Anggota Kelompok 3 :

  1. Elizabeth Hanov (23031554055)
  2. Aghnia Alya Amarilla (23031554102)
  3. Nashita Erha Fitri (23031554116)

Packages

packages <- c("psych", "GPArotation", "lavaan", "semPlot", "MASS", "ggplot2", "tidyverse", "cluster", "factoextra", "corrplot")
install.packages(setdiff(packages, rownames(installed.packages())))
lapply(packages, library, character.only = TRUE)
## Warning: package 'psych' was built under R version 4.4.3
## Warning: package 'GPArotation' was built under R version 4.4.3
## 
## Attaching package: 'GPArotation'
## The following objects are masked from 'package:psych':
## 
##     equamax, varimin
## Warning: package 'lavaan' was built under R version 4.4.3
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
## Warning: package 'semPlot' was built under R version 4.4.3
## Warning: package 'MASS' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.4     ✔ tibble    3.2.1
## ✔ purrr     1.0.4     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()   masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ dplyr::select()  masks MASS::select()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Warning: package 'cluster' was built under R version 4.4.3
## Warning: package 'factoextra' was built under R version 4.4.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
## Warning: package 'corrplot' was built under R version 4.4.3
## corrplot 0.95 loaded
## [[1]]
## [1] "psych"     "stats"     "graphics"  "grDevices" "utils"     "datasets" 
## [7] "methods"   "base"     
## 
## [[2]]
## [1] "GPArotation" "psych"       "stats"       "graphics"    "grDevices"  
## [6] "utils"       "datasets"    "methods"     "base"       
## 
## [[3]]
##  [1] "lavaan"      "GPArotation" "psych"       "stats"       "graphics"   
##  [6] "grDevices"   "utils"       "datasets"    "methods"     "base"       
## 
## [[4]]
##  [1] "semPlot"     "lavaan"      "GPArotation" "psych"       "stats"      
##  [6] "graphics"    "grDevices"   "utils"       "datasets"    "methods"    
## [11] "base"       
## 
## [[5]]
##  [1] "MASS"        "semPlot"     "lavaan"      "GPArotation" "psych"      
##  [6] "stats"       "graphics"    "grDevices"   "utils"       "datasets"   
## [11] "methods"     "base"       
## 
## [[6]]
##  [1] "ggplot2"     "MASS"        "semPlot"     "lavaan"      "GPArotation"
##  [6] "psych"       "stats"       "graphics"    "grDevices"   "utils"      
## [11] "datasets"    "methods"     "base"       
## 
## [[7]]
##  [1] "lubridate"   "forcats"     "stringr"     "dplyr"       "purrr"      
##  [6] "readr"       "tidyr"       "tibble"      "tidyverse"   "ggplot2"    
## [11] "MASS"        "semPlot"     "lavaan"      "GPArotation" "psych"      
## [16] "stats"       "graphics"    "grDevices"   "utils"       "datasets"   
## [21] "methods"     "base"       
## 
## [[8]]
##  [1] "cluster"     "lubridate"   "forcats"     "stringr"     "dplyr"      
##  [6] "purrr"       "readr"       "tidyr"       "tibble"      "tidyverse"  
## [11] "ggplot2"     "MASS"        "semPlot"     "lavaan"      "GPArotation"
## [16] "psych"       "stats"       "graphics"    "grDevices"   "utils"      
## [21] "datasets"    "methods"     "base"       
## 
## [[9]]
##  [1] "factoextra"  "cluster"     "lubridate"   "forcats"     "stringr"    
##  [6] "dplyr"       "purrr"       "readr"       "tidyr"       "tibble"     
## [11] "tidyverse"   "ggplot2"     "MASS"        "semPlot"     "lavaan"     
## [16] "GPArotation" "psych"       "stats"       "graphics"    "grDevices"  
## [21] "utils"       "datasets"    "methods"     "base"       
## 
## [[10]]
##  [1] "corrplot"    "factoextra"  "cluster"     "lubridate"   "forcats"    
##  [6] "stringr"     "dplyr"       "purrr"       "readr"       "tidyr"      
## [11] "tibble"      "tidyverse"   "ggplot2"     "MASS"        "semPlot"    
## [16] "lavaan"      "GPArotation" "psych"       "stats"       "graphics"   
## [21] "grDevices"   "utils"       "datasets"    "methods"     "base"

