Rhitankar Bandyopadhyay
Endterm Project Presentation
The ICC World Test Championship (since 2019) introduced a structured competition but its points system has notable shortcomings.
Factors like home ground advantage, toss impact, strength of competing teams etc. are not fully accounted for.
The unbalanced schedule further skews the fairness of rankings.
This project aims to develop a more robust rating system for Test cricket, inspired by the popular Glicko’s rating system.
The goal is to integrate key contextual factors into the ranking model for a fairer and statistically sound evaluation of team performance.
How can Glicko’s rating model be adapted to account for non-performance based factors such as home ground and toss advantage in Test cricket?
What are the impacts of uneven scheduling on the accuracy of current rating system and how can it be rectified using the proposed model?
Can an adaptive Glicko model incorporate margin of victories as a key factor in assigning ratings to teams in Test cricket?
How does the proposed rating system compare to the existing ICC WTC points system in terms of fairness and predictive precision?
The ICC Team Rankings is a method developed by David Kendix. Matches played as a part of a series consisting of atleast two Tests are considered for assigning ratings.
If \(|r_A - r_B| < 40\) before the series, then updated ratings are:
\[ r_A ' =\ (Series\ points\ of\ A) (r_B + 50) + (Series\ points\ of\ B) (r_B − 50) \] \[ r_B ' =\ (Series\ points\ of\ B) (r_A + 50) + (Series\ points\ of\ A) (r_A − 50) \]
If \(|r_A - r_B| \geq 40\) before the series, and without loss of generality assuming \(r_A > r_B\), then updated ratings are:
\[ r_A ' = (Series\ points\ of\ A) (r_A + 10) + (Series\ points\ of\ B) (r_A − 90) \] \[ r_B ' = (Series\ points\ of\ B) (r_B + 90) + (Series\ points\ of\ A) (r_B − 10) \]
ICC started allotting points to teams on a per series basis towards the start of the first Test Championship cycle in 2019 but later changed it to allotting points on a per match basis what currently looks like the following.
| Match Result | Points | Share of maximum points |
|---|---|---|
| Win | 12 | 100 % |
| Tie | 6 | 50 % |
| Draw | 4 | 33.33 % |
| Lose | 0 | 0 % |
Considering ties are extremely rare in Test matches, the 12-4-0 setup displayed in the table is vastly different from the 2-1-0 setup followed in most limited overs cricket matches around the world, rather it matches with the 3-1-0 setup regularly used in football.
Alongside ratings (\(R\)), Glicko’s model introduced a new factor called ‘Rating Deviation (\(RD\))’.
\[\begin{equation} Expected\, score\, (E_A) = \frac{1}{1 + 10^{- \frac{1}{400}(R_A - R_B)g(RD_B)}} \label{1} \end{equation}\] \[\begin{equation} g(RD) = \frac{1}{\sqrt{1 + \frac{3(RD^2)}{\pi^2}}} \label{2} \end{equation}\] \[\begin{equation} Updated\, RD\, (RD_A ') = \frac{1}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} \label{3} \end{equation}\] \[\begin{equation} d^2 = \frac{1}{g(RD_B)^2 E_A (1 - E_A)} \label{4} \end{equation}\] \[\begin{equation} Updated\, rating\, (r_A ') = r_A + (RD_A)^2 g(RD_B) (S_A - E_A) = r_A + \frac{g(RD_B) (S_A - E_A)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} \label{5} \end{equation}\]where, \(S_j\) denotes as the actual score of the \(j\)-th team, which can take values \(0\), \(\frac{1}{2}\) and \(1\) corresponding to a loss, draw and win respectively.
| Glicko’s player categories | Glicko’s ratings | Test teams | Test ratings |
|---|---|---|---|
| Super Grandmasters | 2700+ | Australia | 124 |
| Most Grandmasters (GM) | 2500-2700 | India | 120 |
| Most International Masters (IM) & some GM | 2400-2500 | England | 108 |
| Most FIDE Masters (FM) & some IM | 2300-2400 | South Africa | 104 |
| FIDE Candidate Masters (CM) & National Masters | 2200-2300 | New Zealand | 96 |
| Candidate Masters & Experts | 2000-2200 | Sri Lanka | 83 |
| Class A, Category 1 | 1800-2000 | West Indies | 77 |
| Class B, Category 2 | 1600-1800 | Pakistan | 76 |
| Class C and below | below 1600 | Bangladesh | 66 |
\[ E_i = \frac{1}{1 + 10 ^ {-\frac{1}{S}{(R_i - R_j) g(RD_j)}}} \] \[ \Rightarrow E_i (1 + 10 ^ {-\frac{{\Delta R_{i,j}}}{S}}) = 1 \] \[ \Rightarrow 10 ^ {-\frac{{\Delta R_{i,j}}}{S}} = \frac{1}{E_i} - 1 \] \[ \Rightarrow {-\frac{{\Delta R_{i,j}}}{S}} = \log_{10} (\frac{1}{E_i} - 1) \] \[\begin{equation} \Rightarrow S = - \frac{{\Delta R_{i,j}}}{\log_{10} (\frac{1}{p_i} - 1)} \label{6} \end{equation}\]
Training period: June 17, 2017 to June 17, 2021
| Matches Won | Matches Lost | |
|---|---|---|
| Home team | 82 | 41 |
| Away team | 41 | 82 |
Pearson's Chi-squared test with Yates' continuity correction
data: home_impact
X-squared = 26.016, df = 1, p-value = 3.386e-07
| Matches Won | Match Lost | |
|---|---|---|
| Toss Won | 75 | 50 |
| Toss Lost | 50 | 75 |
Pearson's Chi-squared test with Yates' continuity correction
data: toss_impact
X-squared = 9.216, df = 1, p-value = 0.002399
In a hypothetical match between \(i\) (home team) and \(j\) (away team), the expected scores of a team \(i\) can be formulated as a combination of the partial expected scores of team \(i\), each of which is an attempt to introduce the two additional impacts: home (\(h\)) and toss (\(t\)). \[\begin{equation} E_{i,home} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_i - R_j + h_{i, j}) g(RD_j)}}} \label{7} \end{equation}\] \[\begin{equation} E_{i,toss} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_i - R_j + t_{i, i}) g(RD_j)}}} \label{8} \end{equation}\] Similarly, the expected scores of team \(j\) can be formulated as a combination of the partial expected scores of team \(j\) given by \[\begin{equation} E_{j,away} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_j - R_i + a_{j, i}) g(RD_j)}}} \label{9} \end{equation}\] \[\begin{equation} E_{j,toss} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_j - R_i + t_{j, i}) g(RD_j)}}} \label{10} \end{equation}\]
\(h_{i,j}\) and \(a_{j,i}\)’s constitute the home impact (h) whereas \(t_{i, i}\), \(t_{j, i}\), \(t_{j, j}\), and \(t_{i, j}\),’s constitute the toss impact (t).
