En el presente analisis se prueba cual de las tres alternativas de mejora diseñada por el científico de datos se debe implementar.
#importar la base de datos de lo tiempos de fallas de las máquinas de un proceso de elaboración de galletas
arbol <-c(23.81, 22.13, 22.64, 21.69, 23.58, 22.14, 18.73, 21.59,
20.36, 20.53, 20.11, 20.34, 19.19, 22.92, 18.65, 20.6,
19.83, 20.09, 19.43, 22.06, 21.15, 19.26, 18.08, 20.24,
18.75, 20.69, 21.62, 23.69, 23.93, 23.19)
redn <-c(23.24, 20.08, 18.01, 23.28, 19.23, 21.22, 21.47, 20.6,
21.11, 21.27, 21.03, 17.34, 22.8, 21.85, 17.85, 23.15,
19.57, 19.56, 20.79, 18.04, 20.95, 21.83, 18.17, 22.66,
18.29, 18.89, 19.49, 19.19, 26.47, 25.25)
regresion <-c(16.13, 17.84, 18.28, 15.61, 17.62, 16.12, 17.29, 16.13,
16.64, 15.03, 18.16, 16.82, 17.44, 16.76, 17.26, 15.55,
17.49, 18.42, 17.54, 17.13, 15.5, 16.8, 18.47, 18.42,
18.43, 15.56, 16.03, 15.39, 15.12, 17.77)
actual <-c(17.09, 15.77, 18.45, 16.55, 22.23, 22.11, 18.26, 18.04,
19.66, 19.76, 18.74, 19.02, 18.54, 16.7, 17.57, 19.89,
19.06, 18.7, 19.39, 19.68, 19.2, 16.85, 19.91, 19.82, 18.08,
19.38, 20.3, 21.6, 23.39, 19.33)
data2 <- data.frame(ÁrbolC =arbol, Red_N = redn, Regresion = regresion, SActual = actual)
#Resumen Numérico
numSummary(data2[,c("ÁrbolC", "Red_N", "Regresion", "SActual"), drop=FALSE], statistics=c("mean", "sd", "IQR","quantiles"), quantiles=c(0,.25,.5,.75,1))
## mean sd IQR 0% 25% 50% 75% 100% n
## ÁrbolC 21.03400 1.705609 2.2425 18.08 19.8950 20.645 22.1375 23.93 30
## Red_N 20.75600 2.224344 2.6450 17.34 19.2000 20.870 21.8450 26.47 30
## Regresion 16.89167 1.103312 1.6800 15.03 16.0525 16.975 17.7325 18.47 30
## SActual 19.10233 1.729648 1.6800 15.77 18.1250 19.130 19.8050 23.39 30
#La media de tiempo actual es 19.10233
#Pruebas de Hipótesis para árbol de Clasificación
with(data2, (t.test(ÁrbolC, alternative='less', mu=19.10233, conf.level=.95)))
##
## One Sample t-test
##
## data: ÁrbolC
## t = 6.2032, df = 29, p-value = 1
## alternative hypothesis: true mean is less than 19.10233
## 95 percent confidence interval:
## -Inf 21.56311
## sample estimates:
## mean of x
## 21.034
#H0 mu = 19.10233
#H1 mu < 19.10233
#Se rechaza la h1, el tiempo no es menor a 19.10
with(data2, (t.test(ÁrbolC, alternative='greater', mu=19.10233, conf.level=.95)))
##
## One Sample t-test
##
## data: ÁrbolC
## t = 6.2032, df = 29, p-value = 4.568e-07
## alternative hypothesis: true mean is greater than 19.10233
## 95 percent confidence interval:
## 20.50489 Inf
## sample estimates:
## mean of x
## 21.034
#H0 mu = 19.10233
#H1 mu > 19.10233
#Se acepta la H1, el tiempo es mayor 19.10
#Pruebas de Hipótesis para Redes Neuronales
with(data2, (t.test(Red_N, alternative='less', mu=19.10233, conf.level=.95)))
##
## One Sample t-test
##
## data: Red_N
## t = 4.072, df = 29, p-value = 0.9998
## alternative hypothesis: true mean is less than 19.10233
## 95 percent confidence interval:
## -Inf 21.44603
## sample estimates:
## mean of x
## 20.756
#H0 mu = 19.10233
#H1 mu < 19.10233
#Se rechaza la h1, el tiempo no es menor a 19.10
with(data2, (t.test(Red_N, alternative='greater', mu=19.10233, conf.level=.95)))
##
## One Sample t-test
##
## data: Red_N
## t = 4.072, df = 29, p-value = 0.0001645
## alternative hypothesis: true mean is greater than 19.10233
## 95 percent confidence interval:
## 20.06597 Inf
## sample estimates:
## mean of x
## 20.756
#H0 mu = 19.10233
#H1 mu > 19.10233
#Se acepta la H1, el tiempo es mayor 19.10
#Pruebas de Hipótesis para Métodos de Regresión
with(data2, (t.test(Regresion, alternative='less', mu=19.10233, conf.level=.95)))
##
## One Sample t-test
##
## data: Regresion
## t = -10.975, df = 29, p-value = 3.842e-12
## alternative hypothesis: true mean is less than 19.10233
## 95 percent confidence interval:
## -Inf 17.23393
## sample estimates:
## mean of x
## 16.89167
#H0 mu = 19.10233
#H1 mu < 19.10233
#Se acepta la h1, el tiempo es menor a 19.10
with(data2, (t.test(Regresion, alternative='greater', mu=19.10233, conf.level=.95)))
##
## One Sample t-test
##
## data: Regresion
## t = -10.975, df = 29, p-value = 1
## alternative hypothesis: true mean is greater than 19.10233
## 95 percent confidence interval:
## 16.5494 Inf
## sample estimates:
## mean of x
## 16.89167
#H0 mu = 19.10233
#H1 mu > 19.10233
#Se rechaza la H1, el tiempo no es mayor 19.10
Conclusión: El científico debería implementar el método de Regresión, ya que es el que tiene tiempo promedio más bajo y es estadísticamente mejor que las otras alternativas.