set.seed(123)
# Jumlah observasi
n <- 100
# Generate variabel x dari distribusi normal (mean=10, sd=2)
x <- rnorm(n, mean = 10, sd = 2)
# Generate variabel y dengan pola hubungan linear terhadap x plus error
y <- 3 + 1.5 * x + rnorm(n, mean = 0, sd = 2)
# Gabungkan menjadi data frame
data <- data.frame(x, y)
# Introduksi missing value secara acak pada 10 observasi x
data[sample(1:n, 10), "x"] <- NA
# Lihat 6 baris pertama
head(data)
## x y
## 1 8.879049 14.89776
## 2 9.539645 17.82323
## 3 13.117417 22.18274
## 4 10.141017 17.51644
## 5 10.258575 16.48463
## 6 13.430130 23.05514
Penjelasan:
-set.seed(123) menjamin hasil random yang konsisten -rnorm() menghasilkan data dari distribusi normal -Hubungan antara y dan x sengaja dibuat linear (y = 3 + 1.5x + error) -sample() memilih 10 baris secara acak untuk dijadikan NA ## Praktikum 1: Bootstrap untuk Regresi (tanpa missing)
# Hapus baris yang mengandung NA
clean_data <- na.omit(data)
# Fungsi untuk bootstrap regresi
boot_regression <- function(data, indices) {
# Ambil sampel bootstrap sesuai indices
d <- data[indices, ]
# Fit model regresi linear
model <- lm(y ~ x, data = d)
# Return koefisien model
return(coef(model))
}
# Load library boot
library(boot)
# Lakukan bootstrap dengan 1000 replikasi
boot_result <- boot(
data = clean_data,
statistic = boot_regression,
R = 1000
)
# Tampilkan hasil
boot_result
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = clean_data, statistic = boot_regression, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 3.581084 0.06067069 1.1482885
## t2* 1.412127 -0.00547455 0.1074228
# Plot distribusi bootstrap
plot(boot_result)
# Hitung confidence interval 95% untuk koefisien x (index=2)
boot.ci(boot_result, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_result, type = "perc", index = 2)
##
## Intervals :
## Level Percentile
## 95% ( 1.176, 1.596 )
## Calculations and Intervals on Original Scale
Penjelasan: -na.omit() menghapus baris dengan missing values -Fungsi boot_regression: indices menentukan sampel yang diambil lm() melakukan regresi linear coef() mengambil koefisien model -boot() menjalankan bootstrap dengan: data: dataset bersih statistic: fungsi yang di-bootstrap R: jumlah replikasi -boot.ci() menghitung interval kepercayaan percentile
Menggunakan mean imputation + bootstrap:
# Hitung mean x (abaikan NA)
mean_x <- mean(data$x, na.rm = TRUE)
# Buat variabel baru dengan imputasi mean
data$ximp <- ifelse(is.na(data$x), mean_x, data$x)
# Fit model setelah imputasi
model_imp <- lm(y ~ ximp, data = data)
summary(model_imp)
##
## Call:
## lm(formula = y ~ ximp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1153 -1.4394 -0.0902 1.2053 6.5280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6538 1.2332 2.963 0.00383 **
## ximp 1.4121 0.1191 11.854 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.109 on 98 degrees of freedom
## Multiple R-squared: 0.5891, Adjusted R-squared: 0.5849
## F-statistic: 140.5 on 1 and 98 DF, p-value: < 2.2e-16
# Fungsi bootstrap setelah imputasi
boot_imp <- function(data, indices) {
d <- data[indices, ]
model <- lm(y ~ ximp, data = d)
return(coef(model))
}
# Jalankan bootstrap
boot_result_imp <- boot(data = data, statistic = boot_imp, R = 1000)
# Hasil
boot_result_imp
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = data, statistic = boot_imp, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 3.653794 0.053055397 1.1350004
## t2* 1.412127 -0.005093136 0.1064137
plot(boot_result_imp)
boot.ci(boot_result_imp, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_result_imp, type = "perc", index = 2)
##
## Intervals :
## Level Percentile
## 95% ( 1.188, 1.603 )
## Calculations and Intervals on Original Scale
Catatan Penting: -mean(na.rm=TRUE) menghitung mean tanpa NA -ifelse() mengganti NA dengan mean -Model setelah imputasi cenderung underestimate variance -Proses bootstrap sama seperti sebelumnya tetapi menggunakan data yang sudah diimputasi -Mean imputation bisa mengurangi variabilitas → bias underestimation. -Lebih canggih: gunakan Multiple Imputation + Bootstrap (dengan mice package).