\[ \begin{aligned} h_{i,j} &= \frac{(matches\ won\ by\ i\ vs\ j + 0.5 \times matches\ drawn) - (matches\ lost\ by\ i\ vs\ j + 0.5 \times matches\ drawn)}{matches\ played\ between\ i\ and\ j} \\ &= \frac{matches\ won\ by\ i\ vs\ j - matches\ lost\ by\ i\ vs\ j}{matches\ played\ between\ i\ and\ j} \end{aligned} \]
\[ \begin{aligned} a_{j,i} &= \frac{(matches\ won\ by\ j\ vs\ i + 0.5 \times matches\ drawn) - (matches\ lost\ by\ j\ vs\ i + 0.5 \times matches\ drawn)}{matches\ played\ between\ j\ and\ i} \\ &= \frac{matches\ won\ by\ j\ vs\ i - matches\ lost\ by\ j\ vs\ i}{matches\ played\ between\ i\ and\ j} \end{aligned} \]
Clearly, \(h_{i, j} = - a_{j, i} \ \ \ \ \forall \ i, j\)
\[ toss_{i,i} = \begin{cases} toss\ win\ impact\ in\ host\ country\ i\ & \text{if team}\ i \text{ wins the toss} \\ toss\ lose\ impact\ in\ host\ country\ i\ & \text{if team}\ i \text{ wins the toss} \\ \end{cases} \]
\[ toss_{j,i} = \begin{cases} toss\ win\ impact\ in\ host\ country\ i\ & \text{if team}\ j \text{ wins the toss} \\ toss\ lose\ impact\ in\ host\ country\ i\ & \text{if team}\ j \text{ loses the toss} \\ \end{cases} \]
Observe that by replacing \(10\) by \(e\), the partial expected scores resemble distribution functions of logistic distributions with respect to random variables \(U = \tan (\frac{\pi}{2}H)\) and \(V = \tan (\frac{\pi}{2}T)\). The monotone increasing, bijective transformation \(x \mapsto \tan (\frac{\pi}{2}x)\) can be taken to remove the theoretical ambiguity of \(H\) and \(T\) taking only values in the range \([-1, 1]\) but it would create complexities in exponential terms taking values \(- \infty\) and \(\infty\) which would lead to expected scores turning out to be \(0\) and \(1\) more often than not.
\[\begin{equation} F(h) = \frac{1}{1 + e ^ {- \frac{1}{20} {(R_i - R_j + h) g(RD_j)}}} = \frac{1}{1 + e ^ {- \frac{g(RD_j)}{20} (h - (R_j - R_i))}} \label{11} \end{equation}\] \[\begin{equation} F(t) = \frac{1}{1 + e ^ {- \frac{1}{20} {(R_i - R_j + t) g(RD_j)}}} = \frac{1}{1 + e ^ {- \frac{g(RD_j)}{20} (t - (R_j - R_i))}} \label{12} \end{equation}\]
Asymptotic one-sample Kolmogorov-Smirnov test
data: h_values
D = 0.09386, p-value = 0.1696
alternative hypothesis: two-sided
Asymptotic one-sample Kolmogorov-Smirnov test
data: t_values
D = 0.035952, p-value = 0.9936
alternative hypothesis: two-sided
Kolmogorov-Smirnov tests suggest the acceptance of null hypotheses in both cases which imply that both \(H\) and \(T\) are derived from logistic distributions.
Gumbel proposed a model with an association parameter \(\omega \in [1, 1]\), a distribution of the Farlie-Gumbel-Morgernstern type called the Gumbel type 2 distribution, \[ (x, y) \mapsto F(x)G(y) \left[ 1 + \omega (1 - F(x))(1 - G(y)) \right], \quad x, y \in \mathbb{R} \] The association parameter \(\omega\) satisfies the relation \(\rho = \frac{\omega}{3}\), but only over a limited range \(|\rho| \leq \frac{1}{3}\), where \(\rho\) denotes Spearman’s correlation coefficient. It can be shown that, \[ \begin{aligned} \rho(X,Y) &= 12 \int_0^1 \int_0^1 ( C_{\omega}(x, y) - xy ) \, dx dy \\ &= 12 \int_0^1 \int_0^1 ( xy [1 + \omega (1-x)(1-y)] - xy) \, dx dy \\ &= \frac{\omega}{3} \end{aligned} \]
For the training dataset used in this study, \(\rho\) turns out to be \(-0.1812159\) so the above choice of association parameter (\(\omega = -0.5436477\)) can be used.
| Teams/Host | Matches | Won | Lost | Drawn | Rating | RD | Toss Win Impact | Toss Lose Impact |
|---|---|---|---|---|---|---|---|---|
| Australia | 33 | 17 | 11 | 5 | 124 | 15.2 | -0.1500 | 0.1500 |
| Bangladesh | 19 | 3 | 14 | 2 | 66 | 13.6 | 0.4167 | -0.4167 |
| England | 52 | 25 | 20 | 7 | 108 | 11.4 | 0.0714 | -0.0714 |
| India | 37 | 22 | 11 | 4 | 120 | 11.2 | 0.0588 | -0.0588 |
| New Zealand | 26 | 17 | 5 | 4 | 96 | 27.3 | 0.0625 | -0.0625 |
| Pakistan | 24 | 7 | 13 | 4 | 76 | 11.8 | 0.5714 | -0.5714 |
| South Africa | 32 | 15 | 17 | 0 | 104 | 27.3 | 0.2381 | -0.2381 |
| Sri Lanka | 36 | 10 | 17 | 9 | 83 | 9.1 | 0.2667 | -0.2667 |
| West Indies | 29 | 9 | 17 | 3 | 77 | 10.8 | -0.1538 | 0.1538 |
| Date | Team_1 | Team_2 | Toss | RA | RB | RDA | RDB | EA | EB | Winner |
|---|---|---|---|---|---|---|---|---|---|---|
| 4-8-21 | England | India | England | 108.47 | 119.53 | 11.20 | 8.43 | 0.4700424 | 0.5100215 | Draw |
| 12-8-21 | England | India | England | 103.39 | 124.61 | 8.41 | 6.31 | 0.4379193 | 0.5361286 | India |
| 12-8-21 | West_Indies | Pakistan | West_Indies | 84.29 | 68.48 | 11.80 | 8.35 | 0.5262487 | 0.4679253 | West_Indies |
| 20-8-21 | West_Indies | Pakistan | West_Indies | 78.22 | 74.57 | 8.44 | 6.29 | 0.5017571 | 0.4841534 | Pakistan |
| 25-8-21 | England | India | India | 108.20 | 119.80 | 6.31 | 4.78 | 0.4557785 | 0.5224965 | England |
| 2-9-21 | England | India | England | 105.61 | 122.39 | 4.78 | 3.65 | 0.4283757 | 0.5461523 | India |
| 21-11-21 | Sri_Lanka | West_Indies | Sri_Lanka | 87.93 | 74.00 | 6.29 | 5.66 | 0.5337309 | 0.4557071 | Sri_Lanka |
| 25-11-21 | India | New_Zealand | India | 121.82 | 97.37 | 27.30 | 3.62 | 0.5878365 | 0.4746315 | Draw |
| 26-11-21 | Bangladesh | Pakistan | Bangladesh | 60.31 | 78.92 | 6.30 | 6.39 | 0.4441140 | 0.5407130 | Pakistan |
| 29-11-21 | Sri_Lanka | West_Indies | Sri_Lanka | 90.97 | 71.05 | 5.36 | 4.20 | 0.5649807 | 0.4324164 | Sri_Lanka |
| 3-12-21 | India | New_Zealand | India | 123.42 | 95.46 | 4.62 | 3.04 | 0.6150080 | 0.4021956 | India |
| 4-12-21 | Bangladesh | Pakistan | Pakistan | 57.00 | 82.07 | 5.81 | 4.65 | 0.4110092 | 0.5628424 | Pakistan |
| 8-12-21 | Australia | England | England | 127.48 | 103.60 | 3.65 | 4.39 | 0.5749195 | 0.4009270 | Australia |
| 16-12-21 | Australia | England | Australia | 129.30 | 102.04 | 3.57 | 3.17 | 0.6091128 | 0.3869717 | Australia |
| 26-12-21 | Australia | England | Australia | 130.45 | 100.96 | 2.97 | 2.50 | 0.6373556 | 0.3651889 | Australia |
| 26-12-21 | South_Africa | India | India | 100.92 | 124.94 | 3.04 | 3.99 | 0.4069854 | 0.5959549 | India |
| 1-1-22 | New_Zealand | Bangladesh | Bangladesh | 92.62 | 61.21 | 4.65 | 2.86 | 0.6345130 | 0.3905036 | Bangladesh |
| 3-1-22 | South_Africa | India | India | 104.02 | 122.59 | 3.03 | 2.85 | 0.4105302 | 0.5732703 | South_Africa |