1. Persiapan Data

Load Data

{data <- readxl::read_excel("C:/Users/asus/Downloads/2. Response.xlsx", sheet = "Form Responses 1")}

Exploratory Data Analysis

summary(data)
##       TSC1            TSC2            TSC3            TSC4      
##  Min.   :1.000   Min.   :2.000   Min.   :2.000   Min.   :2.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.653   Mean   :3.809   Mean   :3.732   Mean   :3.709  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       TSC5            TE1             TE2             TE3       
##  Min.   :2.000   Min.   :1.000   Min.   :2.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.822   Mean   :4.061   Mean   :4.043   Mean   :4.121  
##  3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       TE4             TE5             EE1             EE2       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :4.105   Mean   :3.902   Mean   :3.812   Mean   :3.727  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       EE3             EE4             EE5             DE1       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.878   Mean   :3.687   Mean   :3.987   Mean   :3.925  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       DE2             DE3             RPA1            RPA2      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.596   Mean   :3.817   Mean   :3.933   Mean   :3.941  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       RPA3            RPA4            RPA5      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.884   Mean   :3.869   Mean   :3.842  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000
str(data)
## tibble [876 × 23] (S3: tbl_df/tbl/data.frame)
##  $ TSC1: num [1:876] 4 4 4 4 4 4 1 1 2 2 ...
##  $ TSC2: num [1:876] 4 4 4 4 5 5 4 4 2 2 ...
##  $ TSC3: num [1:876] 4 4 5 5 3 3 4 4 2 2 ...
##  $ TSC4: num [1:876] 4 4 4 4 4 4 4 4 2 2 ...
##  $ TSC5: num [1:876] 4 4 5 5 4 4 4 4 2 2 ...
##  $ TE1 : num [1:876] 4 4 5 5 4 4 3 3 1 1 ...
##  $ TE2 : num [1:876] 4 4 4 4 4 4 3 3 2 2 ...
##  $ TE3 : num [1:876] 4 4 4 4 4 4 3 3 1 1 ...
##  $ TE4 : num [1:876] 4 4 5 5 4 4 3 3 1 1 ...
##  $ TE5 : num [1:876] 4 4 4 4 4 4 3 3 1 1 ...
##  $ EE1 : num [1:876] 4 4 4 4 4 4 4 4 1 1 ...
##  $ EE2 : num [1:876] 4 4 5 5 4 4 4 4 1 1 ...
##  $ EE3 : num [1:876] 4 4 5 5 4 4 4 4 1 1 ...
##  $ EE4 : num [1:876] 4 4 4 4 4 4 4 4 1 1 ...
##  $ EE5 : num [1:876] 4 4 5 5 4 4 3 3 1 1 ...
##  $ DE1 : num [1:876] 4 4 5 5 4 4 1 1 3 3 ...
##  $ DE2 : num [1:876] 4 4 5 5 4 4 1 1 2 2 ...
##  $ DE3 : num [1:876] 4 4 5 5 4 4 4 4 2 2 ...
##  $ RPA1: num [1:876] 4 4 5 5 4 4 3 3 2 2 ...
##  $ RPA2: num [1:876] 4 4 4 4 4 4 3 3 1 2 ...
##  $ RPA3: num [1:876] 4 4 5 5 4 4 3 4 2 1 ...
##  $ RPA4: num [1:876] 4 4 4 4 4 4 4 3 2 2 ...
##  $ RPA5: num [1:876] 4 4 5 5 4 4 4 4 1 1 ...

2. Uji Validitas dan Kesesuaian Konstruk

EFA (Exploratory Factor Analysis)

  1. KMO Test

    KMO_result <- KMO(cor(data))
    print(KMO_result)
    ## Kaiser-Meyer-Olkin factor adequacy
    ## Call: KMO(r = cor(data))
    ## Overall MSA =  0.94
    ## MSA for each item = 
    ## TSC1 TSC2 TSC3 TSC4 TSC5  TE1  TE2  TE3  TE4  TE5  EE1  EE2  EE3  EE4  EE5  DE1 
    ## 0.96 0.96 0.95 0.94 0.96 0.93 0.96 0.94 0.94 0.96 0.95 0.94 0.95 0.94 0.97 0.87 
    ##  DE2  DE3 RPA1 RPA2 RPA3 RPA4 RPA5 
    ## 0.86 0.92 0.91 0.91 0.95 0.94 0.96
  1. Bartlett’s test

    bartlett_test <- cortest.bartlett(cor(data), n = nrow(data))
    print(bartlett_test)
    ## $chisq
    ## [1] 10309.81
    ## 
    ## $p.value
    ## [1] 0
    ## 
    ## $df
    ## [1] 253

