## Zorunlu paket yükleniyor: MASS
## Zorunlu paket yükleniyor: msm
## Zorunlu paket yükleniyor: polycor
## [1;m[4;m
## EGAnet (version 2.3.0)[0m[0m
##
## For help getting started, see <https://r-ega.net>
##
## For bugs and errors, submit an issue to <https://github.com/hfgolino/EGAnet/issues>
##
## Attaching package: 'EGAnet'
## The following object is masked from 'package:ltm':
##
## information
##
## Attaching package: 'psych'
## The following object is masked from 'package:ltm':
##
## factor.scores
## The following object is masked from 'package:polycor':
##
## polyserial
## Loading required namespace: GPArotation
## [1] 0.2930283
## [1] 0.2072031
Omega değerleri düşük çıktı tek bir genel yapı yok görünüyor ama ega sonuçların da tek bir boyut gözlemleniyor.
## Zorunlu paket yükleniyor: stats4
## Zorunlu paket yükleniyor: lattice
##
## Attaching package: 'mirt'
## The following object is masked from 'package:ltm':
##
## Science
## Iteration: 1, Log-Lik: -2488.970, Max-Change: 0.37166Iteration: 2, Log-Lik: -2469.098, Max-Change: 0.19487Iteration: 3, Log-Lik: -2467.171, Max-Change: 0.10298Iteration: 4, Log-Lik: -2466.945, Max-Change: 0.14747Iteration: 5, Log-Lik: -2466.861, Max-Change: 0.14052Iteration: 6, Log-Lik: -2466.817, Max-Change: 0.12043Iteration: 7, Log-Lik: -2466.735, Max-Change: 0.66000Iteration: 8, Log-Lik: -2466.685, Max-Change: 0.00496Iteration: 9, Log-Lik: -2466.680, Max-Change: 0.00391Iteration: 10, Log-Lik: -2466.676, Max-Change: 0.00292Iteration: 11, Log-Lik: -2466.674, Max-Change: 0.00312Iteration: 12, Log-Lik: -2466.673, Max-Change: 0.00219Iteration: 13, Log-Lik: -2466.671, Max-Change: 0.00218Iteration: 14, Log-Lik: -2466.670, Max-Change: 0.00136Iteration: 15, Log-Lik: -2466.670, Max-Change: 0.00153Iteration: 16, Log-Lik: -2466.669, Max-Change: 0.00074Iteration: 17, Log-Lik: -2466.669, Max-Change: 0.00074Iteration: 18, Log-Lik: -2466.668, Max-Change: 0.00083Iteration: 19, Log-Lik: -2466.668, Max-Change: 0.00048Iteration: 20, Log-Lik: -2466.668, Max-Change: 0.00043Iteration: 21, Log-Lik: -2466.668, Max-Change: 0.00037Iteration: 22, Log-Lik: -2466.668, Max-Change: 0.00024Iteration: 23, Log-Lik: -2466.668, Max-Change: 0.00020Iteration: 24, Log-Lik: -2466.668, Max-Change: 0.00019Iteration: 25, Log-Lik: -2466.668, Max-Change: 0.00015Iteration: 26, Log-Lik: -2466.668, Max-Change: 0.00014Iteration: 27, Log-Lik: -2466.668, Max-Change: 0.00012Iteration: 28, Log-Lik: -2466.668, Max-Change: 0.00009
model_3pl <- "F=1-5"
model_3pl_uyum <- mirt(data = veri, model = model_3pl ,itemtype = "3PL",
SE = TRUE)
## Iteration: 1, Log-Lik: -2488.970, Max-Change: 0.37166Iteration: 2, Log-Lik: -2469.098, Max-Change: 0.19487Iteration: 3, Log-Lik: -2467.171, Max-Change: 0.10298Iteration: 4, Log-Lik: -2466.945, Max-Change: 0.14747Iteration: 5, Log-Lik: -2466.861, Max-Change: 0.14052Iteration: 6, Log-Lik: -2466.817, Max-Change: 0.12043Iteration: 7, Log-Lik: -2466.735, Max-Change: 0.66000Iteration: 8, Log-Lik: -2466.685, Max-Change: 0.00496Iteration: 9, Log-Lik: -2466.680, Max-Change: 0.00391Iteration: 10, Log-Lik: -2466.676, Max-Change: 0.00292Iteration: 11, Log-Lik: -2466.674, Max-Change: 0.00312Iteration: 12, Log-Lik: -2466.673, Max-Change: 0.00219Iteration: 13, Log-Lik: -2466.671, Max-Change: 0.00218Iteration: 14, Log-Lik: -2466.670, Max-Change: 0.00136Iteration: 15, Log-Lik: -2466.670, Max-Change: 0.00153Iteration: 16, Log-Lik: -2466.669, Max-Change: 0.00074Iteration: 17, Log-Lik: -2466.669, Max-Change: 0.00074Iteration: 18, Log-Lik: -2466.668, Max-Change: 0.00083Iteration: 19, Log-Lik: -2466.668, Max-Change: 0.00048Iteration: 20, Log-Lik: -2466.668, Max-Change: 0.00043Iteration: 21, Log-Lik: -2466.668, Max-Change: 0.00037Iteration: 22, Log-Lik: -2466.668, Max-Change: 0.00024Iteration: 23, Log-Lik: -2466.668, Max-Change: 0.00020Iteration: 24, Log-Lik: -2466.668, Max-Change: 0.00019Iteration: 25, Log-Lik: -2466.668, Max-Change: 0.00015Iteration: 26, Log-Lik: -2466.668, Max-Change: 0.00014Iteration: 27, Log-Lik: -2466.668, Max-Change: 0.00012Iteration: 28, Log-Lik: -2466.668, Max-Change: 0.00009