| 5-1-22 | Australia | England | Australia | 129.81 | 101.58 | 2.44 | 2.07 | 0.6458851 | 0.3560299 | Draw |
| 9-1-22 | New_Zealand | Bangladesh | Bangladesh | 93.57 | 60.12 | 3.26 | 2.40 | 0.6590498 | 0.3576201 | New_Zealand |
| 11-1-22 | South_Africa | India | India | 106.11 | 120.72 | 2.59 | 2.24 | 0.4184640 | 0.5620581 | South_Africa |
| 14-1-22 | Australia | England | England | 130.40 | 101.00 | 2.04 | 1.76 | 0.6648158 | 0.3375683 | Australia |
| 17-2-22 | New_Zealand | South_Africa | New_Zealand | 95.15 | 104.66 | 2.24 | 1.93 | 0.4417655 | 0.5419657 | New_Zealand |
| 25-2-22 | New_Zealand | South_Africa | South_Africa | 94.35 | 105.43 | 1.86 | 1.61 | 0.4252915 | 0.5536730 | South_Africa |
| 4-3-22 | India | Sri_Lanka | India | 121.39 | 89.68 | 4.20 | 1.99 | 0.6670818 | 0.3832106 | India |
| 4-3-22 | Pakistan | Australia | Pakistan | 84.36 | 129.98 | 1.76 | 2.97 | 0.3058969 | 0.7441296 | Draw |
| 8-3-22 | West_Indies | England | England | 72.23 | 100.67 | 1.75 | 2.53 | 0.3591652 | 0.6586796 | Draw |
| 12-3-22 | Pakistan | Australia | Australia | 85.77 | 129.52 | 1.69 | 2.32 | 0.2876977 | 0.7399467 | Draw |
| 12-3-22 | India | Sri_Lanka | India | 121.93 | 88.91 | 2.67 | 1.77 | 0.6843691 | 0.3424820 | India |
| 16-3-22 | West_Indies | England | England | 72.97 | 100.32 | 1.66 | 1.96 | 0.3456835 | 0.6569203 | Draw |
| 21-3-22 | Pakistan | Australia | Australia | 85.31 | 129.79 | 1.58 | 1.95 | 0.2669035 | 0.7503878 | Australia |
| 24-3-22 | West_Indies | England | West_Indies | 74.56 | 99.29 | 1.51 | 1.63 | 0.3474286 | 0.6482179 | West_Indies |
| 31-3-22 | South_Africa | Bangladesh | Bangladesh | 105.70 | 59.62 | 2.55 | 1.48 | 0.7686615 | 0.2847657 | South_Africa |
| 8-4-22 | South_Africa | Bangladesh | South_Africa | 105.92 | 59.25 | 2.09 | 1.38 | 0.7785192 | 0.2614981 | South_Africa |
| 15-5-22 | Bangladesh | Sri_Lanka | Sri_Lanka | 59.70 | 88.33 | 2.10 | 1.61 | 0.3253600 | 0.6457759 | Draw |
| 23-5-22 | Bangladesh | Sri_Lanka | Bangladesh | 59.31 | 88.78 | 1.76 | 1.43 | 0.3117054 | 0.6640840 | Sri_Lanka |
| 2-6-22 | England | New_Zealand | New_Zealand | 99.83 | 93.66 | 1.61 | 1.22 | 0.5352901 | 0.4560290 | England |
| 10-6-22 | England | New_Zealand | England | 100.27 | 93.14 | 1.35 | 1.10 | 0.5449382 | 0.4452617 | England |
| 16-6-22 | West_Indies | Bangladesh | West_Indies | 75.12 | 58.85 | 1.43 | 1.39 | 0.6020809 | 0.3866809 | West_Indies |
| 23-6-22 | England | New_Zealand | New_Zealand | 100.64 | 92.73 | 1.18 | 1.00 | 0.5530142 | 0.4366191 | England |
| 24-6-22 | West_Indies | Bangladesh | West_Indies | 75.54 | 58.48 | 1.28 | 1.23 | 0.6133230 | 0.3765585 | West_Indies |
| 29-6-22 | Sri_Lanka | Australia | Sri_Lanka | 88.52 | 130.03 | 1.47 | 1.40 | 0.2469868 | 0.7434365 | Australia |
| 1-7-22 | England | India | England | 101.13 | 120.59 | 1.77 | 0.95 | 0.3504587 | 0.6069068 | England |
| 8-7-22 | Sri_Lanka | Australia | Australia | 89.68 | 128.94 | 1.35 | 1.29 | 0.2532708 | 0.7418033 | Sri_Lanka |
| 16-7-22 | Sri_Lanka | Pakistan | Sri_Lanka | 89.10 | 86.39 | 1.95 | 1.18 | 0.5093176 | 0.4766664 | Pakistan |
| 24-7-22 | Sri_Lanka | Pakistan | Sri_Lanka | 89.55 | 85.71 | 1.53 | 1.08 | 0.5214370 | 0.4700376 | Sri_Lanka |
| 17-8-22 | England | South_Africa | South_Africa | 100.83 | 106.48 | 1.38 | 0.89 | 0.4489520 | 0.5287790 | South_Africa |
| 25-8-22 | England | South_Africa | South_Africa | 101.17 | 105.92 | 1.18 | 0.83 | 0.4554072 | 0.5257691 | England |
| 8-9-22 | England | South_Africa | England | 101.47 | 105.46 | 1.05 | 0.78 | 0.4612568 | 0.5211478 | England |
| 30-11-22 | Australia | West_Indies | Australia | 129.05 | 75.43 | 1.23 | 1.20 | 0.8229687 | 0.1824153 | Australia |
| 1-12-22 | Pakistan | England | England | 85.33 | 101.63 | 0.78 | 1.13 | 0.3774392 | 0.6226871 | England |
| 8-12-22 | Australia | West_Indies | Australia | 129.16 | 75.33 | 1.17 | 1.15 | 0.8279064 | 0.1749331 | Australia |
| 9-12-22 | Pakistan | England | England | 85.03 | 101.78 | 0.75 | 1.01 | 0.3698124 | 0.6307242 | England |
| 14-12-22 | Bangladesh | India | India | 58.41 | 120.69 | 1.45 | 1.12 | 0.1387956 | 0.8373560 | India |
| 17-12-22 | Australia | South_Africa | Australia | 129.41 | 105.28 | 0.95 | 1.05 | 0.6700147 | 0.3188350 | Australia |
| 17-12-22 | Pakistan | England | Pakistan | 84.77 | 101.92 | 0.72 | 0.93 | 0.3633450 | 0.6358314 | England |
| 22-12-22 | Bangladesh | India | Bangladesh | 58.33 | 120.79 | 1.39 | 1.09 | 0.1357264 | 0.8439283 | India |
| 26-12-22 | Australia | South_Africa | Australia | 129.63 | 105.12 | 0.89 | 0.97 | 0.6775530 | 0.3097629 | Australia |
| 26-12-22 | Pakistan | New_Zealand | Pakistan | 84.83 | 92.65 | 1.06 | 0.86 | 0.4318143 | 0.5498205 | Draw |
| 2-1-23 | Pakistan | New_Zealand | New_Zealand | 84.88 | 92.59 | 0.96 | 0.81 | 0.4314379 | 0.5510712 | Draw |
| 4-1-23 | Australia | South_Africa | Australia | 129.44 | 105.26 | 0.84 | 0.91 | 0.6779671 | 0.3089947 | Draw |
| 9-2-23 | India | Australia | Australia | 121.51 | 129.07 | 0.91 | 1.15 | 0.4421657 | 0.5510226 | India |
| 17-2-23 | India | Australia | Australia | 122.07 | 128.74 | 0.86 | 1.02 | 0.4461872 | 0.5420209 | India |
| 28-2-23 | South_Africa | West_Indies | South_Africa | 105.38 | 75.13 | 1.13 | 0.77 | 0.7317005 | 0.2910127 | South_Africa |
| 1-3-23 | India | Australia | India | 121.73 | 128.96 | 0.81 | 0.93 | 0.4381794 | 0.5476988 | Australia |
| 8-3-23 | South_Africa | West_Indies | South_Africa | 105.48 | 74.95 | 1.04 | 0.75 | 0.7352777 | 0.2810844 | South_Africa |
| 9-3-23 | New_Zealand | Sri_Lanka | New_Zealand | 92.87 | 89.15 | 1.08 | 0.83 | 0.5254259 | 0.4629357 | New_Zealand |
| 9-3-23 | India | Australia | Australia | 121.79 | 128.93 | 0.76 | 0.86 | 0.4370384 | 0.5504945 | Draw |
| 17-3-23 | New_Zealand | Sri_Lanka | Sri_Lanka | 93.12 | 88.82 | 0.97 | 0.78 | 0.5308461 | 0.4570962 | New_Zealand |
| 7-6-23 | Australia | India | India | 129.11 | 121.54 | 0.86 | 0.69 | 0.5560195 | 0.4341685 | Australia |
The expected scores in most matches turn out to be fairly decent from a predictive perspective as the model correctly predicts the winner in 44 of the 56 non drawn matches. The changes in ratings and rating deviations are also justified in accordance with the result of the matches.
