Development of an enhanced rating system for Test Cricket adapting the Glicko’s model

Rhitankar Bandyopadhyay

Under the supervision of Prof. Diganta Mukherjee

Endterm Project Presentation

Introduction

  • The ICC World Test Championship (since 2019) introduced a structured competition but its points system has notable shortcomings.

  • Factors like home ground advantage, toss impact, strength of competing teams etc. are not fully accounted for.

  • The unbalanced schedule further skews the fairness of rankings.

  • This project aims to develop a more robust rating system for Test cricket, inspired by the popular Glicko’s rating system.

  • The goal is to integrate key contextual factors into the ranking model for a fairer and statistically sound evaluation of team performance.

Key questions

  • How can Glicko’s rating model be adapted to account for non-performance based factors such as home ground and toss advantage in Test cricket?

  • What are the impacts of uneven scheduling on the accuracy of current rating system and how can it be rectified using the proposed model?

  • Can an adaptive Glicko model incorporate margin of victories as a key factor in assigning ratings to teams in Test cricket?

  • How does the proposed rating system compare to the existing ICC WTC points system in terms of fairness and predictive precision?

ICC’s current ratings system

The ICC Team Rankings is a method developed by David Kendix. Matches played as a part of a series consisting of atleast two Tests are considered for assigning ratings.

Points earned from a series

  • For each match: \(1\) point for win, \(\frac{1}{2}\) point for draw/tie
  • For each series: \(1\) bonus point for win, \(\frac{1}{2}\) bonus point for draw

Converting series points to actual ratings points

If \(|r_A - r_B| < 40\) before the series, then updated ratings are:

\[ r_A ' =\ (Series\ points\ of\ A) (r_B + 50) + (Series\ points\ of\ B) (r_B − 50) \] \[ r_B ' =\ (Series\ points\ of\ B) (r_A + 50) + (Series\ points\ of\ A) (r_A − 50) \]

If \(|r_A - r_B| \geq 40\) before the series, and without loss of generality assuming \(r_A > r_B\), then updated ratings are:

\[ r_A ' = (Series\ points\ of\ A) (r_A + 10) + (Series\ points\ of\ B) (r_A − 90) \] \[ r_B ' = (Series\ points\ of\ B) (r_B + 90) + (Series\ points\ of\ A) (r_B − 10) \]

WTC ratings system followed by ICC

ICC started allotting points to teams on a per series basis towards the start of the first Test Championship cycle in 2019 but later changed it to allotting points on a per match basis what currently looks like the following.

Match Result Points Share of maximum points
Win 12 100 %
Tie 6 50 %
Draw 4 33.33 %
Lose 0 0 %

Considering ties are extremely rare in Test matches, the 12-4-0 setup displayed in the table is vastly different from the 2-1-0 setup followed in most limited overs cricket matches around the world, rather it matches with the 3-1-0 setup regularly used in football.

Glicko’s rating system

Alongside ratings (\(R\)), Glicko’s model introduced a new factor called ‘Rating Deviation (\(RD\))’.

\[\begin{equation} Expected\, score\, (E_A) = \frac{1}{1 + 10^{- \frac{1}{400}(R_A - R_B)g(RD_B)}} \label{1} \end{equation}\] \[\begin{equation} g(RD) = \frac{1}{\sqrt{1 + \frac{3(RD^2)}{\pi^2}}} \label{2} \end{equation}\] \[\begin{equation} Updated\, RD\, (RD_A ') = \frac{1}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} \label{3} \end{equation}\] \[\begin{equation} d^2 = \frac{1}{g(RD_B)^2 E_A (1 - E_A)} \label{4} \end{equation}\] \[\begin{equation} Updated\, rating\, (r_A ') = r_A + (RD_A)^2 g(RD_B) (S_A - E_A) = r_A + \frac{g(RD_B) (S_A - E_A)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} \label{5} \end{equation}\]

where, \(S_j\) denotes as the actual score of the \(j\)-th team, which can take values \(0\), \(\frac{1}{2}\) and \(1\) corresponding to a loss, draw and win respectively.

Adapting Glicko’s rating for Test cricket

Adjusting the factor \(\frac{1}{400}\) for Test cricket


Glicko’s player categories Glicko’s ratings Test teams Test ratings
Super Grandmasters 2700+ Australia 124
Most Grandmasters (GM) 2500-2700 India 120
Most International Masters (IM) & some GM 2400-2500 England 108
Most FIDE Masters (FM) & some IM 2300-2400 South Africa 104
FIDE Candidate Masters (CM) & National Masters 2200-2300 New Zealand 96
Candidate Masters & Experts 2000-2200 Sri Lanka 83
Class A, Category 1 1800-2000 West Indies 77
Class B, Category 2 1600-1800 Pakistan 76
Class C and below below 1600 Bangladesh 66

Finding a suitable estimate for \(\frac{1}{400}\)


\[ E_i = \frac{1}{1 + 10 ^ {-\frac{1}{S}{(R_i - R_j) g(RD_j)}}} \] \[ \Rightarrow E_i (1 + 10 ^ {-\frac{{\Delta R_{i,j}}}{S}}) = 1 \] \[ \Rightarrow 10 ^ {-\frac{{\Delta R_{i,j}}}{S}} = \frac{1}{E_i} - 1 \] \[ \Rightarrow {-\frac{{\Delta R_{i,j}}}{S}} = \log_{10} (\frac{1}{E_i} - 1) \] \[\begin{equation} \Rightarrow S = - \frac{{\Delta R_{i,j}}}{\log_{10} (\frac{1}{p_i} - 1)} \label{6} \end{equation}\]

Additional factors: Impacts of home ground and toss

Training period: June 17, 2017 to June 17, 2021


Matches Won Matches Lost
Home team 82 41
Away team 41 82

    Pearson's Chi-squared test with Yates' continuity correction

data:  home_impact
X-squared = 26.016, df = 1, p-value = 3.386e-07
Matches Won Match Lost
Toss Won 75 50
Toss Lost 50 75

    Pearson's Chi-squared test with Yates' continuity correction

data:  toss_impact
X-squared = 9.216, df = 1, p-value = 0.002399

Additional factors: Impacts of home ground and toss

In a hypothetical match between \(i\) (home team) and \(j\) (away team), the expected scores of a team \(i\) can be formulated as a combination of the partial expected scores of team \(i\), each of which is an attempt to introduce the two additional impacts: home (\(h\)) and toss (\(t\)). \[\begin{equation} E_{i,home} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_i - R_j + h_{i, j}) g(RD_j)}}} \label{7} \end{equation}\] \[\begin{equation} E_{i,toss} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_i - R_j + t_{i, i}) g(RD_j)}}} \label{8} \end{equation}\] Similarly, the expected scores of team \(j\) can be formulated as a combination of the partial expected scores of team \(j\) given by \[\begin{equation} E_{j,away} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_j - R_i + a_{j, i}) g(RD_j)}}} \label{9} \end{equation}\] \[\begin{equation} E_{j,toss} = \frac{1}{1 + 10 ^ {- \frac{1}{20} {(R_j - R_i + t_{j, i}) g(RD_j)}}} \label{10} \end{equation}\]

\(h_{i,j}\) and \(a_{j,i}\)’s constitute the home impact (h) whereas \(t_{i, i}\), \(t_{j, i}\), \(t_{j, j}\), and \(t_{i, j}\),’s constitute the toss impact (t).