##
## Calculating information matrix...
## Warning: The following factor score estimates failed to converge successfully:
## 23,32
## Q3 summary statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.421 -0.290 -0.212 -0.241 -0.168 -0.134
##
## Item 1 Item 2 Item 3 Item 4 Item 5
## Item 1 1.000 -0.157 -0.199 -0.223 -0.200
## Item 2 -0.157 1.000 -0.421 -0.272 -0.146
## Item 3 -0.199 -0.421 1.000 -0.362 -0.296
## Item 4 -0.223 -0.272 -0.362 1.000 -0.134
## Item 5 -0.200 -0.146 -0.296 -0.134 1.000
## [1] 6
yerel bağımlılık mevcut çünkü alt ve üst köşegende 6 değer var 0,2 den büyük
model_3pl <- "F=1-5"
model_3pl_uyum <- mirt(data = veri, model = model_3pl ,itemtype = "3PL",
SE = TRUE)
## Iteration: 1, Log-Lik: -2488.970, Max-Change: 0.37166Iteration: 2, Log-Lik: -2469.098, Max-Change: 0.19487Iteration: 3, Log-Lik: -2467.171, Max-Change: 0.10298Iteration: 4, Log-Lik: -2466.945, Max-Change: 0.14747Iteration: 5, Log-Lik: -2466.861, Max-Change: 0.14052Iteration: 6, Log-Lik: -2466.817, Max-Change: 0.12043Iteration: 7, Log-Lik: -2466.735, Max-Change: 0.66000Iteration: 8, Log-Lik: -2466.685, Max-Change: 0.00496Iteration: 9, Log-Lik: -2466.680, Max-Change: 0.00391Iteration: 10, Log-Lik: -2466.676, Max-Change: 0.00292Iteration: 11, Log-Lik: -2466.674, Max-Change: 0.00312Iteration: 12, Log-Lik: -2466.673, Max-Change: 0.00219Iteration: 13, Log-Lik: -2466.671, Max-Change: 0.00218Iteration: 14, Log-Lik: -2466.670, Max-Change: 0.00136Iteration: 15, Log-Lik: -2466.670, Max-Change: 0.00153Iteration: 16, Log-Lik: -2466.669, Max-Change: 0.00074Iteration: 17, Log-Lik: -2466.669, Max-Change: 0.00074Iteration: 18, Log-Lik: -2466.668, Max-Change: 0.00083Iteration: 19, Log-Lik: -2466.668, Max-Change: 0.00048Iteration: 20, Log-Lik: -2466.668, Max-Change: 0.00043Iteration: 21, Log-Lik: -2466.668, Max-Change: 0.00037Iteration: 22, Log-Lik: -2466.668, Max-Change: 0.00024Iteration: 23, Log-Lik: -2466.668, Max-Change: 0.00020Iteration: 24, Log-Lik: -2466.668, Max-Change: 0.00019Iteration: 25, Log-Lik: -2466.668, Max-Change: 0.00015Iteration: 26, Log-Lik: -2466.668, Max-Change: 0.00014Iteration: 27, Log-Lik: -2466.668, Max-Change: 0.00012Iteration: 28, Log-Lik: -2466.668, Max-Change: 0.00009
##
## Calculating information matrix...
## a b g u
## Item 1 0.8288230 -3.2565297 0.06423603 1
## Item 2 0.8237727 -0.8478190 0.17365215 1
## Item 3 0.9130376 -0.2144664 0.02519967 1
## Item 4 0.7121441 -1.6873520 0.06092150 1
## Item 5 0.6778616 -2.8303345 0.11094145 1
## C PARAMETRESİNİN EN YÜKSEK OLDUĞU MADDE 2. MADDE
En düşük yetenek düzeyinde farklılık fazlayken yetenek düzeyleri
arttıkça farklılık azalıyor. Madde 2 ve 3 ün güçlükleri birbirine yakın
ama şans parametresi etkisi ile düşük yeteneklerde bu farklılığın
açıkdığı görülüyor. Ayrıca en düşük yetenk düzeyinde 0.2 bir doğru
cevaplama oranı mevcut ki bu da şans parametresinin etkisini gösteriyor
2. madde için.