Scree plot for determining number of factors

fa.parallel(data, fa = "fa", n.iter = 100)

## Parallel analysis suggests that the number of factors =  5  and the number of components =  NA

EFA with 5 factors (as teori)

efa_result <- fa(data, nfactors = 5, rotate = "varimax")
print(efa_result)
## Factor Analysis using method =  minres
## Call: fa(r = data, nfactors = 5, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       MR3  MR4  MR5   MR1  MR2   h2   u2 com
## TSC1 0.22 0.23 0.52  0.15 0.19 0.43 0.57 2.3
## TSC2 0.22 0.19 0.57  0.22 0.16 0.48 0.52 2.1
## TSC3 0.14 0.12 0.58  0.22 0.22 0.47 0.53 1.8
## TSC4 0.10 0.19 0.51  0.22 0.18 0.39 0.61 2.1
## TSC5 0.25 0.23 0.60  0.18 0.11 0.52 0.48 2.0
## TE1  0.69 0.19 0.19  0.15 0.16 0.60 0.40 1.5
## TE2  0.62 0.22 0.20  0.19 0.15 0.53 0.47 1.8
## TE3  0.73 0.25 0.17  0.17 0.11 0.67 0.33 1.5
## TE4  0.75 0.26 0.20  0.18 0.23 0.75 0.25 1.8
## TE5  0.46 0.22 0.21  0.28 0.21 0.43 0.57 3.2
## EE1  0.33 0.29 0.23  0.54 0.14 0.56 0.44 2.9
## EE2  0.16 0.27 0.30  0.68 0.09 0.67 0.33 1.9
## EE3  0.27 0.33 0.32  0.56 0.10 0.61 0.39 2.9
## EE4  0.23 0.23 0.30  0.65 0.11 0.63 0.37 2.0
## EE5  0.37 0.37 0.32  0.40 0.16 0.57 0.43 4.2
## DE1  0.22 0.07 0.22 -0.04 0.60 0.46 0.54 1.6
## DE2  0.07 0.11 0.12  0.14 0.70 0.54 0.46 1.2
## DE3  0.21 0.11 0.20  0.16 0.62 0.50 0.50 1.7
## RPA1 0.24 0.70 0.30  0.17 0.03 0.67 0.33 1.7
## RPA2 0.22 0.78 0.24  0.13 0.04 0.73 0.27 1.4
## RPA3 0.19 0.68 0.19  0.21 0.10 0.59 0.41 1.6
## RPA4 0.19 0.54 0.13  0.23 0.16 0.42 0.58 2.0
## RPA5 0.19 0.47 0.09  0.21 0.16 0.33 0.67 2.1
## 
##                        MR3  MR4  MR5  MR1  MR2
## SS loadings           3.08 3.02 2.49 2.29 1.68
## Proportion Var        0.13 0.13 0.11 0.10 0.07
## Cumulative Var        0.13 0.27 0.37 0.47 0.55
## Proportion Explained  0.25 0.24 0.20 0.18 0.13
## Cumulative Proportion 0.25 0.49 0.68 0.87 1.00
## 
## Mean item complexity =  2.1
## Test of the hypothesis that 5 factors are sufficient.
## 
## df null model =  253  with the objective function =  11.9 with Chi Square =  10309.81
## df of  the model are 148  and the objective function was  0.64 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  876 with the empirical chi square  233.97  with prob <  8.5e-06 
## The total n.obs was  876  with Likelihood Chi Square =  555.41  with prob <  1.8e-48 
## 
## Tucker Lewis Index of factoring reliability =  0.93
## RMSEA index =  0.056  and the 90 % confidence intervals are  0.051 0.061
## BIC =  -447.34
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR3  MR4  MR5  MR1  MR2
## Correlation of (regression) scores with factors   0.89 0.89 0.80 0.84 0.83
## Multiple R square of scores with factors          0.80 0.78 0.64 0.71 0.68
## Minimum correlation of possible factor scores     0.59 0.57 0.29 0.42 0.37
fa.diagram(efa_result)