Formulation: Impacts of home ground and toss


\[ \begin{aligned} h_{i,j} &= \frac{(matches\ won\ by\ i\ vs\ j + 0.5 \times matches\ drawn) - (matches\ lost\ by\ i\ vs\ j + 0.5 \times matches\ drawn)}{matches\ played\ between\ i\ and\ j} \\ &= \frac{matches\ won\ by\ i\ vs\ j - matches\ lost\ by\ i\ vs\ j}{matches\ played\ between\ i\ and\ j} \end{aligned} \]

\[ \begin{aligned} a_{j,i} &= \frac{(matches\ won\ by\ j\ vs\ i + 0.5 \times matches\ drawn) - (matches\ lost\ by\ j\ vs\ i + 0.5 \times matches\ drawn)}{matches\ played\ between\ j\ and\ i} \\ &= \frac{matches\ won\ by\ j\ vs\ i - matches\ lost\ by\ j\ vs\ i}{matches\ played\ between\ i\ and\ j} \end{aligned} \]

Clearly, \(h_{i, j} = - a_{j, i} \ \ \ \ \forall \ i, j\)


\[ toss_{i,i} = \begin{cases} toss\ win\ impact\ in\ host\ country\ i\ & \text{if team}\ i \text{ wins the toss} \\ toss\ lose\ impact\ in\ host\ country\ i\ & \text{if team}\ i \text{ wins the toss} \\ \end{cases} \]

\[ toss_{j,i} = \begin{cases} toss\ win\ impact\ in\ host\ country\ i\ & \text{if team}\ j \text{ wins the toss} \\ toss\ lose\ impact\ in\ host\ country\ i\ & \text{if team}\ j \text{ loses the toss} \\ \end{cases} \]

Expected scores in the form of standard distributions


Observe that by replacing \(10\) by \(e\), the partial expected scores resemble distribution functions of logistic distributions with respect to random variables \(U = \tan (\frac{\pi}{2}H)\) and \(V = \tan (\frac{\pi}{2}T)\). The monotone increasing, bijective transformation \(x \mapsto \tan (\frac{\pi}{2}x)\) can be taken to remove the theoretical ambiguity of \(H\) and \(T\) taking only values in the range \([-1, 1]\) but it would create complexities in exponential terms taking values \(- \infty\) and \(\infty\) which would lead to expected scores turning out to be \(0\) and \(1\) more often than not.

\[\begin{equation} F(h) = \frac{1}{1 + e ^ {- \frac{1}{20} {(R_i - R_j + h) g(RD_j)}}} = \frac{1}{1 + e ^ {- \frac{g(RD_j)}{20} (h - (R_j - R_i))}} \label{11} \end{equation}\] \[\begin{equation} F(t) = \frac{1}{1 + e ^ {- \frac{1}{20} {(R_i - R_j + t) g(RD_j)}}} = \frac{1}{1 + e ^ {- \frac{g(RD_j)}{20} (t - (R_j - R_i))}} \label{12} \end{equation}\]

Similarity between impacts and logistic distributions


    Asymptotic one-sample Kolmogorov-Smirnov test

data:  h_values
D = 0.09386, p-value = 0.1696
alternative hypothesis: two-sided

    Asymptotic one-sample Kolmogorov-Smirnov test

data:  t_values
D = 0.035952, p-value = 0.9936
alternative hypothesis: two-sided

Kolmogorov-Smirnov tests suggest the acceptance of null hypotheses in both cases which imply that both \(H\) and \(T\) are derived from logistic distributions.

Farlie-Gumbel-Morgernstern family of copula

Gumbel proposed a model with an association parameter \(\omega \in [1, 1]\), a distribution of the Farlie-Gumbel-Morgernstern type called the Gumbel type 2 distribution, \[ (x, y) \mapsto F(x)G(y) \left[ 1 + \omega (1 - F(x))(1 - G(y)) \right], \quad x, y \in \mathbb{R} \] The association parameter \(\omega\) satisfies the relation \(\rho = \frac{\omega}{3}\), but only over a limited range \(|\rho| \leq \frac{1}{3}\), where \(\rho\) denotes Spearman’s correlation coefficient. It can be shown that, \[ \begin{aligned} \rho(X,Y) &= 12 \int_0^1 \int_0^1 ( C_{\omega}(x, y) - xy ) \, dx dy \\ &= 12 \int_0^1 \int_0^1 ( xy [1 + \omega (1-x)(1-y)] - xy) \, dx dy \\ &= \frac{\omega}{3} \end{aligned} \]

For the training dataset used in this study, \(\rho\) turns out to be \(-0.1812159\) so the above choice of association parameter (\(\omega = -0.5436477\)) can be used.

Formulation of Expected scores using FGM family

\[\begin{equation} \begin{aligned} E_A &= E(R_A, R_B, RD_B, h, t) \\ &= C_{\omega}(F(H), G(T)) \\ &= F(H) G(T) [1 + \omega (1 - F(H)) (1 - G(T))] \\ &= \frac{1}{1 + e ^ {- \frac{g(RD_B)}{20} (h - (R_B - R_A))}} \frac{1}{1 + e ^ {- \frac{g(RD_B)}{20} (t - (R_B - R_A))}} [1 + \omega (\frac{e ^ {- \frac{g(RD_B)}{20} (h - (R_B - R_A))}}{1 + e ^ {- \frac{g(RD_B)}{20} (h - (R_B - R_A))}})(\frac{e ^ {- \frac{g(RD_B)}{20} (t - (R_B - R_A))}}{1 + e ^ {- \frac{g(RD_B)}{20} (t - (R_B - R_A))}})] \\ \end{aligned} \end{equation}\]

Case study:  Application of the proposed model on ICC World Test Championship 2021-23 cycle

  • Tournament period: August \(04, 2021\) to June \(11, 2023\)
  • Total matches: 70