| Rankings | Teams ranked as per ICC ratings | ICC Ratings | Teams ranked as per this study | Improvised Glicko's Ratings |
|---|---|---|---|---|
| 1 | India | 118 | Australia | 129.11 |
| 2 | Australia | 118 | India | 121.54 |
| 3 | England | 115 | South Africa | 105.18 |
| 4 | South Africa | 104 | England | 101.92 |
| 5 | New Zealand | 100 | New Zealand | 93.12 |
| 6 | Pakistan | 92 | Sri Lanka | 88.82 |
| 7 | Sri Lanka | 79 | Pakistan | 84.88 |
| 8 | West Indies | 77 | West Indies | 74.95 |
| 9 | Bangladesh | 46 | Bangladesh | 58.33 |
The above table is as per ICC’s ratings immediately after the completion of WTC 2021-23 cycle, on July 31, 2023.
\(E_A\) can be written as \(p = p_1 p_2 [1 + \omega (1 - p_1) (1 - p_2)]\) where,
\[ p_1 = \frac{1}{1 + e^{-L_1}} \ \ ; \hspace{1cm} L_1 = \frac{g(RD_B)}{20} (h - (R_B - R_A)) \] \[ p_2 = \frac{1}{1 + e^{-L_2}} \ \ ; \hspace{1cm} L_2 = \frac{g(RD_B)}{20} (t - (R_B - R_A)) \]
Expected scores are functions of \(h\) and \(t\) and hence, essentially functions of \(\boldsymbol{L} = (L_1, L_2)\).
\[\begin{equation} \frac{\partial p}{\partial L_1} = p_2[1 + (1 + 2p_1p_2 -2p_1 - p_2)\omega] \frac{e^{-L_1}}{(1 + e^{-L_1})^2} \label{14} \end{equation}\]
\[\begin{equation} \frac{\partial p}{\partial L_2} = p_1[1 + (1 + 2p_1p_2 -2p_2 - p_1)\omega] \frac{e^{-L_2}}{(1 + e^{-L_2})^2} \label{15} \end{equation}\]
\[\begin{equation} \operatorname{Var}(L_1) = \left(\frac{g(RD_B)}{20}\right)^2 \operatorname{Var}(h) \label{16} \end{equation}\]
\[\begin{equation} \operatorname{Var}(L_2) = \left(\frac{g(RD_B)}{20}\right)^2 \operatorname{Var}(t) \label{17} \end{equation}\]
\[\begin{equation} \operatorname{Cov}(L_1, L_2) = \left(\frac{g(RD_B)}{20}\right)^2 \operatorname{Cov}(h, t) \label{18} \end{equation}\]
Using the above equations, \(\operatorname{Var}(p)\) can be obtained by, \[\begin{equation} \operatorname{Var}(p) = \begin{pmatrix} \frac{\partial p}{\partial L_1} & \frac{\partial p}{\partial L_2} \end{pmatrix} \operatorname{Cov}(\boldsymbol{L}) \begin{pmatrix} \frac{\partial p}{\partial L_1} \\[6pt] \frac{\partial p}{\partial L_2} \end{pmatrix} \label{19} \end{equation}\]
| Match | Team A | Team B | EA | EB | CI for EA | CI for EB |
|---|---|---|---|---|---|---|
| 1 | England | India | 0.4076114 | 0.4484354 | (0.406, 0.409) | (0.447, 0.45) |
| 2 | England | India | 0.3776538 | 0.4773320 | (0.376, 0.379) | (0.476, 0.479) |
| 3 | West_Indies | Pakistan | 0.4665318 | 0.4054673 | (0.465, 0.468) | (0.404, 0.407) |
| 4 | West_Indies | Pakistan | 0.4397510 | 0.4213342 | (0.438, 0.442) | (0.42, 0.423) |
| 5 | England | India | 0.3940044 | 0.4620516 | (0.392, 0.396) | (0.46, 0.464) |
| 6 | England | India | 0.3693115 | 0.4888242 | (0.367, 0.372) | (0.486, 0.492) |
| 7 | Sri_Lanka | West_Indies | 0.4749215 | 0.3938992 | (0.473, 0.477) | (0.392, 0.396) |
| 8 | India | New_Zealand | 0.5394235 | 0.4120300 | (0.536, 0.543) | (0.412, 0.413) |
| 9 | Bangladesh | Pakistan | 0.3829220 | 0.4827742 | (0.381, 0.385) | (0.481, 0.485) |
| 10 | Sri_Lanka | West_Indies | 0.5115404 | 0.3726246 | (0.508, 0.515) | (0.371, 0.374) |
| 11 | India | New_Zealand | 0.5745958 | 0.3475874 | (0.57, 0.579) | (0.346, 0.349) |
| 12 | Bangladesh | Pakistan | 0.3544067 | 0.5091356 | (0.353, 0.356) | (0.507, 0.512) |
| 13 | Australia | England | 0.5237835 | 0.3463718 | (0.521, 0.527) | (0.344, 0.349) |
| 14 | Australia | England | 0.5671717 | 0.3356648 | (0.563, 0.571) | (0.334, 0.338) |
| 15 | Australia | England | 0.6048246 | 0.3200131 | (0.6, 0.609) | (0.318, 0.322) |
| 16 | South_Africa | India | 0.3513462 | 0.5496634 | (0.349, 0.353) | (0.546, 0.554) |
| 17 | New_Zealand | Bangladesh | 0.6004767 | 0.3383698 | (0.596, 0.605) | (0.337, 0.34) |
| 18 | South_Africa | India | 0.3542661 | 0.5214648 | (0.352, 0.357) | (0.518, 0.525) |
| 19 | Australia | England | 0.6165030 | 0.3138049 | (0.611, 0.622) | (0.312, 0.316) |
| 20 | New_Zealand | Bangladesh | 0.6344111 | 0.3150040 | (0.63, 0.639) | (0.313, 0.317) |
| 21 | South_Africa | India | 0.3608701 | 0.5077472 | (0.358, 0.364) | (0.503, 0.512) |
| 22 | Australia | England | 0.6429710 | 0.3020540 | (0.637, 0.649) | (0.3, 0.304) |
| 23 | New_Zealand | South_Africa | 0.3813957 | 0.4841918 | (0.378, 0.385) | (0.48, 0.489) |
| 24 | New_Zealand | South_Africa | 0.3665334 | 0.4972471 | (0.363, 0.37) | (0.492, 0.502) |
| 25 | India | Sri_Lanka | 0.6457114 | 0.3330108 | (0.64, 0.651) | (0.331, 0.335) |
| 26 | Pakistan | Australia | 0.2841864 | 0.7593169 | (0.283, 0.286) | (0.754, 0.765) |
| 27 | West_Indies | England | 0.3161637 | 0.6331972 | (0.314, 0.318) | (0.627, 0.639) |
| 28 | Pakistan | Australia | 0.2750705 | 0.7529551 | (0.274, 0.277) | (0.747, 0.758) |
