Chapter 1 focuses on why reproducibility matters. It states that finance workflows should be clean, consistent, and easy to revisit or share. It covers setting up RStudio Projects, using Git for version control, and introduces xts, tidyverse, and tidyquant. It states that the goal is writing organized, repeatable code from the start. It also sets up Shiny as a way to bring your analysis to life later on.
tq_index_options()
## [1] "DOW" "DOWGLOBAL" "SP400" "SP500" "SP600"
data <- tq_index("SP400")
tq_exchange_options()
## [1] "AMEX" "NASDAQ" "NYSE"
nyse_data <- tq_exchange("NYSE")
stock <- tq_get("TSLA")
unemployment_nh <- tq_get("NHUR", get = "economic.data")
unemployment_nh
## # A tibble: 123 × 3
## symbol date price
## <chr> <date> <dbl>
## 1 NHUR 2015-01-01 3.8
## 2 NHUR 2015-02-01 3.8
## 3 NHUR 2015-03-01 3.7
## 4 NHUR 2015-04-01 3.6
## 5 NHUR 2015-05-01 3.5
## 6 NHUR 2015-06-01 3.4
## 7 NHUR 2015-07-01 3.3
## 8 NHUR 2015-08-01 3.3
## 9 NHUR 2015-09-01 3.2
## 10 NHUR 2015-10-01 3.1
## # ℹ 113 more rows
AAPL <- tq_get("AAPL")
AAPL %>%
ggplot(aes(x = date, y = close)) +
geom_line() +
labs(title = "AAPL Line Chart", y = "Closing Price", x = "") +
theme_tq()
AAPL %>%
tail(30) %>%
ggplot(aes(x = date, y = close)) +
geom_barchart(aes(open = open, high = high, low = low, close = close)) +
labs(title = "AAPL Bar Chart", y = "Closing Price", x = "") +
theme_tq()
AAPL %>%
tail(30) %>%
ggplot(aes(x = date, y = close)) +
geom_candlestick(aes(open = open, high = high, low = low, close = close)) +
labs(title = "AAPL Candlestick Chart", y = "Closing Price", x = "") +
theme_tq()
Ra <- c("AAPL", "GOOG", "NFLX") %>%
tq_get(get = "stock.prices",
from = "2010-01-01",
to = "2015-12-31") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 216 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2010-01-29 -0.103
## 2 AAPL 2010-02-26 0.0654
## 3 AAPL 2010-03-31 0.148
## 4 AAPL 2010-04-30 0.111
## 5 AAPL 2010-05-28 -0.0161
## 6 AAPL 2010-06-30 -0.0208
## 7 AAPL 2010-07-30 0.0227
## 8 AAPL 2010-08-31 -0.0550
## 9 AAPL 2010-09-30 0.167
## 10 AAPL 2010-10-29 0.0607
## # ℹ 206 more rows
Rb <- "XLK" %>%
tq_get(get = "stock.prices",
from = "2010-01-01",
to = "2015-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 72 × 2
## date Rb
## <date> <dbl>
## 1 2010-01-29 -0.0993
## 2 2010-02-26 0.0348
## 3 2010-03-31 0.0684
## 4 2010-04-30 0.0126
## 5 2010-05-28 -0.0748
## 6 2010-06-30 -0.0540
## 7 2010-07-30 0.0745
## 8 2010-08-31 -0.0561
## 9 2010-09-30 0.117
## 10 2010-10-29 0.0578
## # ℹ 62 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 216 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2010-01-29 -0.103 -0.0993
## 2 AAPL 2010-02-26 0.0654 0.0348
## 3 AAPL 2010-03-31 0.148 0.0684
## 4 AAPL 2010-04-30 0.111 0.0126
## 5 AAPL 2010-05-28 -0.0161 -0.0748
## 6 AAPL 2010-06-30 -0.0208 -0.0540
## 7 AAPL 2010-07-30 0.0227 0.0745
## 8 AAPL 2010-08-31 -0.0550 -0.0561
## 9 AAPL 2010-09-30 0.167 0.117
## 10 AAPL 2010-10-29 0.0607 0.0578
## # ℹ 206 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.119 0.0089 0.112 1.11 0.578 1.04 0.659
## 2 GOOG 0.034 0.0028 0.034 1.14 1.39 1.16 0.644
## 3 NFLX 0.447 0.053 0.859 0.384 -1.52 0.0045 0.0817
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>