Data based on training period


Teams/Host Matches Won Lost Drawn Rating RD Toss Win Impact Toss Lose Impact
Australia 33 17 11 5 124 15.2 -0.1500 0.1500
Bangladesh 19 3 14 2 66 13.6 0.4167 -0.4167
England 52 25 20 7 108 11.4 0.0714 -0.0714
India 37 22 11 4 120 11.2 0.0588 -0.0588
New Zealand 26 17 5 4 96 27.3 0.0625 -0.0625
Pakistan 24 7 13 4 76 11.8 0.5714 -0.5714
South Africa 32 15 17 0 104 27.3 0.2381 -0.2381
Sri Lanka 36 10 17 9 83 9.1 0.2667 -0.2667
West Indies 29 9 17 3 77 10.8 -0.1538 0.1538

Exploratory Data Analysis: Density plots


Exploratory Data Analysis: Trend Analysis

Applying the model on WTC 2021-23

Date Team_1 Team_2 Toss RA RB RDA RDB EA EB Winner
4-8-21 England India England 108.47 119.53 11.20 8.43 0.4700424 0.5100215 Draw
12-8-21 England India England 103.39 124.61 8.41 6.31 0.4379193 0.5361286 India
12-8-21 West_Indies Pakistan West_Indies 84.29 68.48 11.80 8.35 0.5262487 0.4679253 West_Indies
20-8-21 West_Indies Pakistan West_Indies 78.22 74.57 8.44 6.29 0.5017571 0.4841534 Pakistan
25-8-21 England India India 108.20 119.80 6.31 4.78 0.4557785 0.5224965 England
2-9-21 England India England 105.61 122.39 4.78 3.65 0.4283757 0.5461523 India
21-11-21 Sri_Lanka West_Indies Sri_Lanka 87.93 74.00 6.29 5.66 0.5337309 0.4557071 Sri_Lanka
25-11-21 India New_Zealand India 121.82 97.37 27.30 3.62 0.5878365 0.4746315 Draw
26-11-21 Bangladesh Pakistan Bangladesh 60.31 78.92 6.30 6.39 0.4441140 0.5407130 Pakistan
29-11-21 Sri_Lanka West_Indies Sri_Lanka 90.97 71.05 5.36 4.20 0.5649807 0.4324164 Sri_Lanka
3-12-21 India New_Zealand India 123.42 95.46 4.62 3.04 0.6150080 0.4021956 India
4-12-21 Bangladesh Pakistan Pakistan 57.00 82.07 5.81 4.65 0.4110092 0.5628424 Pakistan
8-12-21 Australia England England 127.48 103.60 3.65 4.39 0.5749195 0.4009270 Australia
16-12-21 Australia England Australia 129.30 102.04 3.57 3.17 0.6091128 0.3869717 Australia
26-12-21 Australia England Australia 130.45 100.96 2.97 2.50 0.6373556 0.3651889 Australia
26-12-21 South_Africa India India 100.92 124.94 3.04 3.99 0.4069854 0.5959549 India
1-1-22 New_Zealand Bangladesh Bangladesh 92.62 61.21 4.65 2.86 0.6345130 0.3905036 Bangladesh
3-1-22 South_Africa India India 104.02 122.59 3.03 2.85 0.4105302 0.5732703 South_Africa
5-1-22 Australia England Australia 129.81 101.58 2.44 2.07 0.6458851 0.3560299 Draw
9-1-22 New_Zealand Bangladesh Bangladesh 93.57 60.12 3.26 2.40 0.6590498 0.3576201 New_Zealand
11-1-22 South_Africa India India 106.11 120.72 2.59 2.24 0.4184640 0.5620581 South_Africa
14-1-22 Australia England England 130.40 101.00 2.04 1.76 0.6648158 0.3375683 Australia
17-2-22 New_Zealand South_Africa New_Zealand 95.15 104.66 2.24 1.93 0.4417655 0.5419657 New_Zealand
25-2-22 New_Zealand South_Africa South_Africa 94.35 105.43 1.86 1.61 0.4252915 0.5536730 South_Africa
4-3-22 India Sri_Lanka India 121.39 89.68 4.20 1.99 0.6670818 0.3832106 India
4-3-22 Pakistan Australia Pakistan 84.36 129.98 1.76 2.97 0.3058969 0.7441296 Draw
8-3-22 West_Indies England England 72.23 100.67 1.75 2.53 0.3591652 0.6586796 Draw
12-3-22 Pakistan Australia Australia 85.77 129.52 1.69 2.32 0.2876977 0.7399467 Draw
12-3-22 India Sri_Lanka India 121.93 88.91 2.67 1.77 0.6843691 0.3424820 India
16-3-22 West_Indies England England 72.97 100.32 1.66 1.96 0.3456835 0.6569203 Draw
21-3-22 Pakistan Australia Australia 85.31 129.79 1.58 1.95 0.2669035 0.7503878 Australia
24-3-22 West_Indies England West_Indies 74.56 99.29 1.51 1.63 0.3474286 0.6482179 West_Indies
31-3-22 South_Africa Bangladesh Bangladesh 105.70 59.62 2.55 1.48 0.7686615 0.2847657 South_Africa
8-4-22 South_Africa Bangladesh South_Africa 105.92 59.25 2.09 1.38 0.7785192 0.2614981 South_Africa
15-5-22 Bangladesh Sri_Lanka Sri_Lanka 59.70 88.33 2.10 1.61 0.3253600 0.6457759 Draw
23-5-22 Bangladesh Sri_Lanka Bangladesh 59.31 88.78 1.76 1.43 0.3117054 0.6640840 Sri_Lanka
2-6-22 England New_Zealand New_Zealand 99.83 93.66 1.61 1.22 0.5352901 0.4560290 England
10-6-22 England New_Zealand England 100.27 93.14 1.35 1.10 0.5449382 0.4452617 England
16-6-22 West_Indies Bangladesh West_Indies 75.12 58.85 1.43 1.39 0.6020809 0.3866809 West_Indies
23-6-22 England New_Zealand New_Zealand 100.64 92.73 1.18 1.00 0.5530142 0.4366191 England
24-6-22 West_Indies Bangladesh West_Indies 75.54 58.48 1.28 1.23 0.6133230 0.3765585 West_Indies
29-6-22 Sri_Lanka Australia Sri_Lanka 88.52 130.03 1.47 1.40 0.2469868 0.7434365 Australia
1-7-22 England India England 101.13 120.59 1.77 0.95 0.3504587 0.6069068 England
8-7-22 Sri_Lanka Australia Australia 89.68 128.94 1.35 1.29 0.2532708 0.7418033 Sri_Lanka
16-7-22 Sri_Lanka Pakistan Sri_Lanka 89.10 86.39 1.95 1.18 0.5093176 0.4766664 Pakistan
24-7-22 Sri_Lanka Pakistan Sri_Lanka 89.55 85.71 1.53 1.08 0.5214370 0.4700376 Sri_Lanka
17-8-22 England South_Africa South_Africa 100.83 106.48 1.38 0.89 0.4489520 0.5287790 South_Africa
25-8-22 England South_Africa South_Africa 101.17 105.92 1.18 0.83 0.4554072 0.5257691 England
8-9-22 England South_Africa England 101.47 105.46 1.05 0.78 0.4612568 0.5211478 England
30-11-22 Australia West_Indies Australia 129.05 75.43 1.23 1.20 0.8229687 0.1824153 Australia
1-12-22 Pakistan England England 85.33 101.63 0.78 1.13 0.3774392 0.6226871 England
8-12-22 Australia West_Indies Australia 129.16 75.33 1.17 1.15 0.8279064 0.1749331 Australia
9-12-22 Pakistan England England 85.03 101.78 0.75 1.01 0.3698124 0.6307242 England
14-12-22 Bangladesh India India 58.41 120.69 1.45 1.12 0.1387956 0.8373560 India
17-12-22 Australia South_Africa Australia 129.41 105.28 0.95 1.05 0.6700147 0.3188350 Australia
17-12-22 Pakistan England Pakistan 84.77 101.92 0.72 0.93 0.3633450 0.6358314 England
22-12-22 Bangladesh India Bangladesh 58.33 120.79 1.39 1.09 0.1357264 0.8439283 India
26-12-22 Australia South_Africa Australia 129.63 105.12 0.89 0.97 0.6775530 0.3097629 Australia
26-12-22 Pakistan New_Zealand Pakistan 84.83 92.65 1.06 0.86 0.4318143 0.5498205 Draw
2-1-23 Pakistan New_Zealand New_Zealand 84.88 92.59 0.96 0.81 0.4314379 0.5510712 Draw
4-1-23 Australia South_Africa Australia 129.44 105.26 0.84 0.91 0.6779671 0.3089947 Draw
9-2-23 India Australia Australia 121.51 129.07 0.91 1.15 0.4421657 0.5510226 India
17-2-23 India Australia Australia 122.07 128.74 0.86 1.02 0.4461872 0.5420209 India
28-2-23 South_Africa West_Indies South_Africa 105.38 75.13 1.13 0.77 0.7317005 0.2910127 South_Africa
1-3-23 India Australia India 121.73 128.96 0.81 0.93 0.4381794 0.5476988 Australia
8-3-23 South_Africa West_Indies South_Africa 105.48 74.95 1.04 0.75 0.7352777 0.2810844 South_Africa
9-3-23 New_Zealand Sri_Lanka New_Zealand 92.87 89.15 1.08 0.83 0.5254259 0.4629357 New_Zealand
9-3-23 India Australia Australia 121.79 128.93 0.76 0.86 0.4370384 0.5504945 Draw
17-3-23 New_Zealand Sri_Lanka Sri_Lanka 93.12 88.82 0.97 0.78 0.5308461 0.4570962 New_Zealand
7-6-23 Australia India India 129.11 121.54 0.86 0.69 0.5560195 0.4341685 Australia