## Item 1 Item 2 Item 3 Item 4 Item 5
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 1
## 5 0 0 0 0 1
## 6 0 0 0 0 1
## Gussng Dffclt Dscrmn
## Item 1 0.048943967 -3.4298905 0.7843851
## Item 2 0.001670895 -1.3718976 0.7189605
## Item 3 0.372430618 0.6530852 23.2030040
## Item 4 0.017067266 -1.9278300 0.6471598
## Item 5 0.020325411 -2.9562883 0.6913157
Değerler ve grafikler neden farklı çıktı anlamadım. Benzer sonuçlar
bekliyordum
#2 pl model
model_2pl <- "F=1-5"
model_2pl_uyum <- mirt(data = veri, model = model_2pl ,itemtype = "2PL",
SE = TRUE)
## Iteration: 1, Log-Lik: -2468.601, Max-Change: 0.08059Iteration: 2, Log-Lik: -2467.278, Max-Change: 0.03446Iteration: 3, Log-Lik: -2466.956, Max-Change: 0.02323Iteration: 4, Log-Lik: -2466.797, Max-Change: 0.01444Iteration: 5, Log-Lik: -2466.749, Max-Change: 0.01067Iteration: 6, Log-Lik: -2466.721, Max-Change: 0.00781Iteration: 7, Log-Lik: -2466.683, Max-Change: 0.00426Iteration: 8, Log-Lik: -2466.677, Max-Change: 0.00392Iteration: 9, Log-Lik: -2466.673, Max-Change: 0.00361Iteration: 10, Log-Lik: -2466.657, Max-Change: 0.00235Iteration: 11, Log-Lik: -2466.656, Max-Change: 0.00207Iteration: 12, Log-Lik: -2466.655, Max-Change: 0.00176Iteration: 13, Log-Lik: -2466.654, Max-Change: 0.00039Iteration: 14, Log-Lik: -2466.654, Max-Change: 0.00026Iteration: 15, Log-Lik: -2466.653, Max-Change: 0.00025Iteration: 16, Log-Lik: -2466.653, Max-Change: 0.00021Iteration: 17, Log-Lik: -2466.653, Max-Change: 0.00020Iteration: 18, Log-Lik: -2466.653, Max-Change: 0.00018Iteration: 19, Log-Lik: -2466.653, Max-Change: 0.00016Iteration: 20, Log-Lik: -2466.653, Max-Change: 0.00013Iteration: 21, Log-Lik: -2466.653, Max-Change: 0.00013Iteration: 22, Log-Lik: -2466.653, Max-Change: 0.00010
##
## Calculating information matrix...
## a b g u
## Item 1 0.8250552 -3.3607460 0 1
## Item 2 0.7230608 -1.3695513 0 1
## Item 3 0.8899989 -0.2798928 0 1
## Item 4 0.6886588 -1.8657302 0 1
## Item 5 0.6575904 -3.1229745 0 1
# 1pl model
model_1pl <- "F=1-5"
model_1pl_uyum <- mirt(data = veri, model = model_1pl ,itemtype = "1PL",
SE = TRUE)
## Iteration: 1, Log-Lik: -2473.219, Max-Change: 0.05796Iteration: 2, Log-Lik: -2473.054, Max-Change: 0.00103Iteration: 3, Log-Lik: -2473.054, Max-Change: 0.00053Iteration: 4, Log-Lik: -2473.054, Max-Change: 0.00041Iteration: 5, Log-Lik: -2473.054, Max-Change: 0.00074Iteration: 6, Log-Lik: -2473.054, Max-Change: 0.00028Iteration: 7, Log-Lik: -2473.054, Max-Change: 0.00012Iteration: 8, Log-Lik: -2473.054, Max-Change: 0.00009
##
## Calculating information matrix...
## a b g u
## Item 1 1 -2.8720218 0 1
## Item 2 1 -1.0630493 0 1
## Item 3 1 -0.2575922 0 1
## Item 4 1 -1.3880767 0 1
## Item 5 1 -2.2187990 0 1
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
uyumdegerleri <- rbind(M2(model_1pl_uyum),
M2(model_2pl_uyum)) #3pl modele ait uyum değerleri vermedi
cbind(data.frame(Modeller = c("1PL", "2PL")), uyumdegerleri) %>%
kable(caption = 'Uyum Değerleri', digits = 2, row.names = FALSE)
Modeller | M2 | df | p | RMSEA | RMSEA_5 | RMSEA_95 | SRMSR | TLI | CFI |
---|---|---|---|---|---|---|---|---|---|
1PL | 16.90 | 10 | 0.08 | 0.03 | 0 | 0.05 | 0.05 | 0.88 | 0.88 |
2PL | 4.74 | 5 | 0.45 | 0.00 | 0 | 0.04 | 0.02 | 1.01 | 1.00 |
2 parametreli model daha iyi gibi duruyor.
uyum1 <- anova(model_1pl_uyum, model_2pl_uyum)
cbind(data.frame(Modeller = c("1PL", "2PL")), uyum1)[,1:6] %>%
kable(caption = 'Uyum Değerleri', digits=2, row.names = FALSE)
Modeller | AIC | SABIC | HQ | BIC | logLik |
---|---|---|---|---|---|
1PL | 4956.11 | 4964.77 | 4965.43 | 4980.65 | -2473.05 |
2PL | 4953.31 | 4970.62 | 4971.96 | 5002.38 | -2466.65 |
uyum2 <- anova(model_2pl_uyum, model_3pl_uyum)
cbind(data.frame(Modeller = c("2PL", "3PL")), uyum2)[,1:6] %>%
kable(caption = 'Uyum Değerleri', digits=2, row.names = FALSE)
Modeller | AIC | SABIC | HQ | BIC | logLik |
---|---|---|---|---|---|
2PL | 4953.31 | 4970.62 | 4971.96 | 5002.38 | -2466.65 |
3PL | 4963.34 | 4989.31 | 4991.32 | 5036.95 | -2466.67 |
Aıc ve BIc değerleri üzerinden 2 ve 3 karşılaştırdı. Bu şekilde almak iyi oldu. Veriye en uygun model 2pl modeli.