3. MDS (Perceptual Mapping)

dist_matrix <- dist(scale(data))
mds_fit <- cmdscale(dist_matrix, eig = TRUE, k = 2)
plot(mds_fit$points, type = "n", main = "MDS Plot (2D)")
text(mds_fit$points, labels = colnames(data), col = "blue", cex = 0.9)

4. SEM Model Specification

Konstruk sesuai dengan variabel TSC, TE, EE, DE, RPA

model_sem <- '
  TSC =~ TSC1 + TSC2 + TSC3 + TSC4 + TSC5
  TE  =~ TE1 + TE2 + TE3 + TE4 + TE5
  EE  =~ EE1 + EE2 + EE3 + EE4 + EE5
  DE  =~ DE1 + DE2 + DE3
  RPA =~ RPA1 + RPA2 + RPA3 + RPA4 + RPA5

  # Structural paths (misalnya TSC & TE mempengaruhi burnout: EE, DE, RPA)
  EE ~ TSC + TE
  DE ~ TSC + TE
  RPA ~ TSC + TE
'

fit_sem <- sem(model_sem, data = data)
summary(fit_sem, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 62 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        56
## 
##   Number of observations                           876
## 
## Model Test User Model:
##                                                       
##   Test statistic                               863.884
##   Degrees of freedom                               220
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             10422.842
##   Degrees of freedom                               253
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.937
##   Tucker-Lewis Index (TLI)                       0.927
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17541.444
##   Loglikelihood unrestricted model (H1)     -17109.502
##                                                       
##   Akaike (AIC)                               35194.889
##   Bayesian (BIC)                             35462.309
##   Sample-size adjusted Bayesian (SABIC)      35284.466
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.058
##   90 Percent confidence interval - lower         0.054
##   90 Percent confidence interval - upper         0.062
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   TSC =~                                                                
##     TSC1              1.000                               0.452    0.660
##     TSC2              0.993    0.057   17.461    0.000    0.449    0.703
##     TSC3              0.938    0.056   16.654    0.000    0.424    0.663
##     TSC4              0.923    0.059   15.739    0.000    0.417    0.620
##     TSC5              1.026    0.058   17.631    0.000    0.464    0.711
##   TE =~                                                                 
##     TE1               1.000                               0.548    0.771
##     TE2               0.925    0.042   22.024    0.000    0.507    0.727
##     TE3               1.033    0.042   24.713    0.000    0.566    0.804
##     TE4               1.086    0.041   26.770    0.000    0.595    0.864
##     TE5               0.903    0.046   19.618    0.000    0.495    0.657
##   EE =~                                                                 
##     EE1               1.000                               0.567    0.748
##     EE2               1.135    0.051   22.355    0.000    0.644    0.759
##     EE3               1.154    0.049   23.358    0.000    0.654    0.791
##     EE4               1.069    0.048   22.451    0.000    0.606    0.762
##     EE5               1.094    0.048   22.564    0.000    0.620    0.766
##   DE =~                                                                 
##     DE1               1.000                               0.454    0.670
##     DE2               0.981    0.066   14.838    0.000    0.445    0.653
##     DE3               1.150    0.073   15.733    0.000    0.522    0.748
##   RPA =~                                                                
##     RPA1              1.000                               0.699    0.839
##     RPA2              0.980    0.034   29.186    0.000    0.685    0.852
##     RPA3              0.848    0.034   24.764    0.000    0.593    0.752
##     RPA4              0.678    0.035   19.312    0.000    0.474    0.620
##     RPA5              0.616    0.037   16.661    0.000    0.431    0.548
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EE ~                                                                  