| 29 | India | Sri_Lanka | 0.6704844 | 0.3051988 | (0.665, 0.676) | (0.303, 0.307) |
| 30 | West_Indies | England | 0.3073548 | 0.6307535 | (0.305, 0.31) | (0.625, 0.637) |
| 31 | Pakistan | Australia | 0.2657076 | 0.7691235 | (0.264, 0.267) | (0.764, 0.775) |
| 32 | West_Indies | England | 0.3084891 | 0.6187662 | (0.306, 0.311) | (0.613, 0.625) |
| 33 | South_Africa | Bangladesh | 0.7982044 | 0.2736269 | (0.793, 0.804) | (0.272, 0.275) |
| 34 | South_Africa | Bangladesh | 0.8137516 | 0.2634380 | (0.808, 0.819) | (0.262, 0.265) |
| 35 | Bangladesh | Sri_Lanka | 0.2948431 | 0.6162557 | (0.293, 0.297) | (0.611, 0.621) |
| 36 | Bangladesh | Sri_Lanka | 0.2871947 | 0.6415939 | (0.285, 0.289) | (0.636, 0.647) |
| 37 | England | New_Zealand | 0.4765527 | 0.3943320 | (0.471, 0.482) | (0.39, 0.399) |
| 38 | England | New_Zealand | 0.4878118 | 0.3841729 | (0.482, 0.494) | (0.38, 0.389) |
| 39 | West_Indies | Bangladesh | 0.5584497 | 0.3352851 | (0.552, 0.565) | (0.332, 0.339) |
| 40 | England | New_Zealand | 0.4974200 | 0.3762860 | (0.491, 0.504) | (0.372, 0.381) |
| 41 | West_Indies | Bangladesh | 0.5730605 | 0.3278788 | (0.567, 0.58) | (0.325, 0.331) |
| 42 | Sri_Lanka | Australia | 0.2577511 | 0.7585050 | (0.256, 0.259) | (0.753, 0.764) |
| 43 | England | India | 0.3104318 | 0.5635684 | (0.307, 0.314) | (0.558, 0.569) |
| 44 | Sri_Lanka | Australia | 0.2601986 | 0.7568075 | (0.259, 0.262) | (0.751, 0.763) |
| 45 | Sri_Lanka | Pakistan | 0.4469947 | 0.4141126 | (0.441, 0.453) | (0.41, 0.418) |
| 46 | Sri_Lanka | Pakistan | 0.4608255 | 0.4081461 | (0.455, 0.467) | (0.404, 0.413) |
| 47 | England | South_Africa | 0.3877043 | 0.4687737 | (0.382, 0.393) | (0.463, 0.474) |
| 48 | England | South_Africa | 0.3937877 | 0.4655893 | (0.388, 0.399) | (0.46, 0.471) |
| 49 | England | South_Africa | 0.3993689 | 0.4603797 | (0.394, 0.405) | (0.454, 0.466) |
| 50 | Australia | West_Indies | 0.8855519 | 0.2386097 | (0.88, 0.891) | (0.238, 0.239) |
| 51 | Pakistan | England | 0.3283745 | 0.5849539 | (0.325, 0.332) | (0.577, 0.593) |
| 52 | Australia | West_Indies | 0.8936077 | 0.2369517 | (0.888, 0.899) | (0.236, 0.238) |
| 53 | Pakistan | England | 0.3229428 | 0.5968173 | (0.319, 0.326) | (0.589, 0.605) |
| 54 | Bangladesh | India | 0.2304499 | 0.9085226 | (0.23, 0.231) | (0.904, 0.913) |
| 55 | Australia | South_Africa | 0.6505927 | 0.2912182 | (0.644, 0.658) | (0.289, 0.294) |
| 56 | Pakistan | England | 0.3184957 | 0.6036633 | (0.315, 0.322) | (0.596, 0.612) |
| 57 | Bangladesh | India | 0.2300000 | 0.9200000 | (0.23, 0.23) | (0.916, 0.924) |
| 58 | Australia | South_Africa | 0.6613315 | 0.2860778 | (0.654, 0.669) | (0.283, 0.289) |
| 59 | Pakistan | New_Zealand | 0.3719246 | 0.4937944 | (0.367, 0.377) | (0.487, 0.5) |
| 60 | Pakistan | New_Zealand | 0.3716491 | 0.4951635 | (0.367, 0.377) | (0.489, 0.502) |
| 61 | Australia | South_Africa | 0.6616358 | 0.2856601 | (0.654, 0.669) | (0.283, 0.288) |
| 62 | India | Australia | 0.3818613 | 0.4947446 | (0.377, 0.387) | (0.488, 0.502) |
| 63 | India | Australia | 0.3855634 | 0.4833856 | (0.381, 0.39) | (0.477, 0.49) |
| 64 | South_Africa | West_Indies | 0.7411921 | 0.2767008 | (0.734, 0.749) | (0.275, 0.279) |
| 65 | India | Australia | 0.3780085 | 0.4899063 | (0.373, 0.383) | (0.483, 0.497) |
| 66 | South_Africa | West_Indies | 0.7466228 | 0.2718980 | (0.739, 0.754) | (0.27, 0.274) |
| 67 | New_Zealand | Sri_Lanka | 0.4657799 | 0.4004988 | (0.459, 0.472) | (0.395, 0.406) |
| 68 | India | Australia | 0.3769769 | 0.4937145 | (0.372, 0.382) | (0.487, 0.501) |
| 69 | New_Zealand | Sri_Lanka | 0.4719760 | 0.3948365 | (0.465, 0.479) | (0.39, 0.4) |
| 70 | Australia | India | 0.5005157 | 0.3743877 | (0.493, 0.508) | (0.369, 0.379) |
Keeping the effect of exogenous variables such as rain-affected matches or other hazardous weather conditions, flat pitches, imposition of suspensions or draws due to political and/or various security concerns etc. in mind, two of the most obvious performance based factors to infer on draws are:
Define, for \(\alpha \in (0,1)\), a convex combinbation, \[ D_{\alpha, A, B} = \alpha (1 - E_A - E_B) + (1 - \alpha) |E_A - E_B| \]
A well predicted drawn Test match should produce a high value of \(D_{\alpha, A, B}\) for a certain choice of \(\alpha \in (0,1)\). Equivalently, we might be interested to find a choice of \(\alpha\) for which a significantly large proportion of matches having high \(D_{\alpha, A, B}\) values actually result in draws. A trade-off occurs between choices of \(\alpha \in (0,1)\) and choices of a significantly large proportion i.e, \(q\)-th quantile of the \(D_{\alpha, A, B}\) values of all the matches in a specific time period.