Comparison of rankings after ICC WTC 2021-23

The expected scores in most matches turn out to be fairly decent from a predictive perspective as the model correctly predicts the winner in 44 of the 56 non drawn matches. The changes in ratings and rating deviations are also justified in accordance with the result of the matches.


Rankings Teams ranked as per ICC ratings ICC Ratings Teams ranked as per this study Improvised Glicko's Ratings
1 India 118 Australia 129.11
2 Australia 118 India 121.54
3 England 115 South Africa 105.18
4 South Africa 104 England 101.92
5 New Zealand 100 New Zealand 93.12
6 Pakistan 92 Sri Lanka 88.82
7 Sri Lanka 79 Pakistan 84.88
8 West Indies 77 West Indies 74.95
9 Bangladesh 46 Bangladesh 58.33

The above table is as per ICC’s ratings immediately after the completion of WTC 2021-23 cycle, on July 31, 2023.

Confidence Intervals of Expected Scores

\(E_A\) can be written as \(p = p_1 p_2 [1 + \omega (1 - p_1) (1 - p_2)]\) where,

\[ p_1 = \frac{1}{1 + e^{-L_1}} \ \ ; \hspace{1cm} L_1 = \frac{g(RD_B)}{20} (h - (R_B - R_A)) \] \[ p_2 = \frac{1}{1 + e^{-L_2}} \ \ ; \hspace{1cm} L_2 = \frac{g(RD_B)}{20} (t - (R_B - R_A)) \]

Expected scores are functions of \(h\) and \(t\) and hence, essentially functions of \(\boldsymbol{L} = (L_1, L_2)\).

\[\begin{equation} \frac{\partial p}{\partial L_1} = p_2[1 + (1 + 2p_1p_2 -2p_1 - p_2)\omega] \frac{e^{-L_1}}{(1 + e^{-L_1})^2} \label{14} \end{equation}\]

\[\begin{equation} \frac{\partial p}{\partial L_2} = p_1[1 + (1 + 2p_1p_2 -2p_2 - p_1)\omega] \frac{e^{-L_2}}{(1 + e^{-L_2})^2} \label{15} \end{equation}\]

\[\begin{equation} \operatorname{Var}(L_1) = \left(\frac{g(RD_B)}{20}\right)^2 \operatorname{Var}(h) \label{16} \end{equation}\]

\[\begin{equation} \operatorname{Var}(L_2) = \left(\frac{g(RD_B)}{20}\right)^2 \operatorname{Var}(t) \label{17} \end{equation}\]

\[\begin{equation} \operatorname{Cov}(L_1, L_2) = \left(\frac{g(RD_B)}{20}\right)^2 \operatorname{Cov}(h, t) \label{18} \end{equation}\]

Using the above equations, \(\operatorname{Var}(p)\) can be obtained by, \[\begin{equation} \operatorname{Var}(p) = \begin{pmatrix} \frac{\partial p}{\partial L_1} & \frac{\partial p}{\partial L_2} \end{pmatrix} \operatorname{Cov}(\boldsymbol{L}) \begin{pmatrix} \frac{\partial p}{\partial L_1} \\[6pt] \frac{\partial p}{\partial L_2} \end{pmatrix} \label{19} \end{equation}\]