##     TSC               0.683    0.062   11.074    0.000    0.544    0.544
##     TE                0.377    0.043    8.672    0.000    0.364    0.364
##   DE ~                                                                  
##     TSC               0.400    0.061    6.598    0.000    0.398    0.398
##     TE                0.240    0.046    5.227    0.000    0.290    0.290
##   RPA ~                                                                 
##     TSC               0.642    0.077    8.323    0.000    0.415    0.415
##     TE                0.467    0.059    7.943    0.000    0.366    0.366
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   TSC ~~                                                                
##     TE                0.164    0.014   11.953    0.000    0.662    0.662
##  .EE ~~                                                                 
##    .DE               -0.008    0.006   -1.217    0.224   -0.070   -0.070
##    .RPA               0.057    0.009    6.453    0.000    0.371    0.371
##  .DE ~~                                                                 
##    .RPA              -0.021    0.009   -2.374    0.018   -0.123   -0.123
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .TSC1              0.264    0.015   18.146    0.000    0.264    0.564
##    .TSC2              0.206    0.012   17.395    0.000    0.206    0.506
##    .TSC3              0.229    0.013   18.102    0.000    0.229    0.560
##    .TSC4              0.279    0.015   18.689    0.000    0.279    0.616
##    .TSC5              0.210    0.012   17.214    0.000    0.210    0.494
##    .TE1               0.206    0.012   17.583    0.000    0.206    0.406
##    .TE2               0.229    0.012   18.373    0.000    0.229    0.471
##    .TE3               0.176    0.011   16.728    0.000    0.176    0.354
##    .TE4               0.121    0.009   14.178    0.000    0.121    0.254
##    .TE5               0.323    0.017   19.213    0.000    0.323    0.569
##    .EE1               0.254    0.014   18.009    0.000    0.254    0.441
##    .EE2               0.305    0.017   17.795    0.000    0.305    0.424
##    .EE3               0.257    0.015   17.071    0.000    0.257    0.375
##    .EE4               0.265    0.015   17.734    0.000    0.265    0.419
##    .EE5               0.271    0.015   17.661    0.000    0.271    0.413
##    .DE1               0.252    0.016   15.549    0.000    0.252    0.550
##    .DE2               0.267    0.017   16.066    0.000    0.267    0.574
##    .DE3               0.215    0.017   12.626    0.000    0.215    0.441
##    .RPA1              0.206    0.014   14.844    0.000    0.206    0.297
##    .RPA2              0.178    0.013   14.170    0.000    0.178    0.275
##    .RPA3              0.270    0.015   17.644    0.000    0.270    0.434
##    .RPA4              0.360    0.019   19.376    0.000    0.360    0.615
##    .RPA5              0.431    0.022   19.864    0.000    0.431    0.699
##     TSC               0.204    0.020   10.283    0.000    1.000    1.000
##     TE                0.301    0.023   13.070    0.000    1.000    1.000
##    .EE                0.099    0.010    9.785    0.000    0.308    0.308
##    .DE                0.124    0.014    8.796    0.000    0.604    0.604
##    .RPA               0.241    0.019   12.734    0.000    0.493    0.493