options(digits = 2)
# 1PL Model Madde Uyum Değerleri
birpl_if <- itemfit(model_1pl_uyum)
birpl_if[,2:5] <- round(birpl_if[,2:5], 2)
names(birpl_if ) <- c("item", "X2", "sd", "RMSEA", "p")
head(birpl_if)
## item X2 sd RMSEA p
## 1 Item 1 0.78 3 0 0.86
## 2 Item 2 1.71 3 0 0.64
## 3 Item 3 1.52 2 0 0.47
## 4 Item 4 0.39 3 0 0.94
## 5 Item 5 0.61 3 0 0.9
tüm maddeler modele uygun
# 2PL Model Madde Uyum Değerleri
ikipl_if <- itemfit(model_2pl_uyum)
ikipl_if[,2:5] <- round(ikipl_if[,2:5], 2)
names(ikipl_if ) <- c("item", "X2", "sd", "RMSEA", "p")
head(ikipl_if)
## item X2 sd RMSEA p
## 1 Item 1 0.45 2 0 0.8
## 2 Item 2 1.69 2 0 0.43
## 3 Item 3 0.67 1 0 0.41
## 4 Item 4 0.17 2 0 0.92
## 5 Item 5 0.11 2 0 0.95
Tüm maddeler modele uygun
# 3PL ModelMadde Uyum Değerleri
ucpl_if <- itemfit(model_3pl_uyum)
ucpl_if[,2:5] <- round(ucpl_if[,2:5], 2)
names(ucpl_if ) <- c("item", "X2", "sd", "RMSEA", "p")
head(ucpl_if)
## item X2 sd RMSEA p
## 1 Item 1 0.44 1 0.00 0.51
## 2 Item 2 1.64 1 0.03 0.2
## 3 Item 3 NaN 0 NaN NaN
## 4 Item 4 0.17 1 0.00 0.68
## 5 Item 5 0.1 1 0.00 0.75
ML <- fscores(model_2pl_uyum, method = "ML", full.scores.SE = TRUE)
MAP <- fscores(model_2pl_uyum, method = "MAP", full.scores.SE = TRUE)
EAP <- fscores(model_2pl_uyum, method = "EAP", full.scores.SE = TRUE)
head(ML)
## F SE_F
## [1,] -Inf NA
## [2,] -Inf NA
## [3,] -Inf NA
## [4,] -4.4 1.7
## [5,] -4.4 1.7
## [6,] -4.4 1.7
## F SE_F
## [1,] -1.9 0.8
## [2,] -1.9 0.8
## [3,] -1.9 0.8
## [4,] -1.5 0.8
## [5,] -1.5 0.8
## [6,] -1.5 0.8
## F SE_F
## [1,] -1.9 0.8
## [2,] -1.9 0.8
## [3,] -1.9 0.8
## [4,] -1.5 0.8
## [5,] -1.5 0.8
## [6,] -1.5 0.8
## ML MAP EAP
## Min. -Inf -1.895 -1.9e+00
## 1st Qu. -1.360 -0.483 -4.6e-01
## Median -0.068 -0.022 8.7e-03
## Mean NaN -0.029 -1.7e-06
## 3rd Qu. Inf 0.606 6.5e-01
## Max. Inf 0.606 6.5e-01
## ML MAP EAP
## ML 1 NaN NaN
## MAP NaN 1 1
## EAP NaN 1 1
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
# θ değer aralığı
theta_vals3 <- seq(-6, 6, length.out = 100)
# Her madde için bilgi fonksiyonlarını hesapla
info_list3 <- list()
for(i in 1:ncol(veri)) {
madde_modeli_3 <- extract.item(model_3pl_uyum, item = i)
bilgi <- iteminfo(madde_modeli_3, Theta = theta_vals3)
info_list3[[i]] <- data.frame(
Theta = theta_vals3,
Info = bilgi,
Madde = paste("Madde", i)
)
}
# Hepsini birleştir
info_df3 <- do.call(rbind, info_list3)
# Grafik
ggplot(info_df3, aes(x = Theta, y = Info, color = Madde)) +
geom_line(size = 1) +
theme_minimal() +
labs(title = "Madde Bilgi Fonksiyonları (3PL Modeli)",
x = expression(theta),
y = "Bilgi") +
theme(legend.position = "right")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Grafikte görüldüğü gibi en fazla şand parametresine sahip madde en fazla
bilgiyi bize verdi.
# θ değer aralığı
theta_vals2 <- seq(-6, 6, length.out = 100)
# Her madde için bilgi fonksiyonlarını hesapla
info_list2 <- list()
for(i in 1:ncol(veri)) {
madde_modeli_2 <- extract.item(model_2pl_uyum, item = i)
bilgi <- iteminfo(madde_modeli_2, Theta = theta_vals2)
info_list2[[i]] <- data.frame(
Theta = theta_vals2,
Info = bilgi,
Madde = paste("Madde", i)
)
}
# Hepsini birleştir
info_df2 <- do.call(rbind, info_list2)
# Grafik
ggplot(info_df2, aes(x = Theta, y = Info, color = Madde)) +
geom_line(size = 1) +
theme_minimal() +
labs(title = "Madde Bilgi Fonksiyonları (3PL Modeli)",
x = expression(theta),
y = "Bilgi") +
theme(legend.position = "right")
#maddelerin bikgi düzeylerinde çok bir artış olmadı. 3. madde hala en
iyi bilgi sağlayan madde. a değerlerine baktığımda en yüksek a değeri 3.
maddeye ait. Muhtemelen bu sebeple sert bir artış yok.
