9810 0.1847 5.3118 1.58  0.1152
##    Amulet:Warfarin 0    0 0.6939      . 0.6939      .    .       .
##    Amulet:Watchman 4 1.00 1.0038 1.0038      .      .    .       .
##      DOAC:Warfarin 0    0 0.8789      . 0.8789      .    .       .
##      DOAC:Watchman 1 0.71 1.2713 1.8643 0.4896 3.8079 1.58  0.1152
##  Watchman:Warfarin 2 1.00 0.6913 0.6913      .      .    .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Death NMA
## 
##          P-score
## Watchman  0.7100
## Amulet    0.6859
## DOAC      0.3747
## Warfarin  0.2295
rankogram(net3)
## Rankogram (based on 1000 simulations)
## 
## Random effects model: 
## 
##               1      2      3      4
## Amulet   0.4040 0.3300 0.2130 0.0530
## DOAC     0.1700 0.1280 0.3430 0.3590
## Warfarin 0.0930 0.1020 0.2520 0.5530
## Watchman 0.3330 0.4400 0.1920 0.0350
funnel(net3, order=(c("Warfarin", "Amulet", "Watchman", "DOAC")),studlab=T)

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Death NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Death NMA
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 8
## Number of observations: o = 3599
## Number of treatments: n = 4
## Number of designs: d = 3
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   1.0038 [0.5913; 1.7040] 0.01  0.9888
## DOAC     1.2713 [0.5993; 2.6968] 0.63  0.5316
## Warfarin 1.4465 [0.8022; 2.6083] 1.23  0.2197
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1067; tau = 0.3267; I^2 = 45% [0.0%; 79.8%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           7.27    4  0.1225
## Within designs  1.23    3  0.7467
## Between designs 6.04    1  0.0140
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                                                
##                Amulet 0.981 [0.464; 2.075]                    .
##  0.790 [0.393; 1.588]                 DOAC                    .
##  0.694 [0.314; 1.532] 0.879 [0.338; 2.285]             Warfarin
##  1.004 [0.591; 1.704] 1.271 [0.599; 2.697] 1.447 [0.802; 2.608]
##                      
##  1.004 [0.591; 1.704]
##  1.864 [0.765; 4.541]
##  1.447 [0.802; 2.608]
##              Watchman
### Embolism Events
embolism_studies <- laa_netmeta %>% filter(embolism_out1 != "NA")
embolism_studies <- embolism_studies %>% filter(embolism_out2 != "NA") 
###
p3 <- pairwise(list(treat1, treat2, treat3),
               list(embolism_out1, embolism_out2, embolism_out3),
               list(count1, count2, count3),
               data=embolism_studies, sm = "RR", studlab = Author_Last)
# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Warfarin", method = "Inverse", title = "Embolism NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Embolism NMA
## 
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                                treat1   treat2      TE   seTE seTE.adj narms
## Galea (Swiss-Apero)            Amulet Watchman -0.0090 1.4078   1.4078     2
## Protect-AF (Holmes)          Warfarin Watchman -0.9698 1.5472   1.5472     2
## PREVAIL (Belgaid)            Warfarin Watchman -0.4329 1.6296   1.6296     2
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman -0.4066 0.9117   0.9117     2
## Ozmancik                       Amulet     DOAC -0.5168 1.6287   1.8210     3
## Ozmancik                       Amulet Watchman -0.4584 1.9942   3.1548     3
## Ozmancik                         DOAC Watchman  0.0584 1.6271   1.8186     3
##                              multiarm
## Galea (Swiss-Apero)                  
## Protect-AF (Holmes)                  
## PREVAIL (Belgaid)                    
## Lakkireddy (Amulet IDE) 2024         
## Ozmancik                            *
## Ozmancik                            *
## Ozmancik                            *
## 
## Number of treatment arms (by study):
##                              narms
## Galea (Swiss-Apero)              2
## Protect-AF (Holmes)              2
## PREVAIL (Belgaid)                2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         3
## 
## Results (random effects model):
## 
##                                treat1   treat2     RR            95%-CI
## Galea (Swiss-Apero)            Amulet Watchman 0.7328 [0.1807;  2.9726]
## Protect-AF (Holmes)          Warfarin Watchman 0.4890 [0.0542;  4.4099]
## PREVAIL (Belgaid)            Warfarin Watchman 0.4890 [0.0542;  4.4099]
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman 0.7328 [0.1807;  2.9726]
## Ozmancik                       Amulet     DOAC 0.6421 [0.0469;  8.8002]
## Ozmancik                       Amulet Watchman 0.7328 [0.1807;  2.9726]
## Ozmancik                         DOAC Watchman 1.1412 [0.0833; 15.6320]
## 
## Number of studies: k = 5
## Number of pairwise comparisons: m = 7
## Number of observations: o = 3548
## Number of treatments: n = 4
## Number of designs: d = 3
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Warfarin'):
##              RR            95%-CI    z p-value
## Amulet   1.4985 [0.1105; 20.3196] 0.30  0.7611
## DOAC     2.3336 [0.0765; 71.2297] 0.49  0.6271
## Warfarin      .                 .    .       .
## Watchman 2.0448 [0.2268; 18.4390] 0.64  0.5238
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 84.7%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           0.12    3  0.9894
## Within designs  0.11    2  0.9449
## Between designs 0.01    1  0.9368
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##         comparison k prop    nma direct indir.    RoR     z p-value