The following table shows how many of the 12 drawn Test matches during WTC 2021-23 could be predicted by a trade-off between the choices of \(\alpha\) and \(q\)-th cutoff quantile.
| Top \(100(1-q) \%\) | \(35 \%\) | \(33 \%\) | \(30 \%\) | \(25 \%\) | \(20 \%\) | \(15 \%\) | \(10 \%\) | \(5 \%\) |
|---|---|---|---|---|---|---|---|---|
| \(\alpha =\) 0.00 | 7 | 7 | 4 | 2 | 2 | 1 | 1 | 1 |
| \(\alpha =\) 0.05 | 7 | 7 | 4 | 4 | 2 | 2 | 1 | 1 |
| \(\alpha =\) 0.10 | 8 | 8 | 4 | 4 | 2 | 2 | 1 | 1 |
| \(\alpha =\) 0.15 | 8 | 8 | 4 | 4 | 3 | 2 | 1 | 1 |
| \(\alpha =\) 0.20 | 8 | 8 | 5 | 4 | 3 | 2 | 1 | 1 |
| \(\alpha =\) 0.25 | 8 | 8 | 5 | 4 | 4 | 2 | 2 | 1 |
| \(\alpha =\) 0.30 | 8 | 8 | 5 | 4 | 4 | 2 | 1 | 1 |
| \(\alpha =\) 0.35 | 8 | 8 | 5 | 4 | 4 | 2 | 1 | 1 |
| \(\alpha =\) 0.40 | 8 | 8 | 5 | 5 | 4 | 2 | 1 | 1 |
| \(\alpha =\) 0.45 | 8 | 8 | 5 | 4 | 4 | 2 | 2 | 1 |
| \(\alpha =\) 0.50 | 8 | 8 | 5 | 4 | 4 | 3 | 1 | 1 |
| \(\alpha =\) 0.55 | 9 | 9 | 7 | 6 | 4 | 4 | 3 | 3 |
| \(\alpha =\) 0.60 | 9 | 9 | 8 | 7 | 6 | 4 | 3 | 3 |
| \(\alpha =\) 0.65 | 9 | 9 | 7 | 6 | 4 | 4 | 3 | 3 |
| \(\alpha =\) 0.70 | 8 | 8 | 6 | 6 | 4 | 3 | 3 | 3 |
| \(\alpha =\) 0.75 | 8 | 8 | 6 | 4 | 4 | 2 | 1 | 1 |
| \(\alpha =\) 0.80 | 8 | 8 | 6 | 4 | 2 | 2 | 1 | 1 |
| \(\alpha =\) 0.85 | 8 | 8 | 4 | 3 | 3 | 2 | 1 | 1 |
| \(\alpha =\) 0.90 | 8 | 8 | 4 | 2 | 2 | 1 | 1 | 1 |
| \(\alpha =\) 0.95 | 8 | 8 | 4 | 2 | 1 | 1 | 1 | 1 |
| \(\alpha =\) 1.00 | 8 | 8 | 4 | 3 | 2 | 2 | 1 | 1 |
For the chosen time period, \(\alpha \in [0.55, 0.65]\) yields the highest proportion (\(9\) out of \(12\)) of accurately predicted drawn Test matches. A higher proportion is maintained for the particular choice of \(\alpha = 0.6\) for several choices of the quantile \(q\). Based on our findings from the test data, we can consider \((0.6, 0.67)\) to be a sensible choice of \((\alpha, q)\).
Let us reformulate \(S_A\) as,
\[ S_A = \begin{cases} \frac{1 + MOV}{2} & \text{if team } A \text{ wins the match} \\ \frac{1 - MOV}{2} & \text{if team } A \text{ loses the match} \\ \frac{1}{2} & \text{otherwise} \end{cases} \]
where \(MOV\) for \(i\)-th match is defined to be,
\[ MOV_i = \left(\frac{R_i - R_{min}}{range_{R}}\right)^{\beta_i} \left(\frac{W_i - W_{min}}{range_{W}}\right)^{1 - \beta_i} + I_i \left(\frac{E4P_i + ERM_i}{TR_i}\right) \]
The scaling used in the reformulation of \(S_A\) is constructed in a way that the mean \((= \frac{1}{2})\) is conserved from the original definition of \(S_A\).
\[ R_i = \text{margin of victory by runs in } i \text{-th match} \] \[ W_i = \text{margin of victory by wickets in } i \text{-th match} \] \[ R_{min} = \text{minimum margin of runs in which a match is won} \] \[ W_{min} = \text{minimum margin of wickets in which a match is won} \] \[ \beta_i = \begin{cases} 1 & \text{if } i \text{-th match is won by margin of runs} \\ 0 & \text{otherwise} \end{cases} \] \[ E4P_i = \frac{E4R_i}{E4R} = \frac{\text{Expected 4th innings score of winner in } i \text{-th match}}{\text{Overall expected 4th innings score}} \] \[ ERM_i = \text{margin of victory by excess runs over an innings in } i \text{-th match} \] \[ TR_i = \text{Total runs scored in } i \text{-th match} \] \[ I_i = \begin{cases} 1 & \text{if } i \text{-th match is won by an innings margin} \\ 0 & \text{otherwise} \end{cases} \]
If a random variable \(X_A\) denotes the runs scored by team \(A\) in a Test innings while getting all-out and it follows a certain distributional assumption with density \(f_A\), then we can estimate the expected runs scored in a Test innings while team \(A\) have either declared (after scoring \(x_A\) runs) or not batted at all (\(x_A = 0\)), by calculating the Mean Residual Life (MRL) of team \(A\),
\[ MRL_{A} = \mathbb{E} [X_A | X_A > x_A] = \frac{\int_{x_A}^{\infty} t f_A(t) dt}{\int_{x_A}^{\infty} f_A(t) dt} \]
We can bound the upper limit to \(952\) (highest ever recorded team score in an innings in Test cricket) instead of \(\infty\) to avoid overestimation.
The following well known distributions are observed to fit well for 4th innings of Test matches corresponding to each team based on the training period.
| Teams | Distributions | Estimated | Parameters |
|---|---|---|---|
| Australia | Gamma | shape = 7.5496 | rate = 0.0365 |
| Bangladesh | Gamma | shape = 4.1374 | rate = 0.0255 |
| West Indies | Gamma | shape = 7.6367 | rate = 0.0443 |
| Pakistan | Normal | mean = 232.5 | sd = 61.8373 |
| South Africa | Normal | mean = 215.75 | sd = 67.1269 |
| Sri Lanka | Normal | mean = 228.111 | sd = 35.1171 |
| England | Lognormal | meanlog = 5.2554 | sdlog = 0.3037 |
| India | Lognormal | meanlog = 5.2153 | sdlog = 0.2916 |
| New Zealand | Lognormal | meanlog = 5.1523 | sdlog = 0.2383 |
Using the corresponding distributional assumptions, the expected 4th innings scores of every team during ‘declarations’ and ‘did not bat’ have been calculated. The average expected 4th innings score (\(E4R\)) based on the training period has been found out to be \(233.6189\).