# θ değer aralığı
theta_vals1 <- seq(-6, 6, length.out = 100)
# Her madde için bilgi fonksiyonlarını hesapla
info_list1 <- list()
for(i in 1:ncol(veri)) {
madde_modeli_1 <- extract.item(model_1pl_uyum, item = i)
bilgi <- iteminfo(madde_modeli_1, Theta = theta_vals1)
info_list1[[i]] <- data.frame(
Theta = theta_vals1,
Info = bilgi,
Madde = paste("Madde", i)
)
}
# Hepsini birleştir
info_df1 <- do.call(rbind, info_list1)
# Grafik
ggplot(info_df1, aes(x = Theta, y = Info, color = Madde)) +
geom_line(size = 1) +
theme_minimal() +
labs(title = "Madde Bilgi Fonksiyonları (3PL Modeli)",
x = expression(theta),
y = "Bilgi") +
theme(legend.position = "right")
# Tüm maddeler bariz bilgi artışları mevcut. Genel olarak bakıldığında 1
veya 2 pl modeller kullanılabilir.
Theta <- matrix(seq(-6, 6, .01))
tinfo <- testinfo(model_1pl_uyum, Theta)
plot(Theta, tinfo, type = 'l', main = "Test Bilgi\n")
Theta <- matrix(seq(-6, 6, .01))
tinfo <- testinfo(model_2pl_uyum, Theta)
plot(Theta, tinfo, type = 'l', main = "Test Bilgi\n")
Theta <- matrix(seq(-6, 6, .01))
tinfo <- testinfo(model_3pl_uyum, Theta)
plot(Theta, tinfo, type = 'l', main = "Test Bilgi\n")
# parametre sayısı artııkça ölçülen bilgi düzeyinde gözle görülür bir
azalma oluyor.
## Comfort Work Future Benefit
## 1 4 4 3 2
## 2 3 3 3 3
## 3 3 2 2 3
## 4 3 2 2 3
## 5 3 4 4 1
## 6 4 4 3 3
##
## Attaching package: 'eRm'
## The following objects are masked from 'package:mirt':
##
## itemfit, personfit
## The following object is masked from 'package:psych':
##
## sim.rasch
##
## Results of RSM estimation:
##
## Call: RSM(X = Science[, 1:4])
##
## Conditional log-likelihood: -807
## Number of iterations: 15
## Number of parameters: 5
##
## Item (Category) Difficulty Parameters (eta): with 0.95 CI:
## Estimate Std. Error lower CI upper CI
## Work 0.48 0.070 0.341 0.613
## Future -0.17 0.071 -0.305 -0.028
## Benefit 0.21 0.069 0.081 0.350
## Cat 2 0.92 0.189 0.552 1.292
## Cat 3 4.71 0.376 3.972 5.448
##
## Item Easiness Parameters (beta) with 0.95 CI:
## Estimate Std. Error lower CI upper CI
## beta Comfort.c1 0.52 0.076 0.376 0.675
## beta Comfort.c2 0.13 0.227 -0.316 0.574
## beta Comfort.c3 -3.13 0.396 -3.911 -2.357
## beta Work.c1 -0.48 0.070 -0.613 -0.341
## beta Work.c2 -1.88 0.252 -2.370 -1.382
## beta Work.c3 -6.14 0.472 -7.066 -5.217
## beta Future.c1 0.17 0.071 0.028 0.305
## beta Future.c2 -0.59 0.228 -1.036 -0.142
## beta Future.c3 -4.21 0.415 -5.023 -3.398
## beta Benefit.c1 -0.21 0.069 -0.350 -0.081
## beta Benefit.c2 -1.35 0.239 -1.821 -0.884
## beta Benefit.c3 -5.36 0.445 -6.228 -4.483
# 4 maddeye ait kolaylık indeksleri. Cat2 ve Cat3 eşik değerleri. 2 den 3 geçmek için gereken eşik değeri oldukça yüksek
library(eRm)
person.pars <- person.parameter(fitRSM)
# madde uyum analizi
itemfitRSM <- itemfit(person.pars)
itemfitRSM
##
## Itemfit Statistics:
## Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t Discrim
## Comfort 267 377 1.00 0.71 0.66 -4.3 -4.9 0.34
## Work 308 377 1.00 0.81 0.83 -2.7 -2.6 0.34
## Future 257 377 1.00 0.68 0.68 -4.8 -4.8 0.57
## Benefit 316 377 0.99 0.83 0.83 -2.4 -2.5 0.41
#MSQ değerleri iyi kabul edilebilir. Infıt outfıt değerleri çok yüksek. Bu maddelerin varyansını düşük olduğu söylenebilir ama örneklemin düşük olması da bu durumuna neden olabilir.