##        Amulet:DOAC 1 0.67 0.6421 0.5964 0.7473 0.7981 -0.08  0.9368
##    Amulet:Warfarin 0    0 1.4985      . 1.4985      .     .       .
##    Amulet:Watchman 3 1.00 0.7328 0.7328      .      .     .       .
##      DOAC:Warfarin 0    0 2.3336      . 2.3336      .     .       .
##      DOAC:Watchman 1 0.67 1.1412 1.0602 1.3286 0.7979 -0.08  0.9368
##  Watchman:Warfarin 2 1.00 2.0448 2.0448      .      .     .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Embolism NMA
## 
##          P-score
## Warfarin  0.6813
## Amulet    0.5596
## DOAC      0.3814
## Watchman  0.3777
funnel(net3, order=(c("Warfarin", "Amulet", "Watchman", "DOAC")),studlab=T)

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Embolism NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Embolism NMA
## 
## Number of studies: k = 5
## Number of pairwise comparisons: m = 7
## Number of observations: o = 3548
## Number of treatments: n = 4
## Number of designs: d = 3
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Watchman'):
##              RR            95%-CI     z p-value
## Amulet   0.7328 [0.1807;  2.9726] -0.44  0.6635
## DOAC     1.1412 [0.0833; 15.6320]  0.10  0.9212
## Warfarin 0.4890 [0.0542;  4.4099] -0.64  0.5238
## Watchman      .                 .     .       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 84.7%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           0.12    3  0.9894
## Within designs  0.11    2  0.9449
## Between designs 0.01    1  0.9368
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                                                   
##                 Amulet 0.596 [0.025; 14.518]                     .
##  0.642 [0.047;  8.800]                  DOAC                     .
##  1.499 [0.111; 20.320] 2.334 [0.076; 71.230]              Warfarin
##  0.733 [0.181;  2.973] 1.141 [0.083; 15.632] 0.489 [0.054;  4.410]
##                       
##  0.733 [0.181;  2.973]
##  1.060 [0.044; 25.725]
##  0.489 [0.054;  4.410]
##               Watchman
### Device Embolization Events
dev_embo_studies <- laa_netmeta %>% filter(device_embo_out1 != "NA") 
dev_embo_studies <- dev_embo_studies %>% filter(device_embo_out2 != "NA") 
###
p3 <- pairwise(list(treat1, treat2),
               list(device_embo_out1, device_embo_out2),
               list(count1, count2),
               data=dev_embo_studies, sm = "RR", studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Warfarin", method = "Inverse", title = "Device Embolization NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Device Embolization NMA
## 
## Original data:
## 
##                                treat1   treat2      TE   seTE
## Mansour                        Amulet Watchman  1.0601 1.6093
## Galea (Swiss-Apero)            Amulet Watchman -0.0090 1.4078
## Protect-AF (Holmes)          Warfarin Watchman -1.3063 1.5098
## PREVAIL (Belgaid)            Warfarin Watchman -0.9437 1.5457
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman  1.0975 0.8152
## Ozmancik                       Amulet Watchman  0.6402 1.6259
## 
## Number of treatment arms (by study):
##                              narms
## Mansour                          2
## Galea (Swiss-Apero)              2
## Protect-AF (Holmes)              2
## PREVAIL (Belgaid)                2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                                treat1   treat2     RR           95%-CI
## Mansour                        Amulet Watchman 2.2903 [0.7060; 7.4296]
## Galea (Swiss-Apero)            Amulet Watchman 2.2903 [0.7060; 7.4296]
## Protect-AF (Holmes)          Warfarin Watchman 0.3233 [0.0389; 2.6847]
## PREVAIL (Belgaid)            Warfarin Watchman 0.3233 [0.0389; 2.6847]
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman 2.2903 [0.7060; 7.4296]
## Ozmancik                       Amulet Watchman 2.2903 [0.7060; 7.4296]
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 6
## Number of observations: o = 3400
## Number of treatments: n = 3
## Number of designs: d = 2
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Warfarin'):
##              RR            95%-CI    z p-value
## Amulet   7.0848 [0.6288; 79.8311] 1.58  0.1131
## Warfarin      .                 .    .       .
## Watchman 3.0934 [0.3725; 25.6907] 1.05  0.2957
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 79.2%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           0.53    4  0.9710
## Within designs  0.53    4  0.9710
## Between designs 0.00    0      --
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##         comparison k prop    nma direct indir. RoR z p-value
