Dataset Simulasi

set.seed(123)

# Jumlah observasi
n <- 100

# Generate variabel x dari distribusi normal (mean = 10, sd = 2)
x <- rnorm(n, mean = 10, sd = 2)

# Generate variabel y dengan pola hubungan linear terhadap x plus error
y <- 3 + 1.5 * x + rnorm(n, mean = 0, sd = 2)

# Gabungkan menjadi data frame
data <- data.frame(x, y)

# Introduksi missing value secara acak pada 10 observasi x
data[sample(1:n, 10), "x"] <- NA

# Lihat 6 baris pertama
head(data)
##           x        y
## 1  8.879049 14.89776
## 2  9.539645 17.82323
## 3 13.117417 22.18274
## 4 10.141017 17.51644
## 5 10.258575 16.48463
## 6 13.430130 23.05514

Praktikum 1 : Bootstrap untuk Regresi (tanpa missing)

# Hapus baris yang mengandung NA
clean_data <- na.omit(data)

# Fungsi untuk bootstrap regresi
boot_regression <- function(data, indices) {
  # Ambil sampel bootstrap sesuai indices
  d <- data[indices, ]
  # Fit model regresi linear
  model <- lm(y ~ x, data = d)
  # Return koefisien model
  return(coef(model))
}

# Load library boot
library(boot)

# Lakukan bootstrap dengan 1000 replikasi
boot_result <- boot(
  data = clean_data, 
  statistic = boot_regression, 
  R = 1000
  )

# Tampilkan hasil
boot_result
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = clean_data, statistic = boot_regression, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 3.581084  0.06067069   1.1482885
## t2* 1.412127 -0.00547455   0.1074228
# Plot distribusi bootstrap
plot(boot_result)

# Hitung confidence interval 95% untuk koefisien x (index = 2)
boot.ci(boot_result, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot_result, type = "perc", index = 2)
## 
## Intervals : 
## Level     Percentile     
## 95%   ( 1.176,  1.596 )  
## Calculations and Intervals on Original Scale

Praktikum 2 : Estimasi pada missing value dengan Bootstrap

# Hitung mean x (abaikan NA)
mean_x <- mean(data$x, na.rm = TRUE)

# Buat variabel baru dengan imputasi mean
data$ximp <- ifelse(is.na(data$x), mean_x, data$x)

# Fit model setelah imputasi
model_imp <- lm(y ~ ximp, data = data)
summary(model_imp)
## 
## Call:
## lm(formula = y ~ ximp, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1153 -1.4394 -0.0902  1.2053  6.5280 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.6538     1.2332   2.963  0.00383 ** 
## ximp          1.4121     0.1191  11.854  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.109 on 98 degrees of freedom
## Multiple R-squared:  0.5891, Adjusted R-squared:  0.5849 
## F-statistic: 140.5 on 1 and 98 DF,  p-value: < 2.2e-16
# Fungsi bootstrap setelah imputasi
boot_imp <- function(data, indices) {
  d <- data[indices, ]
  model <- lm(y ~ ximp, data = d)
  return(coef(model))
}

# Jalankan bootstrap
boot_result_imp <- boot(data = data, statistic = boot_imp, R =1000)

# Hasil
boot_result_imp
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = data, statistic = boot_imp, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original       bias    std. error
## t1* 3.653794  0.053055397   1.1350004
## t2* 1.412127 -0.005093136   0.1064137
plot(boot_result_imp)

boot.ci(boot_result_imp, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = boot_result_imp, type = "perc", index = 2)
## 
## Intervals : 
## Level     Percentile     
## 95%   ( 1.188,  1.603 )  
## Calculations and Intervals on Original Scale