##
## Design Matrix Block 1:
## Location Threshold 1 Threshold 2 Threshold 3
## Comfort 1.0 -0.53 0.40 3.3
## Work 2.0 0.48 1.40 4.3
## Future 1.4 -0.17 0.76 3.6
## Benefit 1.8 0.22 1.14 4.0
ATM’de bireylerin her bir kategori ve üzerinde puan alma olasılığı modellenir ve bireylerin belirli bir kategoride puan alma olasılıkları iki aşamada hesaplanır. Dolayısıyla ATM dolaylı bir modeldir. ATM’de kategoriler arasında kümülatif karşılaştırmalar yapıldığından ATM “kümülatif lojit model” (cumulative logit model) olarak da adlandırılır. Her kategori için güçlük değeri farklılaşır. Eşik değerlerinin ortalamaları madde güçlüğü hakkında bilgi verebilir.
atm <- "F=1-4"
library(mirt)
atm_uyum <- mirt(data = Science, model = atm,
itemtype = "graded", SE = TRUE)
## Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.50660Iteration: 2, Log-Lik: -1617.374, Max-Change: 0.25442Iteration: 3, Log-Lik: -1612.894, Max-Change: 0.16991Iteration: 4, Log-Lik: -1610.306, Max-Change: 0.10461Iteration: 5, Log-Lik: -1609.814, Max-Change: 0.09162Iteration: 6, Log-Lik: -1609.534, Max-Change: 0.07363Iteration: 7, Log-Lik: -1609.030, Max-Change: 0.03677Iteration: 8, Log-Lik: -1608.988, Max-Change: 0.03200Iteration: 9, Log-Lik: -1608.958, Max-Change: 0.02754Iteration: 10, Log-Lik: -1608.878, Max-Change: 0.01443Iteration: 11, Log-Lik: -1608.875, Max-Change: 0.00847Iteration: 12, Log-Lik: -1608.873, Max-Change: 0.00515Iteration: 13, Log-Lik: -1608.872, Max-Change: 0.00550Iteration: 14, Log-Lik: -1608.872, Max-Change: 0.00318Iteration: 15, Log-Lik: -1608.871, Max-Change: 0.00462Iteration: 16, Log-Lik: -1608.871, Max-Change: 0.00277Iteration: 17, Log-Lik: -1608.870, Max-Change: 0.00145Iteration: 18, Log-Lik: -1608.870, Max-Change: 0.00175Iteration: 19, Log-Lik: -1608.870, Max-Change: 0.00126Iteration: 20, Log-Lik: -1608.870, Max-Change: 0.00025Iteration: 21, Log-Lik: -1608.870, Max-Change: 0.00285Iteration: 22, Log-Lik: -1608.870, Max-Change: 0.00108Iteration: 23, Log-Lik: -1608.870, Max-Change: 0.00022Iteration: 24, Log-Lik: -1608.870, Max-Change: 0.00059Iteration: 25, Log-Lik: -1608.870, Max-Change: 0.00014Iteration: 26, Log-Lik: -1608.870, Max-Change: 0.00068Iteration: 27, Log-Lik: -1608.870, Max-Change: 0.00065Iteration: 28, Log-Lik: -1608.870, Max-Change: 0.00019Iteration: 29, Log-Lik: -1608.870, Max-Change: 0.00061Iteration: 30, Log-Lik: -1608.870, Max-Change: 0.00012Iteration: 31, Log-Lik: -1608.870, Max-Change: 0.00012Iteration: 32, Log-Lik: -1608.870, Max-Change: 0.00058Iteration: 33, Log-Lik: -1608.870, Max-Change: 0.00055Iteration: 34, Log-Lik: -1608.870, Max-Change: 0.00015Iteration: 35, Log-Lik: -1608.870, Max-Change: 0.00052Iteration: 36, Log-Lik: -1608.870, Max-Change: 0.00010
##
## Calculating information matrix...
## a b1 b2 b3
## Comfort 1.0 -4.7 -2.53 1.41
## Work 1.2 -2.4 -0.73 1.85
## Future 2.3 -2.3 -0.96 0.86
## Benefit 1.1 -3.1 -0.91 1.54
plot(atm_uyum, type = "trace", which.items = 1:4,
layout = c(5, 2), theta_lim = c(-4, 4),
main = "Kategori Yanıt Eğrileri_ATM")
# Rasch modelin çok kategorili modellere uyarlanmış hali. a her zaman 1.
##
## Design Matrix Block 1:
## Location Threshold 1 Threshold 2 Threshold 3
## Comfort 0.0082 -1.78 -1.040 2.8
## Work 1.1979 -0.28 0.516 3.4
## Future 0.5347 -1.03 0.069 2.6
## Benefit 0.8395 -0.83 0.549 2.8
#comfort için eşik aralığı çok büyük daha fazla yetenek istiyor.