##    Amulet:Warfarin 0    0 7.0848      . 7.0848   . .       .
##    Amulet:Watchman 4 1.00 2.2903 2.2903      .   . .       .
##  Watchman:Warfarin 2 1.00 3.0934 3.0934      .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Device Embolization NMA
## 
##          P-score
## Warfarin  0.8978
## Watchman  0.5321
## Amulet    0.0702
funnel(net3, order=(c("Warfarin", "Amulet", "Watchman")),studlab=T)

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Watchman", method = "Inverse", title = "Device Embolization NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Device Embolization NMA
## 
## Number of studies: k = 6
## Number of pairwise comparisons: m = 6
## Number of observations: o = 3400
## Number of treatments: n = 3
## Number of designs: d = 2
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Watchman'):
##              RR           95%-CI     z p-value
## Amulet   2.2903 [0.7060; 7.4296]  1.38  0.1675
## Warfarin 0.3233 [0.0389; 2.6847] -1.05  0.2957
## Watchman      .                .     .       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 79.2%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           0.53    4  0.9710
## Within designs  0.53    4  0.9710
## Between designs 0.00    0      --
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                                                   
##                 Amulet                     . 2.290 [0.706;  7.430]
##  7.085 [0.629; 79.831]              Warfarin 0.323 [0.039;  2.685]
##  2.290 [0.706;  7.430] 0.323 [0.039;  2.685]              Watchman
### Pericardial Effusion Events
pericardial_studies <- laa_netmeta %>% filter(pericardial_out1 != "NA") 
pericardial_studies <- pericardial_studies %>% filter(pericardial_out2 != "NA") 
###
p3 <- pairwise(list(treat1, treat2),
               list(pericardial_out1, pericardial_out2),
               list(count1, count2),
               data=pericardial_studies, sm = "RR", studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Warfarin", method = "Inverse", title = "Pericardial Effusion NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Pericardial Effusion NMA
## 
## Original data:
## 
##                                treat1   treat2      TE   seTE
## Galea (Swiss-Apero)            Amulet Watchman  0.9965 0.2701
## Protect-AF (Holmes)          Warfarin Watchman -3.1671 1.4277
## PREVAIL (Belgaid)            Warfarin Watchman -1.8993 1.4639
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman  0.4689 0.2812
## Ozmancik                       Amulet Watchman  1.1510 1.5417
## 
## Number of treatment arms (by study):
##                              narms
## Galea (Swiss-Apero)              2
## Protect-AF (Holmes)              2
## PREVAIL (Belgaid)                2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                                treat1   treat2     RR           95%-CI
## Galea (Swiss-Apero)            Amulet Watchman 2.1164 [1.4491; 3.0910]
## Protect-AF (Holmes)          Warfarin Watchman 0.0782 [0.0105; 0.5794]
## PREVAIL (Belgaid)            Warfarin Watchman 0.0782 [0.0105; 0.5794]
## Lakkireddy (Amulet IDE) 2024   Amulet Watchman 2.1164 [1.4491; 3.0910]
## Ozmancik                       Amulet Watchman 2.1164 [1.4491; 3.0910]
## 
## Number of studies: k = 5
## Number of pairwise comparisons: m = 5
## Number of observations: o = 3349
## Number of treatments: n = 3
## Number of designs: d = 2
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Warfarin'):
##               RR             95%-CI    z p-value
## Amulet   27.0785 [3.5255; 207.9821] 3.17  0.0015
## Warfarin       .                  .    .       .
## Watchman 12.7948 [1.7260;  94.8459] 2.49  0.0126
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 84.7%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           2.28    3  0.5156
## Within designs  2.28    3  0.5156
## Between designs 0.00    0      --
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##         comparison k prop     nma  direct  indir. RoR z p-value
##    Amulet:Warfarin 0    0 27.0785       . 27.0785   . .       .
##    Amulet:Watchman 3 1.00  2.1164  2.1164       .   . .       .
##  Watchman:Warfarin 2 1.00 12.7948 12.7948       .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Pericardial Effusion NMA
## 
##          P-score
## Warfarin  0.9965
## Watchman  0.5031
## Amulet    0.0004
funnel(net3, order=(c("Warfarin", "Amulet", "Watchman")),studlab=T)

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Watchman", method = "Inverse", title = "Pericardial Effusion NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Pericardial Effusion NMA
## 
## Number of studies: k = 5
## Number of pairwise comparisons: m = 5
## Number of observations: o = 3349
## Number of treatments: n = 3
## Number of designs: d = 2
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: other treatments vs 'Watchman'):
##              RR           95%-CI     z p-value
## Amulet   2.1164 [1.4491; 3.0910]  3.88  0.0001
## Warfarin 0.0782 [0.0105; 0.5794] -2.49  0.0126
## Watchman      .                .     .       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 84.7%]
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                    Q d.f. p-value
## Total           2.28    3  0.5156
## Within designs  2.28    3  0.5156
## Between designs 0.00    0      --
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                                                      
##                   Amulet                      . 2.116 [1.449;  3.091]
##  27.078 [3.526; 207.982]               Warfarin 0.078 [0.011;  0.579]
##   2.116 [1.449;   3.091] 0.078 [0.011;   0.579]              Watchman

OAC Exclusion

### Stroke Events
stroke_studies <- stroke_studies[which(stroke_studies$treat2 != "Warfarin"),]
stroke_studies
##                    Author_Last                               DOI   treat1
## 1                      Mansour        10.1007/s10840-021-01002-1 Watchman
## 2          Galea (Swiss-Apero) 10.1161/CIRCULATIONAHA.121.057859 Watchman
## 5 Lakkireddy (Amulet IDE) 2024        10.1016/j.jacc.2024.10.101 Watchman
## 6                     Ozmancik                              <NA> Watchman
##   treat2 treat3 treat4 treat5 count1 count2 count3 count4 count5 Follow1
## 1 Amulet          LAAC            25     26     NA     51     NA     365
## 2 Amulet          LAAC           110    111     NA    221     NA      45
## 5 Amulet          LAAC           916    917     NA   1833     NA    1800
## 6 Amulet   DOAC   LAAC            70    111    199    181     NA      NA
##   Follow2 Follow3 Jadad_quality                       Jadad_comments TX1_Age_av
## 1     365      NA             4 biweekly alternated device selection       76.0
## 2      45      NA             5                                 <NA>       77.3
## 5    1800      NA             