iris$Species
##   [1] setosa     setosa     setosa     setosa     setosa     setosa    
##   [7] setosa     setosa     setosa     setosa     setosa     setosa    
##  [13] setosa     setosa     setosa     setosa     setosa     setosa    
##  [19] setosa     setosa     setosa     setosa     setosa     setosa    
##  [25] setosa     setosa     setosa     setosa     setosa     setosa    
##  [31] setosa     setosa     setosa     setosa     setosa     setosa    
##  [37] setosa     setosa     setosa     setosa     setosa     setosa    
##  [43] setosa     setosa     setosa     setosa     setosa     setosa    
##  [49] setosa     setosa     versicolor versicolor versicolor versicolor
##  [55] versicolor versicolor versicolor versicolor versicolor versicolor
##  [61] versicolor versicolor versicolor versicolor versicolor versicolor
##  [67] versicolor versicolor versicolor versicolor versicolor versicolor
##  [73] versicolor versicolor versicolor versicolor versicolor versicolor
##  [79] versicolor versicolor versicolor versicolor versicolor versicolor
##  [85] versicolor versicolor versicolor versicolor versicolor versicolor
##  [91] versicolor versicolor versicolor versicolor versicolor versicolor
##  [97] versicolor versicolor versicolor versicolor virginica  virginica 
## [103] virginica  virginica  virginica  virginica  virginica  virginica 
## [109] virginica  virginica  virginica  virginica  virginica  virginica 
## [115] virginica  virginica  virginica  virginica  virginica  virginica 
## [121] virginica  virginica  virginica  virginica  virginica  virginica 
## [127] virginica  virginica  virginica  virginica  virginica  virginica 
## [133] virginica  virginica  virginica  virginica  virginica  virginica 
## [139] virginica  virginica  virginica  virginica  virginica  virginica 
## [145] virginica  virginica  virginica  virginica  virginica  virginica 
## Levels: setosa versicolor virginica
as.numeric(FALSE)
## [1] 0
as.integer(3.14)
## [1] 3
as.logical(0.45)
## [1] TRUE
setwd("c:/data")
getwd()
## [1] "c:/data"
data("iris")
head(iris) # 데이터셋의 처음 6행 출력
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
head(iris, 3) # 처음 3행만 출력
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
tail(iris) # 끝에서 6행 출력
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
tail(iris, 3) # 끝에서 3행 출력
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
str(iris) #structure
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
df <- read.csv("mtcars.csv")
head(df)
##                   X  mpg cyl disp  hp drat    wt  qsec vs am gear carb
## 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## 6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
tail(df)
##                 X  mpg cyl  disp  hp drat    wt qsec vs am gear carb
## 27  Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## 28   Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
## 29 Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
## 30   Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
## 31  Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8
## 32     Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.6  1  1    4    2
str(df)
## 'data.frame':    32 obs. of  12 variables:
##  $ X   : chr  "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : int  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : int  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : int  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : int  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: int  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: int  4 4 1 1 2 1 4 2 2 4 ...
dim(df)
## [1] 32 12
ls(df)
##  [1] "am"   "carb" "cyl"  "disp" "drat" "gear" "hp"   "mpg"  "qsec" "vs"  
## [11] "wt"   "X"
df1 <- read.csv("Data1.csv")
str(df1)
## 'data.frame':    1925 obs. of  26 variables:
##  $ Q1       : int  4 4 4 5 4 4 4 4 4 4 ...
##  $ Q2       : int  4 4 4 4 4 4 2 2 4 4 ...
##  $ Q3       : int  2 4 4 4 4 4 4 4 4 2 ...
##  $ Q4       : int  3 4 4 4 4 4 4 4 4 2 ...
##  $ Q5       : int  4 4 2 4 4 4 4 4 2 4 ...
##  $ Q6       : int  2 3 4 4 4 4 4 4 1 2 ...
##  $ Q7       : int  2 2 4 4 4 4 4 4 3 4 ...
##  $ Q8       : int  4 4 4 4 4 4 5 5 2 2 ...
##  $ Q9       : int  4 4 4 4 2 4 5 5 3 4 ...
##  $ Q10      : int  4 4 2 4 4 4 5 5 2 4 ...
##  $ Q11      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q12      : int  4 4 4 4 4 4 5 5 3 4 ...
##  $ Q13      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q14      : int  4 4 4 4 4 4 5 5 5 4 ...
##  $ Q15      : int  4 4 3 4 4 4 4 2 3 4 ...
##  $ Q16      : int  4 4 4 4 4 4 5 2 4 4 ...
##  $ Q17      : int  4 3 4 4 4 4 2 2 4 4 ...
##  $ Q18      : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Q19      : int  4 2 4 4 4 4 4 2 4 2 ...
##  $ Q20      : int  4 1 3 4 4 4 4 2 4 2 ...
##  $ Gender   : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ EDU      : int  1 1 2 1 2 1 1 1 4 3 ...
##  $ BF       : num  3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
##  $ BM       : num  3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
##  $ Happiness: num  4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
##  $ Peace    : num  4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
dim(df1)
## [1] 1925   26
ls(df1)
##  [1] "BF"        "BM"        "EDU"       "Gender"    "Happiness" "Peace"    
##  [7] "Q1"        "Q10"       "Q11"       "Q12"       "Q13"       "Q14"      
## [13] "Q15"       "Q16"       "Q17"       "Q18"       "Q19"       "Q2"       
## [19] "Q20"       "Q3"        "Q4"        "Q5"        "Q6"        "Q7"       
## [25] "Q8"        "Q9"
# 작업 환경의의 모든 객체 삭제
rm(list = ls())
ls()
## character(0)
data <- read.csv("mtcars.csv")
mean(data$mpg)
## [1] 20.09062
median(data$mpg)
## [1] 19.2
var(data$mpg) # 분산산
## [1] 36.3241
sd(data$mpg) # 표준편차
## [1] 6.026948
sum(data$mpg)
## [1] 642.9
range(data$mpg)
## [1] 10.4 33.9
max(data$mpg)
## [1] 33.9
min(data$mpg)
## [1] 10.4
quantile(data$mpg) # 분위수
##     0%    25%    50%    75%   100% 
## 10.400 15.425 19.200 22.800 33.900
IQR(data$mpg) # 사분위수 범위
## [1] 7.375
summary(iris) # 중요 함수
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
##