Import Library

library(nycflights13)
## Warning: package 'nycflights13' was built under R version 4.4.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'tibble' was built under R version 4.4.3
## Warning: package 'tidyr' was built under R version 4.4.3
## Warning: package 'readr' was built under R version 4.4.3
## Warning: package 'purrr' was built under R version 4.4.3
## Warning: package 'dplyr' was built under R version 4.4.3
## Warning: package 'stringr' was built under R version 4.4.3
## Warning: package 'forcats' was built under R version 4.4.3
## Warning: package 'lubridate' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Data Identification

glimpse(flights)
## Rows: 336,776
## Columns: 19
## $ year           <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…
## $ month          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ day            <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ dep_time       <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, …
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, …
## $ dep_delay      <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1…
## $ arr_time       <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,…
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,…
## $ arr_delay      <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1…
## $ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "…
## $ flight         <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4…
## $ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394…
## $ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",…
## $ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",…
## $ air_time       <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1…
## $ distance       <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, …
## $ hour           <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6…
## $ minute         <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0…
## $ time_hour      <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0…
flights %>%
  summarise(across(everything(), ~ sum(is.na(.))))
## # A tibble: 1 × 19
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <int>    <int>          <int>
## 1     0     0     0     8255              0      8255     8713              0
## # ℹ 11 more variables: arr_delay <int>, carrier <int>, flight <int>,
## #   tailnum <int>, origin <int>, dest <int>, air_time <int>, distance <int>,
## #   hour <int>, minute <int>, time_hour <int>
flights %>%
  duplicated() %>%
  sum()
## [1] 0
flights %>%
  count(carrier)
## # A tibble: 16 × 2
##    carrier     n
##    <chr>   <int>
##  1 9E      18460
##  2 AA      32729
##  3 AS        714
##  4 B6      54635
##  5 DL      48110
##  6 EV      54173
##  7 F9        685
##  8 FL       3260
##  9 HA        342
## 10 MQ      26397
## 11 OO         32
## 12 UA      58665
## 13 US      20536
## 14 VX       5162
## 15 WN      12275
## 16 YV        601
flights %>%
  count(dest)
## # A tibble: 105 × 2
##    dest      n
##    <chr> <int>
##  1 ABQ     254
##  2 ACK     265
##  3 ALB     439
##  4 ANC       8
##  5 ATL   17215
##  6 AUS    2439
##  7 AVL     275
##  8 BDL     443
##  9 BGR     375
## 10 BHM     297
## # ℹ 95 more rows

Summary Data

Melihat statistika deskriptif semua data secara serentak

summary(flights)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
##  Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
##  Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##                                                  NA's   :8255                 
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
##  Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##  NA's   :8255      NA's   :8713                  NA's   :9430      
##    carrier              flight       tailnum             origin         
##  Length:336776      Min.   :   1   Length:336776      Length:336776     
##  Class :character   1st Qu.: 553   Class :character   Class :character  
##  Mode  :character   Median :1496   Mode  :character   Mode  :character  
##                     Mean   :1972                                        
##                     3rd Qu.:3465                                        
##                     Max.   :8500                                        
##                                                                         
##      dest              air_time        distance         hour      
##  Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 872   Median :13.00  
##                     Mean   :150.7   Mean   :1040   Mean   :13.18  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##                     NA's   :9430                                  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00.00  
##  Median :29.00   Median :2013-07-03 10:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 05:22:54.64  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00  
## 

Box Plot

Untuk melihat outliers

ggplot(flights, aes(y = arr_delay)) +
  geom_boxplot(fill = 'red')
## Warning: Removed 9430 rows containing non-finite outside the scale range
## (`stat_boxplot()`).

ggplot(flights, aes(y = air_time)) +
  geom_boxplot(fill = 'red')
## Warning: Removed 9430 rows containing non-finite outside the scale range
## (`stat_boxplot()`).

ggplot(flights, aes(y = distance)) +
  geom_boxplot(fill = 'red')

ggplot(flights, aes(y = hour)) +
  geom_boxplot(fill = 'red')

Data Cleaning

Menghapus data duplikat, data NA, mengubah data string yang menunjukan hal sama namun penulisan berbeda

flights_cleaned = flights %>%
  distinct() %>%
  drop_na() %>%
  mutate(dest = str_to_title(str_trim(dest))) %>%
  mutate(carrier = str_to_title(str_trim(carrier)))

Summary of Cleaned Data

summary(flights_cleaned)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 500  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 905  
##  Median :2013   Median : 7.000   Median :16.00   Median :1400   Median :1355  
##  Mean   :2013   Mean   : 6.565   Mean   :15.74   Mean   :1349   Mean   :1340  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1122   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1554   Median :  -5.000  
##  Mean   :  12.56   Mean   :1502   Mean   :1533   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1944   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##    carrier              flight       tailnum             origin         
##  Length:327346      Min.   :   1   Length:327346      Length:327346     
##  Class :character   1st Qu.: 544   Class :character   Class :character  
##  Mode  :character   Median :1467   Mode  :character   Mode  :character  
##                     Mean   :1943                                        
##                     3rd Qu.:3412                                        
##                     Max.   :8500                                        
##      dest              air_time        distance         hour      
##  Length:327346      Min.   : 20.0   Min.   :  80   Min.   : 5.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 509   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 888   Median :13.00  
##                     Mean   :150.7   Mean   :1048   Mean   :13.14  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-05 06:00:00.00  
##  Median :29.00   Median :2013-07-04 09:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 17:56:45.44  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 18:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00
ggplot(flights_cleaned,aes(x=dep_delay)) +
  geom_histogram(fill = 'steelblue', binwidth = 70) +
  labs(title='Distribusi Departure Delay',x = 'Departure Delay', y='Count')

ggplot(flights_cleaned,aes(x=air_time)) +
  geom_histogram(fill = 'steelblue', binwidth = 10) +
  labs(title='Distribusi Air Time',x = 'Air Time', y='Count')

dest_count = flights_cleaned %>%
  count(dest,name='numflight')

top_n_dest = dest_count %>%
  filter(numflight>10000)

ggplot(top_n_dest, aes(x = dest, y = numflight)) +
  geom_bar(stat='identity',fill = 'blue') +
  labs(title = 'Number of Flights per Destination', x = 'Destination')