4               echo tech not blinded        75.0
## 6      NA      NA             5                                              NA
##   Tx2_Age_av Female_tx1 Female_tx2 HTN_tx1 HTN_tx2 HLD_tx1 HLD_tx2 Bleeding
## 1       75.0          6          6      17      21      15      12       NA
## 2       76.5         33         32      90      87      NA      NA       NA
## 5       75.0        356        380      NA      NA      NA      NA       NA
## 6         NA         NA         NA      NA      NA      NA      NA       NA
##   TX1_Afib_type1 TX1_Afib_type2 TX1_Afib_type3 TX2_Afib_type1 TX2_Afib_type2
## 1             NA             NA             NA             NA             NA
## 2             44             43             NA             NA             NA
## 5            509            528            277            250            157
## 6             NA             NA             NA             NA             NA
##   TX2_Afib_type3 CHADS2_tx1 CHADS2_tx2 CHADSVASC_tx1 CHADSVASC_tx2 HASBLED_tx1
## 1             NA         NA         NA           3.9           3.9         4.2
## 2             NA         NA         NA           4.4           4.2         3.2
## 5            156        2.8        2.7           4.7           4.5         3.3
## 6             NA         NA         NA            NA            NA          NA
##   HASBLED_tx2 stroke_out1 stroke_out2 stroke_out3 stroke_out4 stroke_out5
## 1         4.1           0           4          NA           4          NA
## 2         3.1           2           2          NA           4          NA
## 5         3.2          63          59          NA         122          NA
## 6          NA           1          11          11          12          NA
##   embolism_out1 embolism_out2 embolism_out3 embolism_out4 embolism_out5
## 1            NA            NA            NA            NA            NA
## 2             1             1            NA             2            NA
## 5             3             2            NA             5            NA
## 6             0             0             1             0            NA
##   death_out1 death_out2 death_out3 death_out4 death_out5 pericardial_out1
## 1          0          1         NA          1         NA               NA
## 2          4          2         NA          6         NA               15
## 5         85         63         NA        148         NA               20
## 6         10         29         53         39         NA                0
##   pericardial_out2 pericardial_out3 pericardial_out4 pericardial_out5
## 1               NA               NA               NA               NA
## 2               41               NA               56               NA
## 5               32               NA               52               NA
## 6                2                0                2               NA
##   device_embo_out1 device_embo_out2 device_embo_out3 device_embo_out4
## 1                0                1               NA                1
## 2                1                1               NA                2
## 5                2                6                0                8
## 6                0                1                0                1
##   device_embo_out5
## 1               NA
## 2               NA
## 5               NA
## 6               NA
stroke_studies <- stroke_studies %>% filter(stroke_out1 != "NA")
###
p3 <- pairwise(list(treat1, treat2),
               list(stroke_out1, stroke_out2),
               list(count1, count2),
               data=stroke_studies, sm = "RR", studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Stroke NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Stroke NMA
## 
## Original data:
## 
##                              treat1   treat2      TE   seTE
## Mansour                      Amulet Watchman  2.1588 1.4647
## Galea (Swiss-Apero)          Amulet Watchman -0.0090 0.9909
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman -0.0667 0.1750
## Ozmancik                     Amulet Watchman  1.9369 1.0333
## 
## Number of treatment arms (by study):
##                              narms
## Mansour                          2
## Galea (Swiss-Apero)              2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                              treat1   treat2     RR           95%-CI
## Mansour                      Amulet Watchman 1.7881 [0.5921; 5.4001]
## Galea (Swiss-Apero)          Amulet Watchman 1.7881 [0.5921; 5.4001]
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman 1.7881 [0.5921; 5.4001]
## Ozmancik                     Amulet Watchman 1.7881 [0.5921; 5.4001]
## 
## Number of studies: k = 4
## Number of pairwise comparisons: m = 4
## Number of observations: o = 2286
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   1.7881 [0.5921; 5.4001] 1.03  0.3028
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0.6111; tau = 0.7817; I^2 = 48.5% [0.0%; 82.9%]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  5.82    3  0.1207
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##       comparison k prop    nma direct indir. RoR z p-value
##  Amulet:Watchman 4 1.00 1.7881 1.7881      .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Stroke NMA
## 
##          P-score
## Watchman  0.8486
## Amulet    0.1514
funnel(net3, order=(c("Watchman", "Amulet")))

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Stroke NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Stroke NMA
## 
## Number of studies: k = 4
## Number of pairwise comparisons: m = 4
## Number of observations: o = 2286
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   1.7881 [0.5921; 5.4001] 1.03  0.3028
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0.6111; tau = 0.7817; I^2 = 48.5% [0.0%; 82.9%]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  5.82    3  0.1207
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                           
##                Amulet 1.788 [0.592; 5.400]
##  1.788 [0.592; 5.400]             Watchman
### Death Events
death_studies <- death_studies[which(death_studies$treat2 != "Warfarin"),]
death_studies
