1 Introduction

Kondisi cuaca kadang menjadi salah satu faktor dalam melaksanakan suatu kegiatan, dengan mengetahui cuaca yang akan terjadi dapat memberikan informasi kapan akan melakukan suatu kegiatan. kali ini kita akan mencoba membuat model untuk melakukan perkiraan cuaca dengan menggunakan dataset Daily Climate di negara India dari 1 Januari 2013 sampai 1 Januari 2017 yang didapat dari Kaggle.com.

2 Data Preparation

2.1 Import Library

# load library

library(dplyr) # data wrangling
library(lubridate) # date manipulation
library(padr) # complete data frame
library(zoo) # Missing value imputation
library(forecast) # time series library
library(TTR) # for Simple moving average function
library(MLmetrics) # calculate error
library(tseries) # adf.test
library(TSstudio) # visualisasi timeseries
library(ggplot2)
library(tidyr)

2.2 Read Data

climate <- read.csv("DelhiClimate_with_WeatherIndex_and_Categories.csv")

rmarkdown::paged_table(climate)
glimpse(climate)
#> Rows: 1,462
#> Columns: 11
#> $ date              <chr> "2013-01-01", "2013-01-02", "2013-01-03", "2013-01-0…
#> $ meantemp          <dbl> 10.000000, 7.400000, 7.166667, 8.666667, 6.000000, 7…
#> $ humidity          <dbl> 84.50000, 92.00000, 87.00000, 71.33333, 86.83333, 82…
#> $ wind_speed        <dbl> 0.0000000, 2.9800000, 4.6333333, 1.2333333, 3.700000…
#> $ meanpressure      <dbl> 1015.667, 1017.800, 1018.667, 1017.167, 1016.500, 10…
#> $ meantemp_norm     <dbl> 0.12227074, 0.04279476, 0.03566230, 0.08151383, 0.00…
#> $ humidity_norm     <dbl> 0.8209571, 0.9075908, 0.8498350, 0.6688669, 0.847909…
#> $ wind_speed_norm   <dbl> 0.00000000, 0.07058266, 0.10974262, 0.02921206, 0.08…
#> $ meanpressure_norm <dbl> 0.1326033, 0.1328810, 0.1329938, 0.1327986, 0.132711…
#> $ weather_index     <dbl> 0.3084558, 0.3167998, 0.3044633, 0.2523879, 0.285171…
#> $ weather_category  <chr> "Cukup", "Cukup", "Cukup", "Bagus", "Bagus", "Bagus"…

Dari hasil pembacaan dataset di atas, terdapat 1.462 data observasi dengan 11 kolom. Adapun untuk penjelasan masing-masing kolom adalah sebagai berikut.

  • date : tanggal observasi cuaca dengan format YYYY-MM-DD.
  • meantemp : Suhu rata-rata dari beberapa interval 3 jam dalam sehari.
  • humidity : Nilai kelembapan harian (satuannya gram uap air per meter kubik volume udara).
  • wind_speed : Kecepatan angin diukur dalam kmph.
  • meanpressure : Pembacaan tekanan cuaca (diukur dalam atm).
  • (col_name)_norm : normalisasi terhadap nilai dari masing-masing kolom dengan rumus

\[ X_{\text{norm}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} \]

  • weather_index : perhitungan indeks cuaca dari beberapa variabel di atas dengan pembobotan masing-masing variabel seperti rumus di bawah ini.

\[\text{Weather Index} = (0.4 \times T_{\text{norm}}) + (0.3 \times RH_{\text{norm}}) + (0.2 \times Wind_{\text{norm}}) + (0.1 \times P_{\text{norm}})\]

  • weather_category : indeks cuaca dikategorikan ke dalam 4 kategori dengan range masing-masing. Bagus (0.0 - 0.3), Cukup (0.3 - 0.6), Buruk (0.6 - 0.8) dan Ekstrem ( > 0.8).