Confidence Intervals for Expected Scores in WTC 2021-23

Match Team A Team B EA EB CI for EA CI for EB
1 England India 0.4076114 0.4484354 (0.406, 0.409) (0.447, 0.45)
2 England India 0.3776538 0.4773320 (0.376, 0.379) (0.476, 0.479)
3 West_Indies Pakistan 0.4665318 0.4054673 (0.465, 0.468) (0.404, 0.407)
4 West_Indies Pakistan 0.4397510 0.4213342 (0.438, 0.442) (0.42, 0.423)
5 England India 0.3940044 0.4620516 (0.392, 0.396) (0.46, 0.464)
6 England India 0.3693115 0.4888242 (0.367, 0.372) (0.486, 0.492)
7 Sri_Lanka West_Indies 0.4749215 0.3938992 (0.473, 0.477) (0.392, 0.396)
8 India New_Zealand 0.5394235 0.4120300 (0.536, 0.543) (0.412, 0.413)
9 Bangladesh Pakistan 0.3829220 0.4827742 (0.381, 0.385) (0.481, 0.485)
10 Sri_Lanka West_Indies 0.5115404 0.3726246 (0.508, 0.515) (0.371, 0.374)
11 India New_Zealand 0.5745958 0.3475874 (0.57, 0.579) (0.346, 0.349)
12 Bangladesh Pakistan 0.3544067 0.5091356 (0.353, 0.356) (0.507, 0.512)
13 Australia England 0.5237835 0.3463718 (0.521, 0.527) (0.344, 0.349)
14 Australia England 0.5671717 0.3356648 (0.563, 0.571) (0.334, 0.338)
15 Australia England 0.6048246 0.3200131 (0.6, 0.609) (0.318, 0.322)
16 South_Africa India 0.3513462 0.5496634 (0.349, 0.353) (0.546, 0.554)
17 New_Zealand Bangladesh 0.6004767 0.3383698 (0.596, 0.605) (0.337, 0.34)
18 South_Africa India 0.3542661 0.5214648 (0.352, 0.357) (0.518, 0.525)
19 Australia England 0.6165030 0.3138049 (0.611, 0.622) (0.312, 0.316)
20 New_Zealand Bangladesh 0.6344111 0.3150040 (0.63, 0.639) (0.313, 0.317)
21 South_Africa India 0.3608701 0.5077472 (0.358, 0.364) (0.503, 0.512)
22 Australia England 0.6429710 0.3020540 (0.637, 0.649) (0.3, 0.304)
23 New_Zealand South_Africa 0.3813957 0.4841918 (0.378, 0.385) (0.48, 0.489)
24 New_Zealand South_Africa 0.3665334 0.4972471 (0.363, 0.37) (0.492, 0.502)
25 India Sri_Lanka 0.6457114 0.3330108 (0.64, 0.651) (0.331, 0.335)
26 Pakistan Australia 0.2841864 0.7593169 (0.283, 0.286) (0.754, 0.765)
27 West_Indies England 0.3161637 0.6331972 (0.314, 0.318) (0.627, 0.639)
28 Pakistan Australia 0.2750705 0.7529551 (0.274, 0.277) (0.747, 0.758)
29 India Sri_Lanka 0.6704844 0.3051988 (0.665, 0.676) (0.303, 0.307)
30 West_Indies England 0.3073548 0.6307535 (0.305, 0.31) (0.625, 0.637)
31 Pakistan Australia 0.2657076 0.7691235 (0.264, 0.267) (0.764, 0.775)
32 West_Indies England 0.3084891 0.6187662 (0.306, 0.311) (0.613, 0.625)
33 South_Africa Bangladesh 0.7982044 0.2736269 (0.793, 0.804) (0.272, 0.275)
34 South_Africa Bangladesh 0.8137516 0.2634380 (0.808, 0.819) (0.262, 0.265)
35 Bangladesh Sri_Lanka 0.2948431 0.6162557 (0.293, 0.297) (0.611, 0.621)
36 Bangladesh Sri_Lanka 0.2871947 0.6415939 (0.285, 0.289) (0.636, 0.647)
37 England New_Zealand 0.4765527 0.3943320 (0.471, 0.482) (0.39, 0.399)
38 England New_Zealand 0.4878118 0.3841729 (0.482, 0.494) (0.38, 0.389)
39 West_Indies Bangladesh 0.5584497 0.3352851 (0.552, 0.565) (0.332, 0.339)
40 England New_Zealand 0.4974200 0.3762860 (0.491, 0.504) (0.372, 0.381)
41 West_Indies Bangladesh 0.5730605 0.3278788 (0.567, 0.58) (0.325, 0.331)
42 Sri_Lanka Australia 0.2577511 0.7585050 (0.256, 0.259) (0.753, 0.764)
43 England India 0.3104318 0.5635684 (0.307, 0.314) (0.558, 0.569)
44 Sri_Lanka Australia 0.2601986 0.7568075 (0.259, 0.262) (0.751, 0.763)
45 Sri_Lanka Pakistan 0.4469947 0.4141126 (0.441, 0.453) (0.41, 0.418)
46 Sri_Lanka Pakistan 0.4608255 0.4081461 (0.455, 0.467) (0.404, 0.413)
47 England South_Africa 0.3877043 0.4687737 (0.382, 0.393) (0.463, 0.474)
48 England South_Africa 0.3937877 0.4655893 (0.388, 0.399) (0.46, 0.471)
49 England South_Africa 0.3993689 0.4603797 (0.394, 0.405) (0.454, 0.466)
50 Australia West_Indies 0.8855519 0.2386097 (0.88, 0.891) (0.238, 0.239)
51 Pakistan England 0.3283745 0.5849539 (0.325, 0.332) (0.577, 0.593)
52 Australia West_Indies 0.8936077 0.2369517 (0.888, 0.899) (0.236, 0.238)
53 Pakistan England 0.3229428 0.5968173 (0.319, 0.326) (0.589, 0.605)
54 Bangladesh India 0.2304499 0.9085226 (0.23, 0.231) (0.904, 0.913)
55 Australia South_Africa 0.6505927 0.2912182 (0.644, 0.658) (0.289, 0.294)
56 Pakistan England 0.3184957 0.6036633 (0.315, 0.322) (0.596, 0.612)
57 Bangladesh India 0.2300000 0.9200000 (0.23, 0.23) (0.916, 0.924)
58 Australia South_Africa 0.6613315 0.2860778 (0.654, 0.669) (0.283, 0.289)
59 Pakistan New_Zealand 0.3719246 0.4937944 (0.367, 0.377) (0.487, 0.5)
60 Pakistan New_Zealand 0.3716491 0.4951635 (0.367, 0.377) (0.489, 0.502)
61 Australia South_Africa 0.6616358 0.2856601 (0.654, 0.669) (0.283, 0.288)
62 India Australia 0.3818613 0.4947446 (0.377, 0.387) (0.488, 0.502)
63 India Australia 0.3855634 0.4833856 (0.381, 0.39) (0.477, 0.49)
64 South_Africa West_Indies 0.7411921 0.2767008 (0.734, 0.749) (0.275, 0.279)
65 India Australia 0.3780085 0.4899063 (0.373, 0.383) (0.483, 0.497)
66 South_Africa West_Indies 0.7466228 0.2718980 (0.739, 0.754) (0.27, 0.274)
67 New_Zealand Sri_Lanka 0.4657799 0.4004988 (0.459, 0.472) (0.395, 0.406)
68 India Australia 0.3769769 0.4937145 (0.372, 0.382) (0.487, 0.501)
69 New_Zealand Sri_Lanka 0.4719760 0.3948365 (0.465, 0.479) (0.39, 0.4)
70 Australia India 0.5005157 0.3743877 (0.493, 0.508) (0.369, 0.379)