##                    Author_Last                               DOI   treat1
## 1                      Mansour        10.1007/s10840-021-01002-1 Watchman
## 2          Galea (Swiss-Apero) 10.1161/CIRCULATIONAHA.121.057859 Watchman
## 5 Lakkireddy (Amulet IDE) 2024        10.1016/j.jacc.2024.10.101 Watchman
## 6                     Ozmancik                              <NA> Watchman
##   treat2 treat3 treat4 treat5 count1 count2 count3 count4 count5 Follow1
## 1 Amulet          LAAC            25     26     NA     51     NA     365
## 2 Amulet          LAAC           110    111     NA    221     NA      45
## 5 Amulet          LAAC           916    917     NA   1833     NA    1800
## 6 Amulet   DOAC   LAAC            70    111    199    181     NA      NA
##   Follow2 Follow3 Jadad_quality                       Jadad_comments TX1_Age_av
## 1     365      NA             4 biweekly alternated device selection       76.0
## 2      45      NA             5                                 <NA>       77.3
## 5    1800      NA             4               echo tech not blinded        75.0
## 6      NA      NA             5                                              NA
##   Tx2_Age_av Female_tx1 Female_tx2 HTN_tx1 HTN_tx2 HLD_tx1 HLD_tx2 Bleeding
## 1       75.0          6          6      17      21      15      12       NA
## 2       76.5         33         32      90      87      NA      NA       NA
## 5       75.0        356        380      NA      NA      NA      NA       NA
## 6         NA         NA         NA      NA      NA      NA      NA       NA
##   TX1_Afib_type1 TX1_Afib_type2 TX1_Afib_type3 TX2_Afib_type1 TX2_Afib_type2
## 1             NA             NA             NA             NA             NA
## 2             44             43             NA             NA             NA
## 5            509            528            277            250            157
## 6             NA             NA             NA             NA             NA
##   TX2_Afib_type3 CHADS2_tx1 CHADS2_tx2 CHADSVASC_tx1 CHADSVASC_tx2 HASBLED_tx1
## 1             NA         NA         NA           3.9           3.9         4.2
## 2             NA         NA         NA           4.4           4.2         3.2
## 5            156        2.8        2.7           4.7           4.5         3.3
## 6             NA         NA         NA            NA            NA          NA
##   HASBLED_tx2 stroke_out1 stroke_out2 stroke_out3 stroke_out4 stroke_out5
## 1         4.1           0           4          NA           4          NA
## 2         3.1           2           2          NA           4          NA
## 5         3.2          63          59          NA         122          NA
## 6          NA           1          11          11          12          NA
##   embolism_out1 embolism_out2 embolism_out3 embolism_out4 embolism_out5
## 1            NA            NA            NA            NA            NA
## 2             1             1            NA             2            NA
## 5             3             2            NA             5            NA
## 6             0             0             1             0            NA
##   death_out1 death_out2 death_out3 death_out4 death_out5 pericardial_out1
## 1          0          1         NA          1         NA               NA
## 2          4          2         NA          6         NA               15
## 5         85         63         NA        148         NA               20
## 6         10         29         53         39         NA                0
##   pericardial_out2 pericardial_out3 pericardial_out4 pericardial_out5
## 1               NA               NA               NA               NA
## 2               41               NA               56               NA
## 5               32               NA               52               NA
## 6                2                0                2               NA
##   device_embo_out1 device_embo_out2 device_embo_out3 device_embo_out4
## 1                0                1               NA                1
## 2                1                1               NA                2
## 5                2                6                0                8
## 6                0                1                0                1
##   device_embo_out5
## 1               NA
## 2               NA
## 5               NA
## 6               NA
death_studies <- death_studies %>% filter(death_out1 != "NA") 
###
p3 <- pairwise(list(treat1, treat2),
               list(death_out1, death_out2),
               list(count1, count2),
               data=death_studies, sm = "RR",  studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Death NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Death NMA
## 
## Original data:
## 
##                              treat1   treat2      TE   seTE
## Mansour                      Amulet Watchman  1.0601 1.6093
## Galea (Swiss-Apero)          Amulet Watchman -0.7022 0.8555
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman -0.3006 0.1595
## Ozmancik                     Amulet Watchman  0.6037 0.3334
## 
## Number of treatment arms (by study):
##                              narms
## Mansour                          2
## Galea (Swiss-Apero)              2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                              treat1   treat2     RR           95%-CI
## Mansour                      Amulet Watchman 1.0291 [0.5216; 2.0301]
## Galea (Swiss-Apero)          Amulet Watchman 1.0291 [0.5216; 2.0301]
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman 1.0291 [0.5216; 2.0301]
## Ozmancik                     Amulet Watchman 1.0291 [0.5216; 2.0301]
## 
## Number of studies: k = 4
## Number of pairwise comparisons: m = 4
## Number of observations: o = 2286
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   1.0291 [0.5216; 2.0301] 0.08  0.9341
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0.2268; tau = 0.4762; I^2 = 57% [0.0%; 85.7%]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  6.98    3  0.0727
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##       comparison k prop    nma direct indir. RoR z p-value
##  Amulet:Watchman 4 1.00 1.0291 1.0291      .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Death NMA
## 
##          P-score
## Watchman  0.5329
## Amulet    0.4671
funnel(net3, order=(c("Watchman", "Amulet")))

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Death NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Death NMA
## 
## Number of studies: k = 4
## Number of pairwise comparisons: m = 4
## Number of observations: o = 2286
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   1.0291 [0.5216; 2.0301] 0.08  0.9341
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0.2268; tau = 0.4762; I^2 = 57% [0.0%; 85.7%]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  6.98    3  0.0727
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                           
##                Amulet 1.029 [0.522; 2.030]
##  1.029 [0.522; 2.030]             Watchman
### Embolism Events
embolism_studies <- embolism_studies[which(embolism_studies$treat2 != "Warfarin"),]
embolism_studies
