Descriptive Visualizations)

Data Science Programming

Chello Frhino Mike M (52240031)

May 23, 2025

foto

Tugas : Melengkapi Visualisasi Deskriptif yang belum ada pada https://bookdown.org/content/25e7d39d-8503-4012-98ae-3fbbd8c1e258/08-Descriptive-Visualizations.html

1 Data set

Berikut adalah data nya,

2 Heatmap

library(ggplot2)
library(dplyr)

# Hitung total Quantity berdasarkan kategori produk dan region
heatmap_data <- data_bisnis %>%
  group_by(Product_Category, Region) %>%
  summarise(Total_Quantity = sum(Quantity, na.rm = TRUE), .groups = "drop")

# Buat heatmap
ggplot(heatmap_data, aes(x = Region, y = Product_Category, fill = Total_Quantity)) +
  geom_tile(color = "white") +
  geom_text(aes(label = Total_Quantity), color = "black", size = 5) +
  scale_fill_gradient(low = "lightyellow", high = "red") +
  labs(
    title = "Heatmap: Total Quantity by Product Category and Region",
    x = "Region",
    y = "Product Category",
    fill = "Quantity"
  ) +
  theme_minimal(base_size = 16)

# Scatter Plot

LS0tDQp0aXRsZTogIkRlc2NyaXB0aXZlIFZpc3VhbGl6YXRpb25zKSINCnN1YnRpdGxlOiAiRGF0YSBTY2llbmNlIFByb2dyYW1taW5nIg0KYXV0aG9yOiANCiAgLSAiQ2hlbGxvIEZyaGlubyBNaWtlIE0gKDUyMjQwMDMxKSINCmRhdGU6ICAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6DQogIHJtZGZvcm1hdHM6OmRvd25jdXRlOiAgICMgaHR0cHM6Ly9naXRodWIuY29tL2p1YmEvcm1kZm9ybWF0cw0KICAgIHNlbGZfY29udGFpbmVkOiB0cnVlDQogICAgdGh1bWJuYWlsczogdHJ1ZQ0KICAgIGxpZ2h0Ym94OiB0cnVlDQogICAgZ2FsbGVyeTogdHJ1ZQ0KICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQ0KICAgIGxpYl9kaXI6IGxpYnMNCiAgICBkZl9wcmludDogInBhZ2VkIg0KICAgIGNvZGVfZm9sZGluZzogInNob3ciDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgDQotLS0NCg0KPHN0eWxlPg0KICBib2R5IHsNCiAgICB0ZXh0LWFsaWduOiBqdXN0aWZ5Ow0KICAgIGJhY2tncm91bmQtY29sb3I6IHdoaXRlOw0KICAgIG92ZXJmbG93LXg6IGF1dG87DQogICAgZm9udC1mYW1pbHk6IGN1cnNpdmU7DQogIH0NCjwvc3R5bGU+DQoNCg0KPGltZyBpZD0iZm90by1hdXRob3IiIHNyYz0iQzovVXNlcnMvVVNFUi9Eb2N1bWVudHMvUkJveHBsb3QvaW1nL1doYXRzQXBwIEltYWdlIDIwMjQtMTEtMjQgYXQgMy4yOS40MSBQTS5qcGVnIiBhbHQ9ImZvdG8iIHN0eWxlPSJ3aWR0aDozMDBweDsgZGlzcGxheTogYmxvY2s7IG1hcmdpbjogYXV0bzsiPg0KDQoNClR1Z2FzIDogTWVsZW5na2FwaSBWaXN1YWxpc2FzaSBEZXNrcmlwdGlmIHlhbmcgYmVsdW0gYWRhIHBhZGEgaHR0cHM6Ly9ib29rZG93bi5vcmcvY29udGVudC8yNWU3ZDM5ZC04NTAzLTQwMTItOThhZS0zZmJiZDhjMWUyNTgvMDgtRGVzY3JpcHRpdmUtVmlzdWFsaXphdGlvbnMuaHRtbA0KDQojIERhdGEgc2V0DQpCZXJpa3V0IGFkYWxhaCBkYXRhIG55YSwNCmBgYHtyLGVjaG89RkFMU0UsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShyZWFkcikNCmxpYnJhcnkoRFQpDQoNCmRhdGFfYmlzbmlzIDwtIHJlYWQuY3N2KCJkZXNjIHZpc3VhbC5jc3YiKQ0KDQpkYXRhdGFibGUoZGF0YV9iaXNuaXMsIG9wdGlvbnMgPSBsaXN0KHNjcm9sbFggPSBUUlVFKSkNCmBgYA0KDQojIEhlYXRtYXANCg0KYGBge3IsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCg0KIyBIaXR1bmcgdG90YWwgUXVhbnRpdHkgYmVyZGFzYXJrYW4ga2F0ZWdvcmkgcHJvZHVrIGRhbiByZWdpb24NCmhlYXRtYXBfZGF0YSA8LSBkYXRhX2Jpc25pcyAlPiUNCiAgZ3JvdXBfYnkoUHJvZHVjdF9DYXRlZ29yeSwgUmVnaW9uKSAlPiUNCiAgc3VtbWFyaXNlKFRvdGFsX1F1YW50aXR5ID0gc3VtKFF1YW50aXR5LCBuYS5ybSA9IFRSVUUpLCAuZ3JvdXBzID0gImRyb3AiKQ0KDQojIEJ1YXQgaGVhdG1hcA0KZ2dwbG90KGhlYXRtYXBfZGF0YSwgYWVzKHggPSBSZWdpb24sIHkgPSBQcm9kdWN0X0NhdGVnb3J5LCBmaWxsID0gVG90YWxfUXVhbnRpdHkpKSArDQogIGdlb21fdGlsZShjb2xvciA9ICJ3aGl0ZSIpICsNCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbCA9IFRvdGFsX1F1YW50aXR5KSwgY29sb3IgPSAiYmxhY2siLCBzaXplID0gNSkgKw0KICBzY2FsZV9maWxsX2dyYWRpZW50KGxvdyA9ICJsaWdodHllbGxvdyIsIGhpZ2ggPSAicmVkIikgKw0KICBsYWJzKA0KICAgIHRpdGxlID0gIkhlYXRtYXA6IFRvdGFsIFF1YW50aXR5IGJ5IFByb2R1Y3QgQ2F0ZWdvcnkgYW5kIFJlZ2lvbiIsDQogICAgeCA9ICJSZWdpb24iLA0KICAgIHkgPSAiUHJvZHVjdCBDYXRlZ29yeSIsDQogICAgZmlsbCA9ICJRdWFudGl0eSINCiAgKSArDQogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTYpDQpgYGANCiMgU2NhdHRlciBQbG90DQoNCg0K