3 Data Preprocessing

3.1 Data Type

Masih terdapat tipe variabel yang belum sesuai dengan nilainya, maka perlu melakukan penyesuaian tipe data.

climate <- climate %>% 
  mutate(date = as.Date(date),
         weather_category = as.factor(weather_category)
         )

3.2 Select Variabel

Karena pada Time Series Forecasting dataset yang akan digunakan adalah yang kolom yang berisi data yang menunjukan waktu yaitu **date** dengan kolom yang berisi data yang ingin kita amati yaitu **weather_index** maka kita perlu melakukan Data Aggregation terhadap dataframe Climate.

climate_daily <- climate %>%
  select(c(date, weather_index))

3.3 Data Date Checking

Perlu melakukan pengecekan terhadap karakteristik Data Time Series kita apakkah sudah sesuai dan bisa dilakukan analisis lanjutan.

3.3.1 Data Arrange

# Memastikan apakah data sudah terurut
climate_daily <- arrange(climate_daily, date)
climate_daily %>% tail()
# Mendefinisikan deret waktu yang lengkap
complete_day <- seq.Date(from = min(climate_daily$date), # data terlampau
                           to = max(climate_daily$date), # data terbaru
                           by = "day") # interval
complete_day %>% head()
#> [1] "2013-01-01" "2013-01-02" "2013-01-03" "2013-01-04" "2013-01-05"
#> [6] "2013-01-06"

3.3.2 Periode Checking

Mengecek periode yang terlewat dengan parameter jika TRUE, maka tidak ada data yang terlewat dan begitupula sebaliknya.

all(climate_daily$date == complete_day)
#> [1] TRUE

3.4 Missing Value

# Cek missing value
climate_daily %>% is.na() %>% colSums()
#>          date weather_index 
#>             0             0

4 Exploratory Data Analysis

4.1 Time-Series Object

Pembuatan object time-series menggunakan fungsi ts(data, start, frequency) dengan parameter sebagai berikut.

  • data = data (kolom) yang akan diprediksi (nilai numerik)
  • start = waktu awal mula data dalam bentuk vektor c(year, month, day)
  • frequency = pola berulang yang ingin dianalisis
# simpan dalam object sales_ts
climate_ts <- ts(data = climate_daily$weather_index,
                 start = c(2013, 1, 1),
                 frequency = 365)

4.2 Decomposition

Decomposition adalah tahapan dalam time series analisis yang digunakan untuk menguraikan beberapa komponen dalam time series data. Komponen/unsur dalam time series:

  • Trend \((T_t)\) : pola general data, biasa digunakan untuk melihat kenaikan atau penurunan data.
  • Seasonality \((S_t)\) : pola musiman yang membentuk pola berulang pada periode waktu yang tetap.
  • Error/Random \((E_t)\) : pola yang tidak dapat ditangkap dalam trend dan seasonality.
# Decompose object time series
decompose(climate_ts)
#> $x
#> Time Series:
#> Start = c(2013, 1) 
#> End = c(2017, 2) 
#> Frequency = 365 
#>    [1] 0.3084558 0.3167998 0.3044633 0.2523879 0.2851714 0.2729247 0.2812291
#>    [8] 0.2563283 0.3013723 0.2777670 0.3133098 0.3836416 0.3693553 0.3587201
#>   [15] 0.3247922 0.3628475 0.4000974 0.4242756 0.3398262 0.3324356 0.3077239
#>   [22] 0.3002789 0.2921309 0.3020104 0.3016801 0.3028635 0.3041531 0.2863463
#>   [29] 0.3083997 0.3223716 0.3328259 0.3524874 0.3676145 0.3494708 0.4165245
#>   [36] 0.4628272 0.3852785 0.3408617 0.3524728 0.3382532 0.3440788 0.3570108
#>   [43] 0.3597317 0.3643921 0.3470117 0.4023054 0.4311674 0.3723087 0.4136830
#>   [50] 0.3989515 0.3964282 0.4024024 0.4229518 0.4097389 0.4078401 0.3742341
#>   [57] 0.4375849 0.3774472 0.3754882 0.3902710 0.3873047 0.3883960 0.3809393
#>   [64] 0.3827491 0.4071739 0.4191890 0.3778364 0.4015133 0.3957689 0.4210437
#>   [71] 0.4205990 0.4267563 0.4353687 0.3842403 0.3940026 0.4161989 0.4639261
#>   [78] 0.4733527 0.4080258 0.4371419 0.4221186 0.4488093 0.4439345 0.4139229
#>   [85] 0.4043057 0.3736601 0.4199686 0.4232762 0.4229765 0.4094785 0.3820484
#>   [92] 0.4187062 0.4102055 0.3915748 0.3873984 0.3692332 0.3791090 0.3867624
#>   [99] 0.4087477 0.3859849 0.3807708 0.3890143 0.4110853 0.4058452 0.4116101
#>  [106] 0.4206724 0.3656289 0.3909877 0.3662732 0.4043320 0.4312907 0.4214845
#>  [113] 0.4181053 0.4181466 0.4242462 0.4493227 0.4468304 0.4255056 0.4147206
#>  [120] 0.4224580 0.3977597 0.3889252 0.3945366 0.4176091 0.4142051 0.4471592
#>  [127] 0.4443618 0.4385296 0.4450496 0.4500590 0.4445683 0.4249925 0.4176135
#>  [134] 0.4293542 0.4263437 0.4510426 0.4389658 0.4847383 0.4771802 0.4571198
#>  [141] 0.4530257 0.5024708 0.4967623 0.5119665 0.4930801 0.4796610 0.4823301
#>  [148] 0.4651556 0.4334785 0.4109269 0.4937158 0.5351928 0.5527348 0.5492912
#>  [155] 0.5029309 0.5207973 0.5370920 0.5146358 0.5733899 0.5280046 0.5274264
#>  [162] 0.5531572 0.5333464 0.5426094 0.5354494 0.5565897 0.5713622 0.5639737
#>  [169] 0.5546025 0.5307182 0.5018918 0.5108256 0.5158047 0.5463064 0.5516101
#>  [176] 0.5636564 0.5465943 0.5294462 0.5426542 0.5628996 0.5250931 0.5355634
#>  [183] 0.5467511 0.5518425 0.5667008 0.5711160 0.5795389 0.5758588 0.5490918
#>  [190] 0.5588637 0.5487918 0.5511970 0.5727518 0.5819360 0.5401104 0.5993128
#>  [197] 0.5917199 0.5862733 0.5709610 0.5646243 0.5588027 0.5534775 0.5527270
#>  [204] 0.5465154 0.5668381 0.5703276 0.5422450 0.5554764 0.5503869 0.5630809
#>  [211] 0.5662264 0.5644322 0.5409393 0.5620255 0.5577962 0.5311947 0.5528360
#>  [218] 0.5585751 0.5509433 0.5619386 0.5461652 0.5586179 0.5584531 0.5758515
#>  [225] 0.5713372 0.5602237 0.5654449 0.5583492 0.6115423 0.5359492 0.5572519
#>  [232] 0.5597706 0.5697141 0.5398331 0.5416955 0.6190906 0.5665902 0.5572115
#>  [239] 0.5655543 0.5273159 0.5198157 0.5174831 0.5184528 0.5403356 0.5316454
#>  [246] 0.5213977 0.5161879 0.5040420 0.5076463 0.4819687 0.4952641 0.6715471