##                    Author_Last                               DOI   treat1
## 1          Galea (Swiss-Apero) 10.1161/CIRCULATIONAHA.121.057859 Watchman
## 4 Lakkireddy (Amulet IDE) 2024        10.1016/j.jacc.2024.10.101 Watchman
## 5                     Ozmancik                              <NA> Watchman
##   treat2 treat3 treat4 treat5 count1 count2 count3 count4 count5 Follow1
## 1 Amulet          LAAC           110    111     NA    221     NA      45
## 4 Amulet          LAAC           916    917     NA   1833     NA    1800
## 5 Amulet   DOAC   LAAC            70    111    199    181     NA      NA
##   Follow2 Follow3 Jadad_quality         Jadad_comments TX1_Age_av Tx2_Age_av
## 1      45      NA             5                   <NA>       77.3       76.5
## 4    1800      NA             4 echo tech not blinded        75.0       75.0
## 5      NA      NA             5                                NA         NA
##   Female_tx1 Female_tx2 HTN_tx1 HTN_tx2 HLD_tx1 HLD_tx2 Bleeding TX1_Afib_type1
## 1         33         32      90      87      NA      NA       NA             44
## 4        356        380      NA      NA      NA      NA       NA            509
## 5         NA         NA      NA      NA      NA      NA       NA             NA
##   TX1_Afib_type2 TX1_Afib_type3 TX2_Afib_type1 TX2_Afib_type2 TX2_Afib_type3
## 1             43             NA             NA             NA             NA
## 4            528            277            250            157            156
## 5             NA             NA             NA             NA             NA
##   CHADS2_tx1 CHADS2_tx2 CHADSVASC_tx1 CHADSVASC_tx2 HASBLED_tx1 HASBLED_tx2
## 1         NA         NA           4.4           4.2         3.2         3.1
## 4        2.8        2.7           4.7           4.5         3.3         3.2
## 5         NA         NA            NA            NA          NA          NA
##   stroke_out1 stroke_out2 stroke_out3 stroke_out4 stroke_out5 embolism_out1
## 1           2           2          NA           4          NA             1
## 4          63          59          NA         122          NA             3
## 5           1          11          11          12          NA             0
##   embolism_out2 embolism_out3 embolism_out4 embolism_out5 death_out1 death_out2
## 1             1            NA             2            NA          4          2
## 4             2            NA             5            NA         85         63
## 5             0             1             0            NA         10         29
##   death_out3 death_out4 death_out5 pericardial_out1 pericardial_out2
## 1         NA          6         NA               15               41
## 4         NA        148         NA               20               32
## 5         53         39         NA                0                2
##   pericardial_out3 pericardial_out4 pericardial_out5 device_embo_out1
## 1               NA               56               NA                1
## 4               NA               52               NA                2
## 5                0                2               NA                0
##   device_embo_out2 device_embo_out3 device_embo_out4 device_embo_out5
## 1                1               NA                2               NA
## 4                6                0                8               NA
## 5                1                0                1               NA
embolism_studies <- embolism_studies %>% filter(embolism_out1 != "NA") 
###
p3 <- pairwise(list(treat1, treat2),
               list(embolism_out1, embolism_out2),
               list(count1, count2),
               data=embolism_studies, sm = "RR", studlab = Author_Last)
# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Embolism NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Embolism NMA
## 
## Original data:
## 
##                              treat1   treat2      TE   seTE
## Galea (Swiss-Apero)          Amulet Watchman -0.0090 1.4078
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman -0.4066 0.9117
## Ozmancik                     Amulet Watchman -0.4584 1.9942
## 
## Number of treatment arms (by study):
##                              narms
## Galea (Swiss-Apero)              2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                              treat1   treat2     RR           95%-CI
## Galea (Swiss-Apero)          Amulet Watchman 0.7328 [0.1807; 2.9726]
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman 0.7328 [0.1807; 2.9726]
## Ozmancik                     Amulet Watchman 0.7328 [0.1807; 2.9726]
## 
## Number of studies: k = 3
## Number of pairwise comparisons: m = 3
## Number of observations: o = 2235
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI     z p-value
## Amulet   0.7328 [0.1807; 2.9726] -0.44  0.6635
## Watchman      .                .     .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 89.6%]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  0.06    2  0.9693
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##       comparison k prop    nma direct indir. RoR z p-value
##  Amulet:Watchman 3 1.00 0.7328 0.7328      .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Embolism NMA
## 
##          P-score
## Amulet    0.6682
## Watchman  0.3318
funnel(net3, order=(c("Watchman", "Amulet")))

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   reference.group = "Watchman", method = "Inverse", title = "Embolism NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Embolism NMA
## 
## Number of studies: k = 3
## Number of pairwise comparisons: m = 3
## Number of observations: o = 2235
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI     z p-value
## Amulet   0.7328 [0.1807; 2.9726] -0.44  0.6635
## Watchman      .                .     .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 89.6%]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  0.06    2  0.9693
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                           
##                Amulet 0.733 [0.181; 2.973]
##  0.733 [0.181; 2.973]             Watchman
### Device Embolization Events
dev_embo_studies <- dev_embo_studies[which(dev_embo_studies$treat2 != "Warfarin"),]
dev_embo_studies
##                    Author_Last                               DOI   treat1
## 1                      Mansour        10.1007/s10840-021-01002-1 Watchman
## 2          Galea (Swiss-Apero) 10.1161/CIRCULATIONAHA.121.057859 Watchman
## 5 Lakkireddy (Amulet IDE) 2024        10.1016/j.jacc.2024.10.101 Watchman
## 6                     Ozmancik                              <NA> Watchman
##   treat2 treat3 treat4 treat5 count1 count2 count3 count4 count5 Follow1
## 1 Amulet          LAAC            25     26     NA     51     NA     365
## 2 Amulet          LAAC           110    111     NA    221     NA      45
## 5 Amulet          LAAC           916    917     NA   1833     NA    1800
## 6 Amulet   DOAC   LAAC            70    111    199    181     NA      NA
##   Follow2 Follow3 Jadad_quality                       Jadad_comments TX1_Age_av
## 1     365      NA             4 biweekly alternated device selection       76.0
## 2      45      NA             5                                 <NA>       77.3
## 5    1800      