# a parametresini maddelere ekler ancak a eşik değerlerden de etkilenir.
library(mirt)
gkpm <- "F=1-4"
gkpm_uyum <- mirt(data = Science, model = gkpm,
itemtype = "gpcm", SE = TRUE)
## Iteration: 1, Log-Lik: -1689.735, Max-Change: 1.30401Iteration: 2, Log-Lik: -1618.015, Max-Change: 0.28548Iteration: 3, Log-Lik: -1615.635, Max-Change: 0.27916Iteration: 4, Log-Lik: -1613.549, Max-Change: 0.13014Iteration: 5, Log-Lik: -1613.306, Max-Change: 0.08712Iteration: 6, Log-Lik: -1613.172, Max-Change: 0.09075Iteration: 7, Log-Lik: -1612.802, Max-Change: 0.06897Iteration: 8, Log-Lik: -1612.774, Max-Change: 0.05440Iteration: 9, Log-Lik: -1612.756, Max-Change: 0.03767Iteration: 10, Log-Lik: -1612.733, Max-Change: 0.03981Iteration: 11, Log-Lik: -1612.724, Max-Change: 0.02653Iteration: 12, Log-Lik: -1612.718, Max-Change: 0.03424Iteration: 13, Log-Lik: -1612.700, Max-Change: 0.00646Iteration: 14, Log-Lik: -1612.697, Max-Change: 0.01774Iteration: 15, Log-Lik: -1612.695, Max-Change: 0.01250Iteration: 16, Log-Lik: -1612.692, Max-Change: 0.01716Iteration: 17, Log-Lik: -1612.690, Max-Change: 0.01090Iteration: 18, Log-Lik: -1612.689, Max-Change: 0.01170Iteration: 19, Log-Lik: -1612.687, Max-Change: 0.00599Iteration: 20, Log-Lik: -1612.687, Max-Change: 0.00160Iteration: 21, Log-Lik: -1612.687, Max-Change: 0.00208Iteration: 22, Log-Lik: -1612.687, Max-Change: 0.02543Iteration: 23, Log-Lik: -1612.685, Max-Change: 0.00161Iteration: 24, Log-Lik: -1612.685, Max-Change: 0.00099Iteration: 25, Log-Lik: -1612.685, Max-Change: 0.00044Iteration: 26, Log-Lik: -1612.685, Max-Change: 0.00027Iteration: 27, Log-Lik: -1612.685, Max-Change: 0.00102Iteration: 28, Log-Lik: -1612.685, Max-Change: 0.00049Iteration: 29, Log-Lik: -1612.685, Max-Change: 0.00020Iteration: 30, Log-Lik: -1612.685, Max-Change: 0.00019Iteration: 31, Log-Lik: -1612.685, Max-Change: 0.01678Iteration: 32, Log-Lik: -1612.684, Max-Change: 0.00133Iteration: 33, Log-Lik: -1612.684, Max-Change: 0.00078Iteration: 34, Log-Lik: -1612.684, Max-Change: 0.00030Iteration: 35, Log-Lik: -1612.684, Max-Change: 0.00090Iteration: 36, Log-Lik: -1612.684, Max-Change: 0.00027Iteration: 37, Log-Lik: -1612.684, Max-Change: 0.00014Iteration: 38, Log-Lik: -1612.684, Max-Change: 0.00083Iteration: 39, Log-Lik: -1612.684, Max-Change: 0.00024Iteration: 40, Log-Lik: -1612.684, Max-Change: 0.00012Iteration: 41, Log-Lik: -1612.684, Max-Change: 0.01508Iteration: 42, Log-Lik: -1612.683, Max-Change: 0.00107Iteration: 43, Log-Lik: -1612.683, Max-Change: 0.00105Iteration: 44, Log-Lik: -1612.683, Max-Change: 0.00038Iteration: 45, Log-Lik: -1612.683, Max-Change: 0.00111Iteration: 46, Log-Lik: -1612.683, Max-Change: 0.00022Iteration: 47, Log-Lik: -1612.683, Max-Change: 0.00015Iteration: 48, Log-Lik: -1612.683, Max-Change: 0.00063Iteration: 49, Log-Lik: -1612.683, Max-Change: 0.00021Iteration: 50, Log-Lik: -1612.683, Max-Change: 0.00009
##
## Calculating information matrix...
## a b1 b2 b3
## Comfort 0.86 -3.3 -2.88 1.53
## Work 0.84 -2.0 -1.03 2.06
## Future 2.20 -2.1 -0.98 0.83
## Benefit 0.72 -2.9 -1.10 1.63
Çoktan seçmeli maddelerde maddelerin her biri için ayrı a değeri verir. Çeldiricilerin kalitesi için kullanılabilir.
library(mirt)
stm <- "F=1-4"
stm_uyum <- mirt(data = Science, model = stm,
itemtype = "nominal", SE = TRUE)
## Iteration: 1, Log-Lik: -2231.749, Max-Change: 3.43133Iteration: 2, Log-Lik: -1647.755, Max-Change: 0.78640Iteration: 3, Log-Lik: -1629.925, Max-Change: 0.48800Iteration: 4, Log-Lik: -1621.546, Max-Change: 0.44557Iteration: 5, Log-Lik: -1616.776, Max-Change: 0.30268Iteration: 6, Log-Lik: -1613.789, Max-Change: 0.29869Iteration: 7, Log-Lik: -1610.323, Max-Change: 0.20615Iteration: 8, Log-Lik: -1609.697, Max-Change: 0.28886Iteration: 9, Log-Lik: -1609.348, Max-Change: 0.13388Iteration: 10, Log-Lik: -1609.105, Max-Change: 0.11615Iteration: 11, Log-Lik: -1608.975, Max-Change: 0.10205Iteration: 12, Log-Lik: -1608.881, Max-Change: 0.09345Iteration: 13, Log-Lik: -1608.596, Max-Change: 0.06321Iteration: 14, Log-Lik: -1608.565, Max-Change: 