Notes on how to interpret the data (please correct)

Data Tables

Herd Freq
A 97
B 10
C 171
D 4
E 55
F 6

[1] “ELISA/RBT/CFT”

herd pos.pos.pos pos.pos.neg pos.neg.pos pos.neg.neg neg.pos.pos neg.neg.pos neg.pos.neg
A 0 2 0 95 0 0 0
B 0 0 0 10 0 0 0
C 0 3 0 50 39 2 22
D 0 0 0 1 2 0 0
E 1 1 0 17 21 2 7
F 0 0 0 0 5 0 1

[1] “FPA/RBT/CFT”

herd pos.pos.pos pos.pos.neg pos.neg.pos pos.neg.neg neg.pos.pos neg.neg.pos neg.pos.neg
A 0 0 0 7 0 0 2
B 0 0 0 0 0 0 0
C 24 7 0 3 15 2 18
D 2 0 0 0 0 0 0
E 14 2 0 0 8 2 6
F 5 1 0 0 0 0 0

Questions impacting model structure and notes to review.

Code to modify

# model {
#     r[1:8] ~ dmulti(p[1:8], n)
#     r2[1:8] ~ dmulti(p2[1:8], n2)
#     p[1] <- pr*(se[1]*se[2]*se[3]+se[2]*a13) + (1-pr)*((1-sp[1])*(1-sp[2])*(1-sp[3])+(1-sp[2])*b13)
#     p[2] <- pr*(se[1]*se[2]*(1-se[3])-se[2]*a13) + (1-pr)*((1-sp[1])*(1-sp[2])*sp[3]-(1-sp[2])*b13)
#     p[3] <- pr*(se[1]*(1-se[2])*se[3]+(1-se[2])*a13) + (1-pr)*((1-sp[1])*sp[2]*(1-sp[3])+sp[2]*b13)
#     p[4] <- pr*(se[1]*(1-se[2])*(1-se[3])-(1-se[2])*a13) + (1-pr)*((1-sp[1])*sp[2]*sp[3]-sp[2]*b13)
#     p[5] <- pr*((1-se[1])*se[2]*se[3]-(1-se[2])*a13) + (1-pr)*(sp[1]*(1-sp[2])*(1-sp[3])-(1-sp[2])*b13)
#     p[6] <- pr*((1-se[1])*se[2]*(1-se[3])+se[2]*a13) + (1-pr)*(sp[1]*(1-sp[2])*sp[3]+(1-sp[2])*b13)
#     p[7] <- pr*((1-se[1])*(1-se[2])*se[3]-(1-se[2])*a13) + (1-pr)*(sp[1]*sp[2]*(1-sp[3])-sp[2]*b13)
#     p[8] <- pr*((1-se[1])*(1-se[2])*(1-se[3])+(1-se[2])*a13) + (1-pr)*(sp[1]*sp[2]*sp[3]+sp[2]*b13)
# 
#     p2[1] <- pr2*(se[1]*se[2]*se[3]+se[2]*a13) + (1-pr2)*((1-sp[1])*(1-sp[2])*(1-sp[3])+(1-sp[2])*b13)
#     p2[2] <- pr2*(se[1]*se[2]*(1-se[3])-se[2]*a13) + (1-pr2)*((1-sp[1])*(1-sp[2])*sp[3]-(1-sp[2])*b13)
#     p2[3] <- pr2*(se[1]*(1-se[2])*se[3]+(1-se[2])*a13) + (1-pr2)*((1-sp[1])*sp[2]*(1-sp[3])+sp[2]*b13)
#     p2[4] <- pr2*(se[1]*(1-se[2])*(1-se[3])-(1-se[2])*a13) + (1-pr2)*((1-sp[1])*sp[2]*sp[3]-sp[2]*b13)
#     p2[5] <- pr2*((1-se[1])*se[2]*se[3]-(1-se[2])*a13) + (1-pr2)*(sp[1]*(1-sp[2])*(1-sp[3])-(1-sp[2])*b13)
#     p2[6] <- pr2*((1-se[1])*se[2]*(1-se[3])+se[2]*a13) + (1-pr2)*(sp[1]*(1-sp[2])*sp[3]+(1-sp[2])*b13)
#     p2[7] <- pr2*((1-se[1])*(1-se[2])*se[3]-(1-se[2])*a13) + (1-pr2)*(sp[1]*sp[2]*(1-sp[3])-sp[2]*b13)
#     p2[8] <- pr2*((1-se[1])*(1-se[2])*(1-se[3])+(1-se[2])*a13) + (1-pr2)*(sp[1]*sp[2]*sp[3]+sp[2]*b13)
# 
#     #Priors
#     pr ~ dbeta(2.35, 4.14)
#     pr2 ~ dbeta(1.96, 2.78)
#     se[1] ~ dbeta(6.2881, 1.13)
#     se[2] ~dbeta(1.9348, 1.018) 
#     se[3] ~ dbeta(2.0791, 1.045) 
#     sp[1] ~ dbeta(6.30745, 1.1361)
#     sp[2] ~ dbeta(8.077, 1.0142) 
#     sp[3] ~ dbeta(2.5335, 1.003)
#     ll1 <- max(-(1-se[1])*(1-se[3]), -se[1]*se[3])
#     ul1 <- min(se[1]*(1-se[3]),(1-se[1])*se[3])
#     a13 ~ dunif(ll1,ul1)
#     ll2 <- max(-(1-sp[1])*(1-sp[3]), -sp[1]*sp[3])
#     ul2 <- min(sp[1]*(1-sp[3]),(1-sp[1])*sp[3])
#     b13 ~ dunif(ll2,ul2)
# 
#     # correlation between ELISA and CFT 
#     cc_a13 <- a13/(sqrt(se[1]*(1-se[1]))*sqrt(se[3]*(1-se[3])))
#     cc_b13 <- b13/(sqrt(sp[1]*(1-sp[1]))*sqrt(sp[3]*(1-sp[3])))
# }