NA             4               echo tech not blinded        75.0
## 6      NA      NA             5                                              NA
##   Tx2_Age_av Female_tx1 Female_tx2 HTN_tx1 HTN_tx2 HLD_tx1 HLD_tx2 Bleeding
## 1       75.0          6          6      17      21      15      12       NA
## 2       76.5         33         32      90      87      NA      NA       NA
## 5       75.0        356        380      NA      NA      NA      NA       NA
## 6         NA         NA         NA      NA      NA      NA      NA       NA
##   TX1_Afib_type1 TX1_Afib_type2 TX1_Afib_type3 TX2_Afib_type1 TX2_Afib_type2
## 1             NA             NA             NA             NA             NA
## 2             44             43             NA             NA             NA
## 5            509            528            277            250            157
## 6             NA             NA             NA             NA             NA
##   TX2_Afib_type3 CHADS2_tx1 CHADS2_tx2 CHADSVASC_tx1 CHADSVASC_tx2 HASBLED_tx1
## 1             NA         NA         NA           3.9           3.9         4.2
## 2             NA         NA         NA           4.4           4.2         3.2
## 5            156        2.8        2.7           4.7           4.5         3.3
## 6             NA         NA         NA            NA            NA          NA
##   HASBLED_tx2 stroke_out1 stroke_out2 stroke_out3 stroke_out4 stroke_out5
## 1         4.1           0           4          NA           4          NA
## 2         3.1           2           2          NA           4          NA
## 5         3.2          63          59          NA         122          NA
## 6          NA           1          11          11          12          NA
##   embolism_out1 embolism_out2 embolism_out3 embolism_out4 embolism_out5
## 1            NA            NA            NA            NA            NA
## 2             1             1            NA             2            NA
## 5             3             2            NA             5            NA
## 6             0             0             1             0            NA
##   death_out1 death_out2 death_out3 death_out4 death_out5 pericardial_out1
## 1          0          1         NA          1         NA               NA
## 2          4          2         NA          6         NA               15
## 5         85         63         NA        148         NA               20
## 6         10         29         53         39         NA                0
##   pericardial_out2 pericardial_out3 pericardial_out4 pericardial_out5
## 1               NA               NA               NA               NA
## 2               41               NA               56               NA
## 5               32               NA               52               NA
## 6                2                0                2               NA
##   device_embo_out1 device_embo_out2 device_embo_out3 device_embo_out4
## 1                0                1               NA                1
## 2                1                1               NA                2
## 5                2                6                0                8
## 6                0                1                0                1
##   device_embo_out5
## 1               NA
## 2               NA
## 5               NA
## 6               NA
dev_embo_studies <- dev_embo_studies %>% filter(device_embo_out1 != "NA") 
###
p3 <- pairwise(list(treat1, treat2),
               list(device_embo_out1, device_embo_out2),
               list(count1, count2),
               data=dev_embo_studies, sm = "RR", studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Watchman", method = "Inverse", title = "Device Embolization NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Device Embolization NMA
## 
## Original data:
## 
##                              treat1   treat2      TE   seTE
## Mansour                      Amulet Watchman  1.0601 1.6093
## Galea (Swiss-Apero)          Amulet Watchman -0.0090 1.4078
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman  1.0975 0.8152
## Ozmancik                     Amulet Watchman  0.6402 1.6259
## 
## Number of treatment arms (by study):
##                              narms
## Mansour                          2
## Galea (Swiss-Apero)              2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                              treat1   treat2     RR           95%-CI
## Mansour                      Amulet Watchman 2.2903 [0.7060; 7.4296]
## Galea (Swiss-Apero)          Amulet Watchman 2.2903 [0.7060; 7.4296]
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman 2.2903 [0.7060; 7.4296]
## Ozmancik                     Amulet Watchman 2.2903 [0.7060; 7.4296]
## 
## Number of studies: k = 4
## Number of pairwise comparisons: m = 4
## Number of observations: o = 2286
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   2.2903 [0.7060; 7.4296] 1.38  0.1675
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 84.7%]
## 
## Test of heterogeneity:
##    Q d.f. p-value
##  0.5    3  0.9196
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##       comparison k prop    nma direct indir. RoR z p-value
##  Amulet:Watchman 4 1.00 2.2903 2.2903      .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Device Embolization NMA
## 
##          P-score
## Watchman  0.9162
## Amulet    0.0838
funnel(net3, order=(c("Watchman", "Amulet")))

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Watchman", method = "Inverse", title = "Device Embolization NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Device Embolization NMA
## 
## Number of studies: k = 4
## Number of pairwise comparisons: m = 4
## Number of observations: o = 2286
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   2.2903 [0.7060; 7.4296] 1.38  0.1675
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 84.7%]
## 
## Test of heterogeneity:
##    Q d.f. p-value
##  0.5    3  0.9196
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                           
##                Amulet 2.290 [0.706; 7.430]
##  2.290 [0.706; 7.430]             Watchman
### Pericardial Effusion Events
pericardial_studies <- pericardial_studies[which(pericardial_studies$treat2 != "Warfarin"),]
pericardial_studies
