Key Reference: RMarkdown - The Definitive Guide
PDF Printing Setup: tinytex
# Import stock prices
stocks <- tq_get(c("TSLA", "AMZN"),
get = "stock.prices",
from = "2016-01-01",
to = "2017-01-01")
stocks## # A tibble: 504 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA 2016-01-04 15.4 15.4 14.6 14.9 102406500 14.9
## 2 TSLA 2016-01-05 15.1 15.1 14.7 14.9 47802000 14.9
## 3 TSLA 2016-01-06 14.7 14.7 14.4 14.6 56686500 14.6
## 4 TSLA 2016-01-07 14.3 14.6 14.2 14.4 53314500 14.4
## 5 TSLA 2016-01-08 14.5 14.7 14.1 14.1 54421500 14.1
## 6 TSLA 2016-01-11 14.3 14.3 13.5 13.9 61371000 13.9
## 7 TSLA 2016-01-12 14.1 14.2 13.7 14.0 46378500 14.0
## 8 TSLA 2016-01-13 14.1 14.2 13.3 13.4 61896000 13.4
## 9 TSLA 2016-01-14 13.5 14 12.9 13.7 97360500 13.7
## 10 TSLA 2016-01-15 13.3 13.7 13.1 13.7 83679000 13.7
## # ℹ 494 more rows
Plotting works as expected. Try changing:
out.height, out.width and KnittingStatic plots:
Revenue by Category
Interactive plots:
ggplotly().Static Tables:
knitr package - knitr::kable() - Simple to
use, great with PDF| symbol | date | open | high | low | close | volume | adjusted |
|---|---|---|---|---|---|---|---|
| TSLA | 2016-01-04 | 15.38133 | 15.42533 | 14.60000 | 14.89400 | 102406500 | 14.89400 |
| TSLA | 2016-01-05 | 15.09067 | 15.12600 | 14.66667 | 14.89533 | 47802000 | 14.89533 |
| TSLA | 2016-01-06 | 14.66667 | 14.67000 | 14.39867 | 14.60267 | 56686500 | 14.60267 |
| TSLA | 2016-01-07 | 14.27933 | 14.56267 | 14.24467 | 14.37667 | 53314500 | 14.37667 |
| TSLA | 2016-01-08 | 14.52400 | 14.69600 | 14.05133 | 14.06667 | 54421500 | 14.06667 |
| TSLA | 2016-01-11 | 14.26733 | 14.29667 | 13.53333 | 13.85667 | 61371000 | 13.85667 |
Dynamic Tables:
## # A tibble: 504 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA 2016-01-04 15.4 15.4 14.6 14.9 102406500 14.9
## 2 TSLA 2016-01-05 15.1 15.1 14.7 14.9 47802000 14.9
## 3 TSLA 2016-01-06 14.7 14.7 14.4 14.6 56686500 14.6
## 4 TSLA 2016-01-07 14.3 14.6 14.2 14.4 53314500 14.4
## 5 TSLA 2016-01-08 14.5 14.7 14.1 14.1 54421500 14.1
## 6 TSLA 2016-01-11 14.3 14.3 13.5 13.9 61371000 13.9
## 7 TSLA 2016-01-12 14.1 14.2 13.7 14.0 46378500 14.0
## 8 TSLA 2016-01-13 14.1 14.2 13.3 13.4 61896000 13.4
## 9 TSLA 2016-01-14 13.5 14 12.9 13.7 97360500 13.7
## 10 TSLA 2016-01-15 13.3 13.7 13.1 13.7 83679000 13.7
## # ℹ 494 more rows
## # A tibble: 234 × 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto… f 18 29 p comp…
## 2 audi a4 1.8 1999 4 manu… f 21 29 p comp…
## 3 audi a4 2 2008 4 manu… f 20 31 p comp…
## 4 audi a4 2 2008 4 auto… f 21 30 p comp…
## 5 audi a4 2.8 1999 6 auto… f 16 26 p comp…
## 6 audi a4 2.8 1999 6 manu… f 18 26 p comp…
## 7 audi a4 3.1 2008 6 auto… f 18 27 p comp…
## 8 audi a4 quattro 1.8 1999 4 manu… 4 18 26 p comp…
## 9 audi a4 quattro 1.8 1999 4 auto… 4 16 25 p comp…
## 10 audi a4 quattro 2 2008 4 manu… 4 20 28 p comp…
## # ℹ 224 more rows
The mpg dataset contains fuel economy data for different
car models. Each row is a car, and columns show info like engine size,
fuel type, and MPG.
