R Markdown

as.integer(3.14)
## [1] 3
as.numeric(FALSE)
## [1] 0
as.logical(0.45)
## [1] TRUE
getwd()
## [1] "C:/adsp"
setwd('c:/adsp')
getwd()
## [1] "c:/adsp"
# 데이터 불러오기
df <- read.csv("Data1.csv")
mtcars <- read.csv("mtcars.csv")

# 데이터 확인
head(df)
##   Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Gender
## 1  4  4  2  3  4  2  2  4  4   4   4   4   4   4   4   4   4   4   4   4      0
## 2  4  4  4  4  4  3  2  4  4   4   4   4   4   4   4   4   3   4   2   1      0
## 3  4  4  4  4  2  4  4  4  4   2   4   4   4   4   3   4   4   4   4   3      0
## 4  5  4  4  4  4  4  4  4  4   4   4   4   4   4   4   4   4   4   4   4      0
## 5  4  4  4  4  4  4  4  4  2   4   4   4   4   4   4   4   4   4   4   4      0
## 6  4  4  4  4  4  4  4  4  4   4   4   4   4   4   4   4   4   4   4   4      0
##   EDU  BF  BM Happiness Peace
## 1   1 3.4 3.2       4.0   4.0
## 2   1 4.0 3.4       4.0   2.8
## 3   2 3.6 3.6       3.8   3.8
## 4   1 4.2 4.0       4.0   4.0
## 5   2 4.0 3.6       4.0   4.0
## 6   1 4.0 4.0       4.0   4.0
head(mtcars)
##                   X  mpg cyl disp  hp drat    wt  qsec vs am gear carb
## 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## 6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
str(df)
## 'data.frame':    1925 obs. of  26 variables:
##  $ Q1       : int  4 4 4 5 4 4 4 4 4 4 ...
##  $ Q2       : int  4 4 4 4 4 4 2 2 4 4 ...
##  $ Q3       : int  2 4 4 4 4 4 4 4 4 2 ...
##  $ Q4       : int  3 4 4 4 4 4 4 4 4 2 ...
##  $ Q5       : int  4 4 2 4 4 4 4 4 2 4 ...
##  $ Q6       : int  2 3 4 4 4 4 4 4 1 2 ...
##  $ Q7       : int  2 2 4 4 4 4 4 4 3 4 ...
##  $ Q8       : int  4 4 4 4 4 4 5 5 2 2 ...
##  $ Q9       : int  4 4 4 4 2 4 5 5 3 4 ...
##  $ Q10      : int  4 4 2 4 4 4 5 5 2 4 ...
##  $ Q11      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q12      : int  4 4 4 4 4 4 5 5 3 4 ...
##  $ Q13      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q14      : int  4 4 4 4 4 4 5 5 5 4 ...
##  $ Q15      : int  4 4 3 4 4 4 4 2 3 4 ...
##  $ Q16      : int  4 4 4 4 4 4 5 2 4 4 ...
##  $ Q17      : int  4 3 4 4 4 4 2 2 4 4 ...
##  $ Q18      : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Q19      : int  4 2 4 4 4 4 4 2 4 2 ...
##  $ Q20      : int  4 1 3 4 4 4 4 2 4 2 ...
##  $ Gender   : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ EDU      : int  1 1 2 1 2 1 1 1 4 3 ...
##  $ BF       : num  3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
##  $ BM       : num  3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
##  $ Happiness: num  4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
##  $ Peace    : num  4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
str(mtcars)
## 'data.frame':    32 obs. of  12 variables:
##  $ X   : chr  "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : int  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : int  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : int  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : int  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: int  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: int  4 4 1 1 2 1 4 2 2 4 ...
head(iris, 3)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
tail(iris, 3)
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
str(iris)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
dim(iris)
## [1] 150   5
mean(mtcars$mpg)
## [1] 20.09062
median(mtcars$mpg)
## [1] 19.2
var(mtcars$mpg)
## [1] 36.3241
sd(mtcars$mpg)
## [1] 6.026948
sum(mtcars$mpg)
## [1] 642.9
range(mtcars$mpg)
## [1] 10.4 33.9
max(mtcars$mpg)
## [1] 33.9
min(mtcars$mpg)
## [1] 10.4
quantile(mtcars$mpg)
##     0%    25%    50%    75%   100% 
## 10.400 15.425 19.200 22.800 33.900
IQR(mtcars$mpg)
## [1] 7.375
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
##