We could similarly find the expected scores at the end of innings on the \(12\) occassions of declarations during ICC WTC 2021-23.
| Date | Team A | Opposition | Scored runs \((x_A)\) / wickets | Expected score |
|---|---|---|---|---|
| 4-8-21 | India | England | 52/1 | 192.0834 |
| 25-11-21 | New Zealand | India | 165/9 | 174.0974 |
| 5-1-22 | England | Australia | 270/9 | 291.1815 |
| 4-3-22 | Pakistan | Australia | 252/0 | 394.8864 |
| 8-3-22 | West Indies | England | 147/4 | 208.3739 |
| 12-3-22 | Pakistan | Australia | 443/7 | 458.8894 |
| 16-3-22 | West Indies | England | 135/5 | 200.6276 |
| 15-5-22 | Sri Lanka | Bangladesh | 260/6 | 279.1016 |
| 26-12-22 | New Zealand | Pakistan | 61/1 | 177.8183 |
| 2-1-23 | Pakistan | New Zealand | 304/9 | 311.6344 |
| 4-1-23 | South Africa | Australia | 106/2 | 239.5533 |
| 9-3-23 | Australia | India | 175/2 | 279.6153 |
Note that considering only runs scored \((x)\) until declaration might draw inaccurate inferences, hence number of wickets fell until declaration has also been taken into account and runs per dismissal have been accordingly used to calculate the MRL values.
We previously updated the ratings of teams using the formula,
\[ r_A' = r_A + (RD_A)^2 g(RD_B) (S_A - E_A) = r_A + \frac{g(RD_B) (S_A - E_A)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} \]
Using the Expected Scores (\(E_A\)) as explained earlier and the revised formula of \(S_A\), ratings of teams can now be updated as,
\[ r_A' = \begin{cases} r_A + \frac{g(RD_B) \left(\frac{1 + MOV_i}{2} - E_A \right)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} & \text{if team $A$ wins the } i \text{-th match} \\ \\ r_A + \frac{g(RD_B) \left(\frac{1 - MOV_i}{2} - E_A \right)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} & \text{if team $A$ loses the } i \text{-th match} \\ \\ r_A + \frac{g(RD_B) \left(\frac{1}{2} - E_A \right)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} & \text{if the } i \text{-th match results in a draw} \end{cases} \]
| Date | Home (A) | Away (B) | EA | EB | Winner | MOV | rA′ | rB′ |
|---|---|---|---|---|---|---|---|---|
| 4-8-21 | England | India | 0.4700424 | 0.5100215 | Draw | 0.0000 | 108.50689 | 119.51801 |
| 12-8-21 | England | India | 0.4379193 | 0.5361286 | India | 0.2470 | 103.31635 | 124.71072 |
| 12-8-21 | West_Indies | Pakistan | 0.5262487 | 0.4679253 | West_Indies | 0.0000 | 84.25754 | 68.51835 |
| 20-8-21 | West_Indies | Pakistan | 0.5017571 | 0.4841534 | Pakistan | 0.2469 | 78.07020 | 74.73039 |
| 25-8-21 | England | India | 0.4557785 | 0.5224965 | England | 0.0979 | 108.30744 | 119.72149 |
| 2-9-21 | England | India | 0.4283757 | 0.5461523 | India | 0.2634 | 105.54378 | 122.47877 |
| 21-11-21 | Sri_Lanka | West_Indies | 0.5337309 | 0.4557071 | Sri_Lanka | 0.3994 | 88.12120 | 73.82382 |
| 25-11-21 | India | New_Zealand | 0.5878365 | 0.4746315 | Draw | 0.0000 | 121.70545 | 97.39625 |
| 26-11-21 | Bangladesh | Pakistan | 0.4441140 | 0.5407130 | Pakistan | 0.7778 | 59.92575 | 79.32221 |
| 29-11-21 | Sri_Lanka | West_Indies | 0.5649807 | 0.4324164 | Sri_Lanka | 0.3574 | 91.09795 | 70.93075 |
| 3-12-21 | India | New_Zealand | 0.6150080 | 0.4021956 | India | 1.0000 | 123.84354 | 95.06085 |
| 4-12-21 | Bangladesh | Pakistan | 0.4110092 | 0.5628424 | Pakistan | 0.0156 | 57.09282 | 82.00968 |
| 8-12-21 | Australia | England | 0.5749195 | 0.4009270 | Australia | 0.8889 | 127.86411 | 103.22478 |
| 16-12-21 | Australia | England | 0.6091128 | 0.3869717 | Australia | 0.5167 | 129.45480 | 101.89384 |
| 26-12-21 | Australia | England | 0.6373556 | 0.3651889 | Australia | 0.0289 | 130.32827 | 101.07290 |
| 26-12-21 | South_Africa | India | 0.4069854 | 0.5959549 | India | 0.2432 | 100.89166 | 124.96726 |
| 1-1-22 | New_Zealand | Bangladesh | 0.6345130 | 0.3905036 | Bangladesh | 0.7778 | 92.04173 | 61.69643 |
| 3-1-22 | South_Africa | India | 0.4105302 | 0.5732703 | South_Africa | 0.6667 | 104.43889 | 122.19481 |
| 5-1-22 | Australia | England | 0.6458851 | 0.3560299 | Draw | 0.0000 | 129.67411 | 101.70630 |
| 9-1-22 | New_Zealand | Bangladesh | 0.6590498 | 0.3576201 | New_Zealand | 0.1275 | 93.47277 | 60.19281 |
| 11-1-22 | South_Africa | India | 0.4184640 | 0.5620581 | South_Africa | 0.6667 | 106.50164 | 120.36517 |
| 14-1-22 | Australia | England | 0.6648158 | 0.3375683 | Australia | 0.3905 | 130.42661 | 100.97300 |
| 17-2-22 | New_Zealand | South_Africa | 0.4417655 | 0.5419657 | New_Zealand | 0.4025 | 95.38281 | 104.45387 |
| 25-2-22 | New_Zealand | South_Africa | 0.4252915 | 0.5536730 | South_Africa | 0.3206 | 94.27845 | 105.51371 |
| 4-3-22 | India | Sri_Lanka | 0.6670818 | 0.3832106 | India | 0.2408 | 121.33922 | 89.67690 |
| 4-3-22 | Pakistan | Australia | 0.3058969 | 0.7441296 | Draw | 0.0000 | 84.52033 | 129.73327 |
| 8-3-22 | West_Indies | England | 0.3591652 | 0.6586796 | Draw | 0.0000 | 72.34535 | 100.52012 |
| 12-3-22 | Pakistan | Australia | 0.2876977 | 0.7399467 | Draw | 0.0000 | 85.94268 | 129.29697 |
| 12-3-22 | India | Sri_Lanka | 0.6843691 | 0.3424820 | India | 0.5869 | 122.03530 | 88.79793 |
| 16-3-22 | West_Indies | England | 0.3456835 | 0.6569203 | Draw | 0.0000 | 73.09366 | 100.18506 |
| 21-3-22 | Pakistan | Australia | 0.2669035 | 0.7503878 | Australia | 0.1854 | 85.42107 | 129.65273 |
| 24-3-22 | West_Indies | England | 0.3474286 | 0.6482179 | West_Indies | 1.0000 | 75.06057 | 98.77510 |
| 31-3-22 | South_Africa | Bangladesh | 0.7686615 | 0.2847657 | South_Africa | 0.5060 | 105.68484 | 59.59111 |
| 8-4-22 | South_Africa | Bangladesh | 0.7785192 | 0.2614981 | South_Africa | 0.7887 | 106.02430 | 59.13453 |
| 15-5-22 | Bangladesh | Sri_Lanka | 0.3253600 | 0.6457759 | Draw | 0.0000 | 59.85465 | 88.21488 |