##                    Author_Last                               DOI   treat1
## 1          Galea (Swiss-Apero) 10.1161/CIRCULATIONAHA.121.057859 Watchman
## 4 Lakkireddy (Amulet IDE) 2024        10.1016/j.jacc.2024.10.101 Watchman
## 5                     Ozmancik                              <NA> Watchman
##   treat2 treat3 treat4 treat5 count1 count2 count3 count4 count5 Follow1
## 1 Amulet          LAAC           110    111     NA    221     NA      45
## 4 Amulet          LAAC           916    917     NA   1833     NA    1800
## 5 Amulet   DOAC   LAAC            70    111    199    181     NA      NA
##   Follow2 Follow3 Jadad_quality         Jadad_comments TX1_Age_av Tx2_Age_av
## 1      45      NA             5                   <NA>       77.3       76.5
## 4    1800      NA             4 echo tech not blinded        75.0       75.0
## 5      NA      NA             5                                NA         NA
##   Female_tx1 Female_tx2 HTN_tx1 HTN_tx2 HLD_tx1 HLD_tx2 Bleeding TX1_Afib_type1
## 1         33         32      90      87      NA      NA       NA             44
## 4        356        380      NA      NA      NA      NA       NA            509
## 5         NA         NA      NA      NA      NA      NA       NA             NA
##   TX1_Afib_type2 TX1_Afib_type3 TX2_Afib_type1 TX2_Afib_type2 TX2_Afib_type3
## 1             43             NA             NA             NA             NA
## 4            528            277            250            157            156
## 5             NA             NA             NA             NA             NA
##   CHADS2_tx1 CHADS2_tx2 CHADSVASC_tx1 CHADSVASC_tx2 HASBLED_tx1 HASBLED_tx2
## 1         NA         NA           4.4           4.2         3.2         3.1
## 4        2.8        2.7           4.7           4.5         3.3         3.2
## 5         NA         NA            NA            NA          NA          NA
##   stroke_out1 stroke_out2 stroke_out3 stroke_out4 stroke_out5 embolism_out1
## 1           2           2          NA           4          NA             1
## 4          63          59          NA         122          NA             3
## 5           1          11          11          12          NA             0
##   embolism_out2 embolism_out3 embolism_out4 embolism_out5 death_out1 death_out2
## 1             1            NA             2            NA          4          2
## 4             2            NA             5            NA         85         63
## 5             0             1             0            NA         10         29
##   death_out3 death_out4 death_out5 pericardial_out1 pericardial_out2
## 1         NA          6         NA               15               41
## 4         NA        148         NA               20               32
## 5         53         39         NA                0                2
##   pericardial_out3 pericardial_out4 pericardial_out5 device_embo_out1
## 1               NA               56               NA                1
## 4               NA               52               NA                2
## 5                0                2               NA                0
##   device_embo_out2 device_embo_out3 device_embo_out4 device_embo_out5
## 1                1               NA                2               NA
## 4                6                0                8               NA
## 5                1                0                1               NA
pericardial_studies <- pericardial_studies %>% filter(pericardial_out1 != "NA") 
###
p3 <- pairwise(list(treat1, treat2),
               list(pericardial_out1, pericardial_out2),
               list(count1, count2),
               data=pericardial_studies, sm = "RR", studlab = Author_Last)

# Conduct network meta-analysis
net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Watchman", method = "Inverse", title = "Pericardial Effusion NMA",
                   sm = "RR", studlab = p3$Author_Last)
summary(net3)
## Title: Pericardial Effusion NMA
## 
## Original data:
## 
##                              treat1   treat2     TE   seTE
## Galea (Swiss-Apero)          Amulet Watchman 0.9965 0.2701
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman 0.4689 0.2812
## Ozmancik                     Amulet Watchman 1.1510 1.5417
## 
## Number of treatment arms (by study):
##                              narms
## Galea (Swiss-Apero)              2
## Lakkireddy (Amulet IDE) 2024     2
## Ozmancik                         2
## 
## Results (random effects model):
## 
##                              treat1   treat2     RR           95%-CI
## Galea (Swiss-Apero)          Amulet Watchman 2.1164 [1.4491; 3.0910]
## Lakkireddy (Amulet IDE) 2024 Amulet Watchman 2.1164 [1.4491; 3.0910]
## Ozmancik                     Amulet Watchman 2.1164 [1.4491; 3.0910]
## 
## Number of studies: k = 3
## Number of pairwise comparisons: m = 3
## Number of observations: o = 2235
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   2.1164 [1.4491; 3.0910] 3.88  0.0001
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 89.6%]
## 
## Test of heterogeneity:
##    Q d.f. p-value
##  1.9    2  0.3868
forest(net3, smlab="Treatment Estimates", test.overall.random=T, 
       digits=2, sortvar= -Pscore, leftcols=c("studlab", "n.trts"), rightcols = c("effect.ci", "Pscore"))

netsplit(net3)
## Separate indirect from direct evidence (SIDE) using back-calculation method
## 
## Random effects model: 
## 
##       comparison k prop    nma direct indir. RoR z p-value
##  Amulet:Watchman 3 1.00 2.1164 2.1164      .   . .       .
## 
## Legend:
##  comparison - Treatment comparison
##  k          - Number of studies providing direct evidence
##  prop       - Direct evidence proportion
##  nma        - Estimated treatment effect (RR) in network meta-analysis
##  direct     - Estimated treatment effect (RR) derived from direct evidence
##  indir.     - Estimated treatment effect (RR) derived from indirect evidence
##  RoR        - Ratio of Ratios (direct versus indirect)
##  z          - z-value of test for disagreement (direct versus indirect)
##  p-value    - p-value of test for disagreement (direct versus indirect)
netrank(net3, random=T)
## Title: Pericardial Effusion NMA
## 
##          P-score
## Watchman  0.9999
## Amulet    0.0001
funnel(net3, order=(c("Watchman", "Amulet")))

net3 <- netmetabin(p3, cc.pooled = TRUE, random = TRUE, 
                   fixed = FALSE,  allstudies=TRUE, incr=0.5, 
                   ref = "Watchman", method = "Inverse", title = "Pericardial Effusion NMA",
                   sm = "RR", studlab = p3$Author_Last)
net3
## Title: Pericardial Effusion NMA
## 
## Number of studies: k = 3
## Number of pairwise comparisons: m = 3
## Number of observations: o = 2235
## Number of treatments: n = 2
## Number of designs: d = 1
## 
## Random effects model
## 
## Treatment estimate (sm = 'RR', comparison: 'Amulet' vs 'Watchman'):
##              RR           95%-CI    z p-value
## Amulet   2.1164 [1.4491; 3.0910] 3.88  0.0001
## Watchman      .                .    .       .
## 
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0% [0.0%; 89.6%]
## 
## Test of heterogeneity:
##    Q d.f. p-value
##  1.9    2  0.3868
nl1 <- netleague(net3, comb.fixed = FALSE, direct = F, digits = 3) %>% print() 
## League table (random effects model):
##                                           
##                Amulet 2.116 [1.449; 3.091]
##  2.116 [1.449; 3.091]             Watchman