Praktikum 3 : Multiple Imputation + Bootstrap

library(mice)
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
# Lakukan multiple imputation (m=5) dengan Predictive Mean Matching
imp <- mice(
  data[, c("x", "y")], 
  m = 5, 
  method = 'pmm', 
  seed = 123
  )
## 
##  iter imp variable
##   1   1  x
##   1   2  x
##   1   3  x
##   1   4  x
##   1   5  x
##   2   1  x
##   2   2  x
##   2   3  x
##   2   4  x
##   2   5  x
##   3   1  x
##   3   2  x
##   3   3  x
##   3   4  x
##   3   5  x
##   4   1  x
##   4   2  x
##   4   3  x
##   4   4  x
##   4   5  x
##   5   1  x
##   5   2  x
##   5   3  x
##   5   4  x
##   5   5  x
# Gabungkan dataset imputasi dalam Long Format
imp_data <- complete(imp, "long")

# Fit model di setiap dataset imputasi dan gabungkan hasilnya
model_mi <- with(imp, lm(y ~ x))
summary(pool(model_mi))
##          term estimate std.error statistic       df      p.value
## 1 (Intercept) 3.619991 1.1112706  3.257524 78.99385 1.657655e-03
## 2           x 1.408248 0.1068028 13.185496 78.10532 1.472407e-21

Gabungan Hasil

library(mice)
library(broom)
# 1. Model Data Lengkap
model_clean <- lm(y ~ x, data = clean_data)
clean_summary <- tidy(model_clean, conf.int = TRUE)

# 2. Model Mean Imputation + Bootstrap
# Asumdi boot_result_imp sudah dibuat sebelumnya
boot_ci <- boot.ci(boot_result_imp, type = "perc", index = 2)
boot_summary <- tidy(model_imp, conf.int = TRUE)

# 3. Model MICE
model_mice <- with(imp, lm(y ~ x))
mice_summary <- summary(pool(model_mice), conf.int = TRUE)

# Membuat data frame yang lebih robust
results_table <- data.frame(
  Metode = c("Data Lengkap", "Mean Imputation + Bootstrap", "MICE"),
  Intercept = c(
    clean_summary$estimate[1],
    boot_summary$estimate[1],
    mice_summary$estimate[1]
    ),
  Slope = c(
    clean_summary$estimate[2],
    boot_summary$estimate[2],
    mice_summary$estimate[2]
    ),
  SE_Slope = c(
    clean_summary$std.error[2],
    boot_summary$std.error[2],
    mice_summary$std.error[2]
    ),
  CI_Slope = c(
    sprintf("(%.3f, %.3f)", clean_summary$conf.low[2], clean_summary$conf.high[2]),
    sprintf("(%.3f, %.3f)", boot_ci$percent[4], boot_ci$percent[5]),
    sprintf("(%.3f, %.3f)", mice_summary$`2.5 %`[2], mice_summary$`97.5 %`[2])
    ),
  stringsAsFactors = FALSE
  )

# Tampilkan hasil
print(results_table)
##                        Metode Intercept    Slope  SE_Slope       CI_Slope
## 1                Data Lengkap  3.581084 1.412127 0.1079083 (1.198, 1.627)
## 2 Mean Imputation + Bootstrap  3.653794 1.412127 0.1191314 (1.188, 1.603)
## 3                        MICE  3.619991 1.408248 0.1068028 (1.196, 1.621)
library(ggplot2)
# Data untuk plot
results <- data.frame(
 Method = c("Data Lengkap", "Mean Imp + Bootstrap", "MICE"),
 Slope = c(1.412127, 1.412127, 1.408248),
 SE = c(0.1079083, 0.1191314, 0.1068028),
 CI_lower = c(1.198, 1.188, 1.196),
 CI_upper = c(1.627, 1.603, 1.621)
 )

ggplot(results, aes(x = Method, y = Slope, color = Method)) +
 geom_point(size = 3) +
 geom_errorbar(aes(ymin = CI_lower, ymax = CI_upper), width = 0.2) +
 labs(title = "Perbandingan Estimasi Slope dengan Berbagai Metode", y = "Estimasi Slope (y ~ x)") + theme_minimal()