Plot SEM

semPaths(fit_sem, "std", layout = "tree", whatLabels = "std", edge.label.cex = 0.9, sizeMan = 5)

5. CFA for Model Refinement

fit_cfa <- cfa(model_sem, data = data)
summary(fit_cfa, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 62 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        56
## 
##   Number of observations                           876
## 
## Model Test User Model:
##                                                       
##   Test statistic                               863.884
##   Degrees of freedom                               220
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             10422.842
##   Degrees of freedom                               253
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.937
##   Tucker-Lewis Index (TLI)                       0.927
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17541.444
##   Loglikelihood unrestricted model (H1)     -17109.502
##                                                       
##   Akaike (AIC)                               35194.889
##   Bayesian (BIC)                             35462.309
##   Sample-size adjusted Bayesian (SABIC)      35284.466
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.058
##   90 Percent confidence interval - lower         0.054
##   90 Percent confidence interval - upper         0.062
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   TSC =~                                                                
##     TSC1              1.000                               0.452    0.660
##     TSC2              0.993    0.057   17.461    0.000    0.449    0.703
##     TSC3              0.938    0.056   16.654    0.000    0.424    0.663
##     TSC4              0.923    0.059   15.739    0.000    0.417    0.620
##     TSC5              1.026    0.058   17.631    0.000    0.464    0.711
##   TE =~                                                                 
##     TE1               1.000                               0.548    0.771
##     TE2               0.925    0.042   22.024    0.000    0.507    0.727
##     TE3               1.033    0.042   24.713    0.000    0.566    0.804
##     TE4               1.086    0.041   26.770    0.000    0.595    0.864
##     TE5               0.903    0.046   19.618    0.000    0.495    0.657
##   EE =~                                                                 
##     EE1               1.000                               0.567    0.748
##     EE2               1.135    0.051   22.355    0.000    0.644    0.759
##     EE3               1.154    0.049   23.358    0.000    0.654    0.791
##     EE4               1.069    0.048   22.451    0.000    0.606    0.762
##     EE5               1.094    0.048   22.564    0.000    0.620    0.766
##   DE =~                                                                 
##     DE1               1.000                               0.454    0.670
##     DE2               0.981    0.066   14.838    0.000    0.445    0.653
##     DE3               1.150    0.073   15.733    0.000    0.522    0.748
##   RPA =~                                                                
##     RPA1              1.000                               0.699    0.839
##     RPA2              0.980    0.034   29.186    0.000    0.685    0.852
##     RPA3              0.848    0.034   24.764    0.000    0.593    0.752
##     RPA4              0.678    0.035   19.312    0.000    0.474    0.620
##     RPA5              0.616    0.037   16.661    0.000    0.431    0.548
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EE ~                                                                  
##     TSC               0.683    0.062   11.074    0.000    0.544    0.544
##     TE                0.377    0.043    8.672    0.000    0.364    0.364
##   DE ~                                                                  
##     TSC               0.400    0.061    6.598    0.000    0.398    0.398
##     TE                0.240    0.046    5.227    0.000    0.290    0.290
##   RPA ~                                                                 
##     TSC               0.642    0.077    8.323    0.000    0.415    0.415
##     TE                0.467    0.059    7.943    0.000    0.366    0.366
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   TSC ~~                                                                
##     TE                0.164    0.014   11.953    0.000    0.662    0.662
##  .EE ~~                                                                 
##    .DE               -0.008    0.006   -1.217    0.224   -0.070   -0.070
##    .RPA               0.057    0.009    6.453    0.000    0.371    0.371
##  .DE ~~                                                                 
##    .RPA              -0.021    0.009   -2.374    0.018   -0.123   -0.123
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .TSC1              0.264    0.015   18.146    0.000    0.264    0.564
##    .TSC2              0.206    0.012   17.395    0.000    0.206    0.506
##    .TSC3              0.229    0.013   18.102    0.000    0.229    0.560
##    .TSC4              0.279    0.015   18.689    0.000    0.279    0.616
##    .TSC5              0.210    0.012   17.214    0.000    0.210    0.494
##    .TE1               0.206    0.012   17.583    0.000    0.206    0.406
##    .TE2               0.229    0.012   18.373    0.000    0.229    0.471
##    .TE3               0.176    0.011   16.728    0.000    0.176    0.354
##    .TE4               0.121    0.009   14.178    0.000    0.121    0.254
##    .TE5               0.323    0.017   19.213    0.000    0.323    0.569
##    .EE1               0.254    0.014   18.009    0.000    0.254    0.441
##    .EE2               0.305    0.017   17.795    0.000    0.305    0.424
##    .EE3               0.257    0.015   17.071    0.000    0.257    0.375
##    .EE4               0.265    0.015   17.734    0.000    0.265    0.419
##    .EE5               0.271    0.015   17.661    0.000    0.271    0.413
##    .DE1               0.252    0.016   15.549    0.000    0.252    0.550
##    .DE2               0.267    0.017   16.066    0.000    0.267    0.574
##    .DE3               0.215    0.017   12.626    0.000    0.215    0.441
##    .RPA1              0.206    0.014   14.844    0.000    0.206    0.297
##    .RPA2              0.178    0.013   14.170    0.000    0.178    0.275
##    .RPA3              0.270    0.015   17.644    0.000    0.270    0.434
##    .RPA4              0.360    0.019   19.376    0.000    0.360    0.615
##    .RPA5              0.431    0.022   19.864    0.000    0.431    0.699
##     TSC               0.204    0.020   10.283    0.000    1.000    1.000
##     TE                0.301    0.023   13.070    0.000    1.000    1.000
##    .EE                0.099    0.010    9.785    0.000    0.308    0.308
##    .DE                0.124    0.014    8.796    0.000    0.604    0.604
##    .RPA               0.241    0.019   12.734    0.000    0.493    0.493

Plot CFA

semPaths(fit_cfa, "std", layout = "tree", whatLabels = "std", edge.label.cex = 0.9, sizeMan = 5)

6. Interpretasi Hasil

Evaluasi Model Fit

fitMeasures(fit_sem, c("chisq", "df", "pvalue", "cfi", "rmsea", "tli"))
##   chisq      df  pvalue     cfi   rmsea     tli 
## 863.884 220.000   0.000   0.937   0.058   0.927

Korelasi antar konstruk

cor_matrix <- cor(data)
corrplot(cor_matrix, method = "circle", tl.cex = 0.6)