R Markdown
as.integer(3.14)
## [1] 3
as.numeric(FALSE)
## [1] 0
as.logical(0.45)
## [1] TRUE
getwd()
## [1] "C:/adsp"
setwd('c:/adsp')
getwd()
## [1] "c:/adsp"
# 데이터 불러오기
df <- read.csv("Data1.csv")
mtcars <- read.csv("mtcars.csv")
# 데이터 확인
head(df)
## Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Gender
## 1 4 4 2 3 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 0
## 2 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 3 4 2 1 0
## 3 4 4 4 4 2 4 4 4 4 2 4 4 4 4 3 4 4 4 4 3 0
## 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0
## 5 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 0
## 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0
## EDU BF BM Happiness Peace
## 1 1 3.4 3.2 4.0 4.0
## 2 1 4.0 3.4 4.0 2.8
## 3 2 3.6 3.6 3.8 3.8
## 4 1 4.2 4.0 4.0 4.0
## 5 2 4.0 3.6 4.0 4.0
## 6 1 4.0 4.0 4.0 4.0
head(mtcars)
## X mpg cyl disp hp drat wt qsec vs am gear carb
## 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## 6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
str(df)
## 'data.frame': 1925 obs. of 26 variables:
## $ Q1 : int 4 4 4 5 4 4 4 4 4 4 ...
## $ Q2 : int 4 4 4 4 4 4 2 2 4 4 ...
## $ Q3 : int 2 4 4 4 4 4 4 4 4 2 ...
## $ Q4 : int 3 4 4 4 4 4 4 4 4 2 ...
## $ Q5 : int 4 4 2 4 4 4 4 4 2 4 ...
## $ Q6 : int 2 3 4 4 4 4 4 4 1 2 ...
## $ Q7 : int 2 2 4 4 4 4 4 4 3 4 ...
## $ Q8 : int 4 4 4 4 4 4 5 5 2 2 ...
## $ Q9 : int 4 4 4 4 2 4 5 5 3 4 ...
## $ Q10 : int 4 4 2 4 4 4 5 5 2 4 ...
## $ Q11 : int 4 4 4 4 4 4 5 5 4 4 ...
## $ Q12 : int 4 4 4 4 4 4 5 5 3 4 ...
## $ Q13 : int 4 4 4 4 4 4 5 5 4 4 ...
## $ Q14 : int 4 4 4 4 4 4 5 5 5 4 ...
## $ Q15 : int 4 4 3 4 4 4 4 2 3 4 ...
## $ Q16 : int 4 4 4 4 4 4 5 2 4 4 ...
## $ Q17 : int 4 3 4 4 4 4 2 2 4 4 ...
## $ Q18 : int 4 4 4 4 4 4 4 4 4 4 ...
## $ Q19 : int 4 2 4 4 4 4 4 2 4 2 ...
## $ Q20 : int 4 1 3 4 4 4 4 2 4 2 ...
## $ Gender : int 0 0 0 0 0 0 0 0 1 0 ...
## $ EDU : int 1 1 2 1 2 1 1 1 4 3 ...
## $ BF : num 3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
## $ BM : num 3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
## $ Happiness: num 4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
## $ Peace : num 4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
str(mtcars)
## 'data.frame': 32 obs. of 12 variables:
## $ X : chr "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : int 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : int 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : int 0 0 1 1 0 1 0 1 1 1 ...
## $ am : int 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: int 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: int 4 4 1 1 2 1 4 2 2 4 ...
head(iris, 3)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
tail(iris, 3)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
str(iris)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
names(iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
dim(iris)
## [1] 150 5
mean(mtcars$mpg)
## [1] 20.09062
median(mtcars$mpg)
## [1] 19.2
var(mtcars$mpg)
## [1] 36.3241
sd(mtcars$mpg)
## [1] 6.026948
sum(mtcars$mpg)
## [1] 642.9
range(mtcars$mpg)
## [1] 10.4 33.9
max(mtcars$mpg)
## [1] 33.9
min(mtcars$mpg)
## [1] 10.4
quantile(mtcars$mpg)
## 0% 25% 50% 75% 100%
## 10.400 15.425 19.200 22.800 33.900
IQR(mtcars$mpg)
## [1] 7.375
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##