0.03301Iteration: 15, Log-Lik: -1608.548, Max-Change: 0.02973Iteration: 16, Log-Lik: -1608.507, Max-Change: 0.01790Iteration: 17, Log-Lik: -1608.500, Max-Change: 0.02676Iteration: 18, Log-Lik: -1608.494, Max-Change: 0.02509Iteration: 19, Log-Lik: -1608.472, Max-Change: 0.00996Iteration: 20, Log-Lik: -1608.468, Max-Change: 0.00382Iteration: 21, Log-Lik: -1608.467, Max-Change: 0.00338Iteration: 22, Log-Lik: -1608.464, Max-Change: 0.03036Iteration: 23, Log-Lik: -1608.462, Max-Change: 0.00312Iteration: 24, Log-Lik: -1608.462, Max-Change: 0.00244Iteration: 25, Log-Lik: -1608.461, Max-Change: 0.00209Iteration: 26, Log-Lik: -1608.460, Max-Change: 0.00238Iteration: 27, Log-Lik: -1608.460, Max-Change: 0.00206Iteration: 28, Log-Lik: -1608.460, Max-Change: 0.02332Iteration: 29, Log-Lik: -1608.458, Max-Change: 0.00177Iteration: 30, Log-Lik: -1608.458, Max-Change: 0.00144Iteration: 31, Log-Lik: -1608.458, Max-Change: 0.00192Iteration: 32, Log-Lik: -1608.458, Max-Change: 0.00042Iteration: 33, Log-Lik: -1608.458, Max-Change: 0.00168Iteration: 34, Log-Lik: -1608.458, Max-Change: 0.00024Iteration: 35, Log-Lik: -1608.458, Max-Change: 0.00416Iteration: 36, Log-Lik: -1608.458, Max-Change: 0.00063Iteration: 37, Log-Lik: -1608.457, Max-Change: 0.00059Iteration: 38, Log-Lik: -1608.457, Max-Change: 0.00021Iteration: 39, Log-Lik: -1608.457, Max-Change: 0.00124Iteration: 40, Log-Lik: -1608.457, Max-Change: 0.00057Iteration: 41, Log-Lik: -1608.457, Max-Change: 0.00036Iteration: 42, Log-Lik: -1608.457, Max-Change: 0.00023Iteration: 43, Log-Lik: -1608.457, Max-Change: 0.02043Iteration: 44, Log-Lik: -1608.456, Max-Change: 0.00064Iteration: 45, Log-Lik: -1608.456, Max-Change: 0.00021Iteration: 46, Log-Lik: -1608.456, Max-Change: 0.00104Iteration: 47, Log-Lik: -1608.456, Max-Change: 0.00061Iteration: 48, Log-Lik: -1608.456, Max-Change: 0.00021Iteration: 49, Log-Lik: -1608.456, Max-Change: 0.00017Iteration: 50, Log-Lik: -1608.456, Max-Change: 0.00168Iteration: 51, Log-Lik: -1608.456, Max-Change: 0.00018Iteration: 52, Log-Lik: -1608.456, Max-Change: 0.00017Iteration: 53, Log-Lik: -1608.456, Max-Change: 0.00250Iteration: 54, Log-Lik: -1608.456, Max-Change: 0.00019Iteration: 55, Log-Lik: -1608.456, Max-Change: 0.00018Iteration: 56, Log-Lik: -1608.456, Max-Change: 0.02339Iteration: 57, Log-Lik: -1608.455, Max-Change: 0.00081Iteration: 58, Log-Lik: -1608.455, Max-Change: 0.00080Iteration: 59, Log-Lik: -1608.455, Max-Change: 0.00022Iteration: 60, Log-Lik: -1608.455, Max-Change: 0.00084Iteration: 61, Log-Lik: -1608.455, Max-Change: 0.00040Iteration: 62, Log-Lik: -1608.455, Max-Change: 0.00033Iteration: 63, Log-Lik: -1608.455, Max-Change: 0.00026Iteration: 64, Log-Lik: -1608.455, Max-Change: 0.00126Iteration: 65, Log-Lik: -1608.455, Max-Change: 0.00015Iteration: 66, Log-Lik: -1608.455, Max-Change: 0.00083Iteration: 67, Log-Lik: -1608.455, Max-Change: 0.00023Iteration: 68, Log-Lik: -1608.455, Max-Change: 0.00018Iteration: 69, Log-Lik: -1608.455, Max-Change: 0.00014Iteration: 70, Log-Lik: -1608.455, Max-Change: 0.00151Iteration: 71, Log-Lik: -1608.455, Max-Change: 0.00007
##
## Calculating information matrix...
## a1 a2 a3 a4 c1 c2 c3 c4
## Comfort -1.6 -0.095 0.37 1.4 -3.5 0.12 2.4 1.013
## Work -1.1 -0.512 0.17 1.4 -1.0 0.43 1.3 -0.703
## Future -2.9 -1.314 0.93 3.3 -3.4 0.30 2.5 0.578
## Benefit -1.1 -0.318 0.23 1.2 -1.7 0.47 1.2 -0.048
Comfort değşkeni için 1. kategori çok negatif (-1.6), 4. kategori ise pozitif ve yüksek (1.4). Bu durum, maddeye verilen yanıtların orta ve üst düzey kategorilerde daha ayırt edici olduğunu gösterebilir. Eşik değerleri sırasıyla negatiften pozitife geçiyor. Bu da yanıt kategorileri arasında mantıklı bir geçiş olduğunu (monotonik artış) gösterir.
KPM’de madde yanıtlarına ilişkin kategori sayıları farklı olabilirken DÖM’de tüm madde yanıtlarına ilişkin kategori sayıları aynı olmalıdır (De Ayala, 2009). Benim önceki analizlerimde madde kategori sayıları aynı olduğu için aynı sonuçları elde edeceğimi düşünüyorum bunun analizlerine girmiyorum