| 23-5-22 | Bangladesh | Sri_Lanka | 0.3117054 | 0.6640840 | Sri_Lanka | 1.0000 | 59.05272 | 89.03128 |
| 2-6-22 | England | New_Zealand | 0.5352901 | 0.4560290 | England | 0.4444 | 99.97671 | 93.53780 |
| 10-6-22 | England | New_Zealand | 0.5449382 | 0.4452617 | England | 0.4444 | 100.39803 | 93.03143 |
| 16-6-22 | West_Indies | Bangladesh | 0.6020809 | 0.3866809 | West_Indies | 0.6667 | 75.29219 | 58.68833 |
| 23-6-22 | England | New_Zealand | 0.5530142 | 0.4366191 | England | 0.6667 | 100.82883 | 92.56425 |
| 24-6-22 | West_Indies | Bangladesh | 0.6133230 | 0.3765585 | West_Indies | 1.0000 | 75.81254 | 58.21991 |
| 29-6-22 | Sri_Lanka | Australia | 0.2469868 | 0.7434365 | Australia | 1.0000 | 88.33073 | 130.22163 |
| 1-7-22 | England | India | 0.3504587 | 0.6069068 | England | 0.6667 | 101.52776 | 120.32743 |
| 8-7-22 | Sri_Lanka | Australia | 0.2532708 | 0.7418033 | Sri_Lanka | 0.0376 | 89.87477 | 128.75344 |
| 16-7-22 | Sri_Lanka | Pakistan | 0.5093176 | 0.4766664 | Pakistan | 0.3333 | 88.95032 | 86.51792 |
| 24-7-22 | Sri_Lanka | Pakistan | 0.5214370 | 0.4700376 | Sri_Lanka | 0.4150 | 89.69264 | 85.59615 |
| 17-8-22 | England | South_Africa | 0.4489520 | 0.5287790 | South_Africa | 0.0202 | 100.85989 | 106.46932 |
| 25-8-22 | England | South_Africa | 0.4554072 | 0.5257691 | England | 0.1156 | 101.23896 | 105.87423 |
| 8-9-22 | England | South_Africa | 0.4612568 | 0.5211478 | England | 0.8889 | 101.77501 | 105.21498 |
| 30-11-22 | Australia | West_Indies | 0.8229687 | 0.1824153 | Australia | 0.2205 | 128.89984 | 75.57424 |
| 1-12-22 | Pakistan | England | 0.3774392 | 0.6226871 | England | 0.0422 | 85.38350 | 101.56299 |
| 8-12-22 | Australia | West_Indies | 0.8279064 | 0.1749331 | Australia | 0.9302 | 129.25424 | 75.23479 |
| 9-12-22 | Pakistan | England | 0.3698124 | 0.6307242 | England | 0.0000 | 85.09692 | 101.69907 |
| 14-12-22 | Bangladesh | India | 0.1387956 | 0.8373560 | India | 0.3337 | 58.56089 | 120.57560 |
| 17-12-22 | Australia | South_Africa | 0.6700147 | 0.3188350 | Australia | 0.5556 | 129.47447 | 105.21863 |
| 17-12-22 | Pakistan | England | 0.3633450 | 0.6358314 | England | 0.7778 | 84.64382 | 102.06918 |
| 22-12-22 | Bangladesh | India | 0.1357264 | 0.8439283 | India | 0.2222 | 58.52236 | 120.63612 |
| 26-12-22 | Australia | South_Africa | 0.6775530 | 0.3097629 | Australia | 0.1891 | 129.58226 | 105.17806 |
| 26-12-22 | Pakistan | New_Zealand | 0.4318143 | 0.5498205 | Draw | 0.0000 | 84.87330 | 92.62209 |
| 2-1-23 | Pakistan | New_Zealand | 0.4314379 | 0.5510712 | Draw | 0.0000 | 84.92110 | 92.56245 |
| 4-1-23 | Australia | South_Africa | 0.6779671 | 0.3089947 | Draw | 0.0000 | 129.34132 | 105.37146 |
| 9-2-23 | India | Australia | 0.4421657 | 0.5510226 | India | 0.1990 | 121.60131 | 128.97000 |
| 17-2-23 | India | Australia | 0.4461872 | 0.5420209 | India | 0.5556 | 122.25579 | 128.54146 |
| 28-2-23 | South_Africa | West_Indies | 0.7317005 | 0.2910127 | South_Africa | 0.1909 | 105.28936 | 75.18959 |
| 1-3-23 | India | Australia | 0.4381794 | 0.5476988 | Australia | 0.8889 | 121.52357 | 129.19324 |
| 8-3-23 | South_Africa | West_Indies | 0.7352777 | 0.2810844 | South_Africa | 0.6143 | 105.52562 | 74.90445 |
| 9-3-23 | New_Zealand | Sri_Lanka | 0.5254259 | 0.4629357 | New_Zealand | 0.1111 | 92.88932 | 89.13987 |
| 9-3-23 | India | Australia | 0.4370384 | 0.5504945 | Draw | 0.0000 | 121.82259 | 128.90171 |
| 17-3-23 | New_Zealand | Sri_Lanka | 0.5308461 | 0.4570962 | New_Zealand | 0.0534 | 93.11752 | 88.82852 |
| 7-6-23 | Australia | India | 0.5560195 | 0.4341685 | Australia | 0.3318 | 129.17156 | 121.49146 |
| Rankings | ICC | Ratings | Improvised Glicko | Ratings | Final model | Ratings |
|---|---|---|---|---|---|---|
| 1 | India | 121 | Australia | 129.11 | Australia | 129.58 |
| 2 | Australia | 116 | India | 121.11 | India | 121.08 |
| 3 | England | 114 | South Africa | 105.48 | South Africa | 106.136 |
| 4 | South Africa | 104 | England | 101.98 | England | 102.69 |
| 5 | New Zealand | 100 | New Zealand | 93.12 | New Zealand | 94.22 |
| 6 | Pakistan | 86 | Sri Lanka | 88.82 | Sri Lanka | 87.73 |
| 7 | Sri Lanka | 84 | Pakistan | 84.88 | Pakistan | 84.88 |
| 8 | West Indies | 76 | West Indies | 74.95 | West Indies | 74.29 |
| 9 | Bangladesh | 45 | Bangladesh | 58.33 | Bangladesh | 58.12 |
Although the ratings marginally differ, the rankings of all the teams remain exactly same when compared with respect to the improvised Glicko’s model and our final proposed model. The gradual changes of ratings of each team can be studied through trend curves.
By incorporating key contextual non performance based factors such as home advantage and toss impact and a crucial performance based factor Margin of Victory, the enhanced model provides a more accurate and fair assessment of team performance in Test cricket.
The model demonstrated superior predictive accuracy, correctly forecasting the outcomes of 44 out of 56 non-drawn matches during the ICC World Test Championship 2021-23. Statistical tests showed that home ground and toss advantages are significant factors in deciding the outcome of a Test match.
A suitable choice of \(\alpha\) and cutoff \(q\)-th quantile resulted in maximising the prediction of proportion (9 out of 12) of drawn Test matches during a given time period based on a certain training period.
The inclusion of the Margin of Victory \((MOV)\) allowed for more dynamic rating adjustments, reflecting the degree of dominance in match outcomes instead of awarding equal proportions of rating points irrespective of the margins of victory.
Indian Statistical Institute