## # A tibble: 0 × 8
## # ℹ 8 variables: symbol <chr>, date <date>, open <dbl>, high <dbl>, low <dbl>,
## # close <dbl>, volume <dbl>, adjusted <dbl>
## # A tibble: 504 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN 2016-10-05 41.9 42.3 41.8 42.2 69382000 42.2
## 2 AMZN 2016-10-10 42.2 42.3 42.0 42.1 36542000 42.1
## 3 AMZN 2016-10-06 42.2 42.4 42.0 42.1 53680000 42.1
## 4 AMZN 2016-10-07 42.3 42.3 41.9 42.0 48524000 42.0
## 5 AMZN 2016-10-24 41.2 41.9 41.1 41.9 81218000 41.9
## 6 AMZN 2016-09-30 41.6 42.0 41.6 41.9 88612000 41.9
## 7 AMZN 2016-10-03 41.8 42.0 41.6 41.8 55388000 41.8
## 8 AMZN 2016-10-25 42.0 42.2 41.7 41.8 64968000 41.8
## 9 AMZN 2016-10-12 41.7 41.9 41.5 41.7 47608000 41.7
## 10 AMZN 2016-10-04 42.0 42.1 41.5 41.7 59006000 41.7
## # ℹ 494 more rows
## # A tibble: 504 × 3
## symbol date adjusted
## <chr> <date> <dbl>
## 1 TSLA 2016-01-04 14.9
## 2 TSLA 2016-01-05 14.9
## 3 TSLA 2016-01-06 14.6
## 4 TSLA 2016-01-07 14.4
## 5 TSLA 2016-01-08 14.1
## 6 TSLA 2016-01-11 13.9
## 7 TSLA 2016-01-12 14.0
## 8 TSLA 2016-01-13 13.4
## 9 TSLA 2016-01-14 13.7
## 10 TSLA 2016-01-15 13.7
## # ℹ 494 more rows
##mutate columns
## # A tibble: 504 × 9
## symbol date open high low close volume adjusted adjusted_log
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA 2016-01-04 15.4 15.4 14.6 14.9 102406500 14.9 2.70
## 2 TSLA 2016-01-05 15.1 15.1 14.7 14.9 47802000 14.9 2.70
## 3 TSLA 2016-01-06 14.7 14.7 14.4 14.6 56686500 14.6 2.68
## 4 TSLA 2016-01-07 14.3 14.6 14.2 14.4 53314500 14.4 2.67
## 5 TSLA 2016-01-08 14.5 14.7 14.1 14.1 54421500 14.1 2.64
## 6 TSLA 2016-01-11 14.3 14.3 13.5 13.9 61371000 13.9 2.63
## 7 TSLA 2016-01-12 14.1 14.2 13.7 14.0 46378500 14.0 2.64
## 8 TSLA 2016-01-13 14.1 14.2 13.3 13.4 61896000 13.4 2.59
## 9 TSLA 2016-01-14 13.5 14 12.9 13.7 97360500 13.7 2.62
## 10 TSLA 2016-01-15 13.3 13.7 13.1 13.7 83679000 13.7 2.61
## # ℹ 494 more rows
##summarize
stocks |>
group_by(symbol) |>
summarize(
avg_price = mean(adjusted, na.rm = TRUE),
.groups = "drop"
)## # A tibble: 2 × 2
## symbol avg_price
## <chr> <dbl>
## 1 AMZN 35.0
## 2 TSLA 14.0