Prediction of drawn Test matches

Keeping the effect of exogenous variables such as rain-affected matches or other hazardous weather conditions, flat pitches, imposition of suspensions or draws due to political and/or various security concerns etc. in mind, two of the most obvious performance based factors to infer on draws are:

  • Part of the probability that none of \(A\) and \(B\) wins : \((1 - E_A - E_B)\)
  • Closeness of \(E_A\) and \(E_B\) : \(|E_A - E_B|\)

Handling both factors to predict draws

Define, for \(\alpha \in (0,1)\), a convex combinbation, \[ D_{\alpha, A, B} = \alpha (1 - E_A - E_B) + (1 - \alpha) |E_A - E_B| \]

A well predicted drawn Test match should produce a high value of \(D_{\alpha, A, B}\) for a certain choice of \(\alpha \in (0,1)\). Equivalently, we might be interested to find a choice of \(\alpha\) for which a significantly large proportion of matches having high \(D_{\alpha, A, B}\) values actually result in draws. A trade-off occurs between choices of \(\alpha \in (0,1)\) and choices of a significantly large proportion i.e, \(q\)-th quantile of the \(D_{\alpha, A, B}\) values of all the matches in a specific time period.

Trade-off between choice of \(\alpha\) and \(q\)-th quantile of \(D_{\alpha, A, B}\)

The following table shows how many of the 12 drawn Test matches during WTC 2021-23 could be predicted by a trade-off between the choices of \(\alpha\) and \(q\)-th cutoff quantile.

Top \(100(1-q) \%\) \(35 \%\) \(33 \%\) \(30 \%\) \(25 \%\) \(20 \%\) \(15 \%\) \(10 \%\) \(5 \%\)
\(\alpha =\) 0.00 7 7 4 2 2 1 1 1
\(\alpha =\) 0.05 7 7 4 4 2 2 1 1
\(\alpha =\) 0.10 8 8 4 4 2 2 1 1
\(\alpha =\) 0.15 8 8 4 4 3 2 1 1
\(\alpha =\) 0.20 8 8 5 4 3 2 1 1
\(\alpha =\) 0.25 8 8 5 4 4 2 2 1
\(\alpha =\) 0.30 8 8 5 4 4 2 1 1
\(\alpha =\) 0.35 8 8 5 4 4 2 1 1
\(\alpha =\) 0.40 8 8 5 5 4 2 1 1
\(\alpha =\) 0.45 8 8 5 4 4 2 2 1
\(\alpha =\) 0.50 8 8 5 4 4 3 1 1
\(\alpha =\) 0.55 9 9 7 6 4 4 3 3
\(\alpha =\) 0.60 9 9 8 7 6 4 3 3
\(\alpha =\) 0.65 9 9 7 6 4 4 3 3
\(\alpha =\) 0.70 8 8 6 6 4 3 3 3
\(\alpha =\) 0.75 8 8 6 4 4 2 1 1
\(\alpha =\) 0.80 8 8 6 4 2 2 1 1
\(\alpha =\) 0.85 8 8 4 3 3 2 1 1
\(\alpha =\) 0.90 8 8 4 2 2 1 1 1
\(\alpha =\) 0.95 8 8 4 2 1 1 1 1
\(\alpha =\) 1.00 8 8 4 3 2 2 1 1

Choosing \(\alpha\) and cutoff \(q\)-th quantile

For the chosen time period, \(\alpha \in [0.55, 0.65]\) yields the highest proportion (\(9\) out of \(12\)) of accurately predicted drawn Test matches. A higher proportion is maintained for the particular choice of \(\alpha = 0.6\) for several choices of the quantile \(q\). Based on our findings from the test data, we can consider \((0.6, 0.67)\) to be a sensible choice of \((\alpha, q)\).

Margin of Victory (MOV)

Let us reformulate \(S_A\) as,

\[ S_A = \begin{cases} \frac{1 + MOV}{2} & \text{if team } A \text{ wins the match} \\ \frac{1 - MOV}{2} & \text{if team } A \text{ loses the match} \\ \frac{1}{2} & \text{otherwise} \end{cases} \]

where \(MOV\) for \(i\)-th match is defined to be,

\[ MOV_i = \left(\frac{R_i - R_{min}}{range_{R}}\right)^{\beta_i} \left(\frac{W_i - W_{min}}{range_{W}}\right)^{1 - \beta_i} + I_i \left(\frac{E4P_i + ERM_i}{TR_i}\right) \]

The scaling used in the reformulation of \(S_A\) is constructed in a way that the mean \((= \frac{1}{2})\) is conserved from the original definition of \(S_A\).

Notations used in formulation of MOV

\[ R_i = \text{margin of victory by runs in } i \text{-th match} \] \[ W_i = \text{margin of victory by wickets in } i \text{-th match} \] \[ R_{min} = \text{minimum margin of runs in which a match is won} \] \[ W_{min} = \text{minimum margin of wickets in which a match is won} \] \[ \beta_i = \begin{cases} 1 & \text{if } i \text{-th match is won by margin of runs} \\ 0 & \text{otherwise} \end{cases} \] \[ E4P_i = \frac{E4R_i}{E4R} = \frac{\text{Expected 4th innings score of winner in } i \text{-th match}}{\text{Overall expected 4th innings score}} \] \[ ERM_i = \text{margin of victory by excess runs over an innings in } i \text{-th match} \] \[ TR_i = \text{Total runs scored in } i \text{-th match} \] \[ I_i = \begin{cases} 1 & \text{if } i \text{-th match is won by an innings margin} \\ 0 & \text{otherwise} \end{cases} \]

Expected runs through Survival probability estimates

If a random variable \(X_A\) denotes the runs scored by team \(A\) in a Test innings while getting all-out and it follows a certain distributional assumption with density \(f_A\), then we can estimate the expected runs scored in a Test innings while team \(A\) have either declared (after scoring \(x_A\) runs) or not batted at all (\(x_A = 0\)), by calculating the Mean Residual Life (MRL) of team \(A\),

\[ MRL_{A} = \mathbb{E} [X_A | X_A > x_A] = \frac{\int_{x_A}^{\infty} t f_A(t) dt}{\int_{x_A}^{\infty} f_A(t) dt} \]

We can bound the upper limit to \(952\) (highest ever recorded team score in an innings in Test cricket) instead of \(\infty\) to avoid overestimation.

