library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)

glimpse(flights)
## Rows: 336,776
## Columns: 19
## $ year           <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…
## $ month          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ day            <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ dep_time       <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, …
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, …
## $ dep_delay      <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1…
## $ arr_time       <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,…
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,…
## $ arr_delay      <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1…
## $ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "…
## $ flight         <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4…
## $ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394…
## $ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",…
## $ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",…
## $ air_time       <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1…
## $ distance       <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, …
## $ hour           <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6…
## $ minute         <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0…
## $ time_hour      <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0…
#Data Issues
#Check NA
flights %>%
  summarise(across(everything(),~sum(is.na(.)))) #NA terbanyak ada di kolom delay
## # A tibble: 1 × 19
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <int>    <int>          <int>
## 1     0     0     0     8255              0      8255     8713              0
## # ℹ 11 more variables: arr_delay <int>, carrier <int>, flight <int>,
## #   tailnum <int>, origin <int>, dest <int>, air_time <int>, distance <int>,
## #   hour <int>, minute <int>, time_hour <int>
View(flights)

#Mencari jumlah NA di dataset
sum(is.na(flights))
## [1] 46595
#Check Duplicate Data
flights %>%
  duplicated()%>%
  sum()
## [1] 0
#View Duplicated Data
flights %>% filter(duplicated(.))
## # A tibble: 0 × 19
## # ℹ 19 variables: year <int>, month <int>, day <int>, dep_time <int>,
## #   sched_dep_time <int>, dep_delay <dbl>, arr_time <int>,
## #   sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
#How to fixed the dataset
#Cleaning data
flights_cleaning <- flights %>%
  distinct()%>%
  drop_na()

summary(flights_cleaning)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 500  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 905  
##  Median :2013   Median : 7.000   Median :16.00   Median :1400   Median :1355  
##  Mean   :2013   Mean   : 6.565   Mean   :15.74   Mean   :1349   Mean   :1340  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1122   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1554   Median :  -5.000  
##  Mean   :  12.56   Mean   :1502   Mean   :1533   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1944   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##    carrier              flight       tailnum             origin         
##  Length:327346      Min.   :   1   Length:327346      Length:327346     
##  Class :character   1st Qu.: 544   Class :character   Class :character  
##  Mode  :character   Median :1467   Mode  :character   Mode  :character  
##                     Mean   :1943                                        
##                     3rd Qu.:3412                                        
##                     Max.   :8500                                        
##      dest              air_time        distance         hour      
##  Length:327346      Min.   : 20.0   Min.   :  80   Min.   : 5.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 509   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 888   Median :13.00  
##                     Mean   :150.7   Mean   :1048   Mean   :13.14  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-05 06:00:00.00  
##  Median :29.00   Median :2013-07-04 09:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 17:56:45.44  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 18:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00
ggplot(flights_cleaning,aes(x=origin,fill=origin))+geom_bar()+labs(title="Jumlah Daerah")

ggplot(flights_cleaning,aes(x=origin,y=flight))+geom_boxplot(outlier.color="blue")+labs(title="Distribusi penerbangan tiap daerah",x="origin",y="flight")

ggplot(flights_cleaning,aes(x=origin))+geom_density(color="red")+labs(title="Distribution Origin",x="Origin")

ggplot(flights_cleaning,aes(x=origin,y=distance))+geom_boxplot(outlier.color="red")+labs(title="Distribusi jarak tiap daerah")