library(mice)
## Warning: package 'mice' was built under R version 4.4.3
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
# Lakukan multiple imputation (m=5) dengan Predictive Mean Matching
imp <- mice(
data[ , c("x", "y")],
m = 5,
method = 'pmm',
seed = 123
)
##
## iter imp variable
## 1 1 x
## 1 2 x
## 1 3 x
## 1 4 x
## 1 5 x
## 2 1 x
## 2 2 x
## 2 3 x
## 2 4 x
## 2 5 x
## 3 1 x
## 3 2 x
## 3 3 x
## 3 4 x
## 3 5 x
## 4 1 x
## 4 2 x
## 4 3 x
## 4 4 x
## 4 5 x
## 5 1 x
## 5 2 x
## 5 3 x
## 5 4 x
## 5 5 x
# Gabungkan dataset imputasi dalam long format
imp_data <- complete(imp, "long")
# Fit model di setiap dataset imputasi dan gabungkan hasilnya
model_mi <- with(imp, lm(y ~ x))
summary(pool(model_mi))
## term estimate std.error statistic df p.value
## 1 (Intercept) 3.619991 1.1112706 3.257524 78.99385 1.657655e-03
## 2 x 1.408248 0.1068028 13.185496 78.10532 1.472407e-21
# Pastikan semua package sudah terinstall
library(mice)
library(broom)
# 1. Model Data Lengkap
model_clean <- lm(y ~ x, data = clean_data)
clean_summary <- tidy(model_clean, conf.int = TRUE)
# 2. Model Mean Imputation + Bootstrap
# Asumsi boot_result_imp sudah dibuat sebelumnya
boot_ci <- boot.ci(boot_result_imp, type = "perc", index = 2)
boot_summary <- tidy(model_imp, conf.int = TRUE)
# 3. Model MICE
model_mice <- with(imp, lm(y ~ x))
mice_summary <- summary(pool(model_mice), conf.int = TRUE)
# Membuat data frame yang lebih robust
results_table <- data.frame(
Metode = c("Data Lengkap", "Mean Imputation + Bootstrap", "MICE"),
Intercept = c(
clean_summary$estimate[1],
boot_summary$estimate[1],
mice_summary$estimate[1]
),
Slope = c(
clean_summary$estimate[2],
boot_summary$estimate[2],
mice_summary$estimate[2]
),
SE_Slope = c(
clean_summary$std.error[2],
boot_summary$std.error[2],
mice_summary$std.error[2]
),
CI_Slope = c(
sprintf("(%.3f, %.3f)", clean_summary$conf.low[2], clean_summary$conf.high[2]),
sprintf("(%.3f, %.3f)", boot_ci$percent[4], boot_ci$percent[5]),
sprintf("(%.3f, %.3f)", mice_summary$`2.5 %`[2], mice_summary$`97.5 %`[2])
),
stringsAsFactors = FALSE
)
# Tampilkan hasil
print(results_table)
## Metode Intercept Slope SE_Slope CI_Slope
## 1 Data Lengkap 3.581084 1.412127 0.1079083 (1.198, 1.627)
## 2 Mean Imputation + Bootstrap 3.653794 1.412127 0.1191314 (1.188, 1.603)
## 3 MICE 3.619991 1.408248 0.1068028 (1.196, 1.621)
library(ggplot2)
# Data untuk plot
results <- data.frame(
Method = c("Data Lengkap", "Mean Imp + Bootstrap", "MICE"),
Slope = c(1.412127, 1.412127, 1.408248),
SE = c(0.1079083, 0.1191314, 0.1068028),
CI_lower = c(1.198, 1.188, 1.196),
CI_upper = c(1.627, 1.603, 1.621)
)
ggplot(results, aes(x = Method, y = Slope, color = Method)) +
geom_point(size = 3) +
geom_errorbar(aes(ymin = CI_lower, ymax = CI_upper), width = 0.2) +
labs(title = "Perbandingan Estimasi Slope dengan Berbagai Metode",
y = "Estimasi Slope (y ~ x)") +
theme_minimal()
## Analisis Perbedaan Estimasi 1.Estimasi Slope (Koefisien x) Konsistensi Nilai: -Ketiga metode menghasilkan slope yang sangat mirip (~1.41) -Perbedaan <0.004 (hanya 0.3% variasi) -Indikasi bahwa pola missing tidak terlalu memengaruhi hubungan x-y Perbedaan Kecil: -MICE memberikan slope paling rendah (1.408) -Data lengkap dan mean imputation sama (1.412)
2.Estimasi Intercept -Variasi Lebih Nyata: -Rentang nilai: 3.581 (data lengkap) hingga 3.654 (mean imputation) -Perbedaan ~0.073 (2% dari nilai intercept) -Mean imputation menghasilkan intercept tertinggi, mungkin karena imputasi mean cenderung menarik intercept ke arah rata-rata dan sedikit bias karena pengisian nilai konstan.
3.Standard Error (SE) Slope Konsistensi: -SE data lengkap (0.108) vs MICE (0.107) sangat mirip -Mean imputation memiliki SE lebih besar (0.119), mencerminkan ketidakpastian dari imputasi sederhana dan sesuai ekspektasi teori karena mean imputation meremehkan variabilitas