Fitted distributions of 4th innings team scores

The following well known distributions are observed to fit well for 4th innings of Test matches corresponding to each team based on the training period.

Teams Distributions Estimated Parameters
Australia Gamma shape = 7.5496 rate = 0.0365
Bangladesh Gamma shape = 4.1374 rate = 0.0255
West Indies Gamma shape = 7.6367 rate = 0.0443
Pakistan Normal mean = 232.5 sd = 61.8373
South Africa Normal mean = 215.75 sd = 67.1269
Sri Lanka Normal mean = 228.111 sd = 35.1171
England Lognormal meanlog = 5.2554 sdlog = 0.3037
India Lognormal meanlog = 5.2153 sdlog = 0.2916
New Zealand Lognormal meanlog = 5.1523 sdlog = 0.2383

Using the corresponding distributional assumptions, the expected 4th innings scores of every team during ‘declarations’ and ‘did not bat’ have been calculated. The average expected 4th innings score (\(E4R\)) based on the training period has been found out to be \(233.6189\).

Expected scores in declared innings

We could similarly find the expected scores at the end of innings on the \(12\) occassions of declarations during ICC WTC 2021-23.

Date Team A Opposition Scored runs \((x_A)\) / wickets Expected score
4-8-21 India England 52/1 192.0834
25-11-21 New Zealand India 165/9 174.0974
5-1-22 England Australia 270/9 291.1815
4-3-22 Pakistan Australia 252/0 394.8864
8-3-22 West Indies England 147/4 208.3739
12-3-22 Pakistan Australia 443/7 458.8894
16-3-22 West Indies England 135/5 200.6276
15-5-22 Sri Lanka Bangladesh 260/6 279.1016
26-12-22 New Zealand Pakistan 61/1 177.8183
2-1-23 Pakistan New Zealand 304/9 311.6344
4-1-23 South Africa Australia 106/2 239.5533
9-3-23 Australia India 175/2 279.6153

Note that considering only runs scored \((x)\) until declaration might draw inaccurate inferences, hence number of wickets fell until declaration has also been taken into account and runs per dismissal have been accordingly used to calculate the MRL values.

The final proposed model

We previously updated the ratings of teams using the formula,

\[ r_A' = r_A + (RD_A)^2 g(RD_B) (S_A - E_A) = r_A + \frac{g(RD_B) (S_A - E_A)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} \]

Using the Expected Scores (\(E_A\)) as explained earlier and the revised formula of \(S_A\), ratings of teams can now be updated as,

\[ r_A' = \begin{cases} r_A + \frac{g(RD_B) \left(\frac{1 + MOV_i}{2} - E_A \right)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} & \text{if team $A$ wins the } i \text{-th match} \\ \\ r_A + \frac{g(RD_B) \left(\frac{1 - MOV_i}{2} - E_A \right)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} & \text{if team $A$ loses the } i \text{-th match} \\ \\ r_A + \frac{g(RD_B) \left(\frac{1}{2} - E_A \right)}{\sqrt{\frac{1}{(RD_A)^2} + \frac{1}{d^2}}} & \text{if the } i \text{-th match results in a draw} \end{cases} \]

Applying the final proposed model on WTC 2021-23

Date Home (A) Away (B) EA EB Winner MOV rA rB
4-8-21 England India 0.4700424 0.5100215 Draw 0.0000 108.50689 119.51801
12-8-21 England India 0.4379193 0.5361286 India 0.2470 103.31635 124.71072
12-8-21 West_Indies Pakistan 0.5262487 0.4679253 West_Indies 0.0000 84.25754 68.51835
20-8-21 West_Indies Pakistan 0.5017571 0.4841534 Pakistan 0.2469 78.07020 74.73039
25-8-21 England India 0.4557785 0.5224965 England 0.0979 108.30744 119.72149
2-9-21 England India 0.4283757 0.5461523 India 0.2634 105.54378 122.47877
21-11-21 Sri_Lanka West_Indies 0.5337309 0.4557071 Sri_Lanka 0.3994 88.12120 73.82382
25-11-21 India New_Zealand 0.5878365 0.4746315 Draw 0.0000 121.70545 97.39625
26-11-21 Bangladesh Pakistan 0.4441140 0.5407130 Pakistan 0.7778 59.92575 79.32221
29-11-21 Sri_Lanka West_Indies 0.5649807 0.4324164 Sri_Lanka 0.3574 91.09795 70.93075
3-12-21 India New_Zealand 0.6150080 0.4021956 India 1.0000 123.84354 95.06085
4-12-21 Bangladesh Pakistan 0.4110092 0.5628424 Pakistan 0.0156 57.09282 82.00968
8-12-21 Australia England 0.5749195 0.4009270 Australia 0.8889 127.86411 103.22478
16-12-21 Australia England 0.6091128 0.3869717 Australia 0.5167 129.45480 101.89384
26-12-21 Australia England 0.6373556 0.3651889 Australia 0.0289 130.32827 101.07290
26-12-21 South_Africa India 0.4069854 0.5959549 India 0.2432 100.89166 124.96726
1-1-22 New_Zealand Bangladesh 0.6345130 0.3905036 Bangladesh 0.7778 92.04173 61.69643
3-1-22 South_Africa India 0.4105302 0.5732703 South_Africa 0.6667 104.43889 122.19481
5-1-22 Australia England 0.6458851 0.3560299 Draw 0.0000 129.67411 101.70630
9-1-22 New_Zealand Bangladesh 0.6590498 0.3576201 New_Zealand 0.1275 93.47277 60.19281
11-1-22 South_Africa India 0.4184640 0.5620581 South_Africa 0.6667 106.50164 120.36517
14-1-22 Australia England 0.6648158 0.3375683 Australia 0.3905 130.42661 100.97300
17-2-22 New_Zealand South_Africa 0.4417655 0.5419657 New_Zealand 0.4025 95.38281 104.45387
25-2-22 New_Zealand South_Africa 0.4252915 0.5536730 South_Africa 0.3206 94.27845 105.51371
4-3-22 India Sri_Lanka 0.6670818 0.3832106 India 0.2408 121.33922 89.67690
4-3-22 Pakistan Australia 0.3058969 0.7441296 Draw 0.0000 84.52033 129.73327
8-3-22 West_Indies England 0.3591652 0.6586796 Draw 0.0000 72.34535 100.52012
12-3-22 Pakistan Australia 0.2876977 0.7399467 Draw 0.0000 85.94268 129.29697
12-3-22 India Sri_Lanka 0.6843691 0.3424820 India 0.5869 122.03530 88.79793
16-3-22 West_Indies England 0.3456835 0.6569203 Draw 0.0000 73.09366 100.18506
21-3-22 Pakistan Australia 0.2669035 0.7503878 Australia 0.1854 85.42107 129.65273
24-3-22 West_Indies England 0.3474286 0.6482179 West_Indies 1.0000 75.06057 98.77510
31-3-22 South_Africa Bangladesh 0.7686615 0.2847657 South_Africa 0.5060 105.68484 59.59111
8-4-22 South_Africa Bangladesh 0.7785192 0.2614981 South_Africa 0.7887 106.02430 59.13453
15-5-22 Bangladesh Sri_Lanka 0.3253600 0.6457759 Draw 0.0000 59.85465 88.21488
23-5-22 Bangladesh Sri_Lanka 0.3117054 0.6640840 Sri_Lanka 1.0000 59.05272 89.03128
2-6-22 England New_Zealand 0.5352901 0.4560290 England 0.4444 99.97671 93.53780
10-6-22 England New_Zealand 0.5449382 0.4452617 England 0.4444 100.39803 93.03143
16-6-22 West_Indies Bangladesh 0.6020809 0.3866809 West_Indies 0.6667 75.29219 58.68833
23-6-22 England New_Zealand 0.5530142 0.4366191 England 0.6667 100.82883 92.56425
24-6-22 West_Indies Bangladesh 0.6133230 0.3765585 West_Indies 1.0000 75.81254 58.21991
29-6-22 Sri_Lanka Australia 0.2469868 0.7434365 Australia 1.0000 88.33073 130.22163
1-7-22 England India 0.3504587 0.6069068 England 0.6667 101.52776 120.32743
8-7-22 Sri_Lanka Australia 0.2532708 0.7418033 Sri_Lanka 0.0376 89.87477 128.75344
16-7-22 Sri_Lanka Pakistan 0.5093176 0.4766664 Pakistan 0.3333 88.95032 86.51792
24-7-22 Sri_Lanka Pakistan 0.5214370 0.4700376 Sri_Lanka 0.4150 89.69264 85.59615
17-8-22 England South_Africa 0.4489520 0.5287790 South_Africa 0.0202 100.85989 106.46932
25-8-22 England South_Africa 0.4554072 0.5257691 England 0.1156 101.23896 105.87423
8-9-22 England South_Africa 0.4612568 0.5211478 England 0.8889 101.77501 105.21498
30-11-22 Australia West_Indies 0.8229687 0.1824153 Australia 0.2205 128.89984 75.57424
1-12-22 Pakistan England 0.3774392 0.6226871 England 0.0422 85.38350 101.56299
8-12-22 Australia West_Indies 0.8279064 0.1749331 Australia 0.9302 129.25424 75.23479
9-12-22 Pakistan England 0.3698124 0.6307242 England 0.0000 85.09692 101.69907
14-12-22 Bangladesh India 0.1387956 0.8373560 India 0.3337 58.56089 120.57560
17-12-22 Australia South_Africa 0.6700147 0.3188350 Australia 0.5556 129.47447 105.21863
17-12-22 Pakistan England 0.3633450 0.6358314 England 0.7778 84.64382 102.06918
22-12-22 Bangladesh India 0.1357264 0.8439283 India 0.2222 58.52236 120.63612
26-12-22 Australia South_Africa 0.6775530 0.3097629 Australia 0.1891 129.58226 105.17806
26-12-22 Pakistan New_Zealand 0.4318143 0.5498205 Draw 0.0000 84.87330 92.62209
2-1-23 Pakistan New_Zealand 0.4314379 0.5510712 Draw 0.0000 84.92110 92.56245
4-1-23 Australia South_Africa 0.6779671 0.3089947 Draw 0.0000 129.34132 105.37146
9-2-23 India Australia 0.4421657 0.5510226 India 0.1990 121.60131 128.97000
17-2-23 India Australia 0.4461872 0.5420209 India 0.5556 122.25579 128.54146
28-2-23 South_Africa West_Indies 0.7317005 0.2910127 South_Africa 0.1909 105.28936 75.18959
1-3-23 India Australia 0.4381794 0.5476988 Australia 0.8889 121.52357 129.19324
8-3-23 South_Africa West_Indies 0.7352777 0.2810844 South_Africa 0.6143 105.52562 74.90445
9-3-23 New_Zealand Sri_Lanka 0.5254259 0.4629357 New_Zealand 0.1111 92.88932 89.13987
9-3-23 India Australia 0.4370384 0.5504945 Draw 0.0000 121.82259 128.90171
17-3-23 New_Zealand Sri_Lanka 0.5308461 0.4570962 New_Zealand 0.0534 93.11752 88.82852
7-6-23 Australia India 0.5560195 0.4341685 Australia 0.3318 129.17156 121.49146

Comparison of rankings at the end of WTC 2021-23

Rankings ICC Ratings Improvised Glicko Ratings Final model Ratings
1 India 121 Australia 129.11 Australia 129.58
2 Australia 116 India 121.11 India 121.08
3 England 114 South Africa 105.48 South Africa 106.136
4 South Africa 104 England 101.98 England 102.69
5 New Zealand 100 New Zealand 93.12 New Zealand 94.22
6 Pakistan 86 Sri Lanka 88.82 Sri Lanka 87.73
7 Sri Lanka 84 Pakistan 84.88 Pakistan 84.88
8 West Indies 76 West Indies 74.95 West Indies 74.29
9 Bangladesh 45 Bangladesh 58.33 Bangladesh 58.12

Although the ratings marginally differ, the rankings of all the teams remain exactly same when compared with respect to the improvised Glicko’s model and our final proposed model. The gradual changes of ratings of each team can be studied through trend curves.

Trend comparison of chronological ratings of teams

Conclusion

  • By incorporating key contextual non performance based factors such as home advantage and toss impact and a crucial performance based factor Margin of Victory, the enhanced model provides a more accurate and fair assessment of team performance in Test cricket.

  • The model demonstrated superior predictive accuracy, correctly forecasting the outcomes of 44 out of 56 non-drawn matches during the ICC World Test Championship 2021-23. Statistical tests showed that home ground and toss advantages are significant factors in deciding the outcome of a Test match.

  • A suitable choice of \(\alpha\) and cutoff \(q\)-th quantile resulted in maximising the prediction of proportion (9 out of 12) of drawn Test matches during a given time period based on a certain training period.

  • The inclusion of the Margin of Victory \((MOV)\) allowed for more dynamic rating adjustments, reflecting the degree of dominance in match outcomes instead of awarding equal proportions of rating points irrespective of the margins of victory.

Thankyou !