#>  [253] 0.5033605 0.5012186 0.4966036 0.5217349 0.5114981 0.4938696 0.4974804
#>  [260] 0.4630921 0.4788271 0.4850367 0.5316792 0.5342746 0.5302934 0.5204385
#>  [267] 0.5244401 0.5338084 0.5304453 0.5298373 0.4992167 0.5403717 0.5347054
#>  [274] 0.5074121 0.4982415 0.4824755 0.5212734 0.4906822 0.4961923 0.4947981
#>  [281] 0.4908125 0.5236453 0.5016419 0.5164849 0.5128617 0.5205934 0.5178457
#>  [288] 0.4918142 0.4763215 0.4925287 0.4688235 0.4448513 0.4332321 0.4244917
#>  [295] 0.4189577 0.4384313 0.4435084 0.4435640 0.4490233 0.4168166 0.4127005
#>  [302] 0.4106668 0.4177674 0.4011844 0.4244069 0.4049743 0.3724580 0.3515846
#>  [309] 0.3812544 0.3911732 0.4144337 0.4926288 0.3936260 0.3603798 0.3658010
#>  [316] 0.3482643 0.3498934 0.3449377 0.3377944 0.3379435 0.3287476 0.3457208
#>  [323] 0.3659582 0.3325712 0.3513570 0.3738412 0.3887747 0.3553131 0.3709887
#>  [330] 0.3773564 0.3777750 0.3789550 0.3643223 0.4091565 0.3462160 0.3668832
#>  [337] 0.3686268 0.3720286 0.3746924 0.3588940 0.3734452 0.3848779 0.3760798
#>  [344] 0.3782296 0.3763627 0.4065604 0.3926616 0.3682549 0.3938416 0.3954810
#>  [351] 0.3999200 0.4073673 0.4147330 0.4189073 0.4016634 0.4121767 0.4162310
#>  [358] 0.3796071 0.4427960 0.2968504 0.3208997 0.2941786 0.2884768 0.3508730
#>  [365] 0.4034682 0.4037902 0.3378877 0.3309216 0.3616849 0.3552648 0.4616369
#>  [372] 0.3899411 0.3137506 0.3437609 0.3405397 0.3598492 0.3465084 0.3209019
#>  [379] 0.3544283 0.3663421 0.3650055 0.3774274 0.3816339 0.3800344 0.3825173
#>  [386] 0.4289812 0.4447851 0.4285830 0.4094729 0.4079538 0.4080715 0.3946170
#>  [393] 0.3739072 0.3809138 0.3635760 0.3739208 0.3517369 0.3524050 0.3981648
#>  [400] 0.4141983 0.3609710 0.3745305 0.4375738 0.3941849 0.3142327 0.2792012
#>  [407] 0.2983474 0.3313993 0.3264077 0.4084907 0.3734377 0.3738226 0.3677504
#>  [414] 0.3298887 0.3482743 0.3717986 0.3947319 0.4229877 0.4097498 0.3593127
#>  [421] 0.3584903 0.3789639 0.4205802 0.4181033 0.4133122 0.3917221 0.3568704
#>  [428] 0.3702305 0.3815585 0.3617954 0.3692645 0.4049360 0.3948077 0.4108120
#>  [435] 0.4630858 0.4073199 0.3829059 0.3730385 0.3880049 0.4084401 0.4266954
#>  [442] 0.4288288 0.4063540 0.3818299 0.4180266 0.4193859 0.4286341 0.4652380
#>  [449] 0.4163202 0.4176706 0.4229842 0.4474696 0.4419959 0.4161165 0.4036829
#>  [456] 0.4019361 0.4046064 0.4146920 0.4317255 0.4243435 0.4502022 0.4529140
#>  [463] 0.4135324 0.3906321 0.3763650 0.3855123 0.4117054 0.4352847 0.4179858
#>  [470] 0.4267126 0.4315985 0.4315254 0.4808169 0.4313422 0.4117319 0.3921828
#>  [477] 0.4134908 0.4061488 0.4140300 0.4252441 0.4277159 0.4112213 0.4232410
#>  [484] 0.4255027 0.4134089 0.4436958 0.4299886 0.4277447 0.4295328 0.4843308
#>  [491] 0.4646666 0.4586903 0.4763371 0.4341369 0.4277288 0.4315906 0.4721188
#>  [498] 0.4770418 0.4539275 0.4447941 0.4581959 0.4575600 0.4668403 0.4461566
#>  [505] 0.4278145 0.4553132 0.4679999 0.5221483 0.4852228 0.5061259 0.4689319
#>  [512] 0.4674397 0.4772304 0.4840458 0.5072745 0.4823973 0.4890673 0.4589853
#>  [519] 0.4668327 0.4729767 0.4776748 0.4956564 0.5051306 0.4759358 0.4960355
#>  [526] 0.4779113 0.5034503 0.5463299 0.5329564 0.5285278 0.5258825 0.5328160
#>  [533] 0.5655497 0.5576509 0.5476679 0.5673002 0.5291274 0.4977943 0.4901040
#>  [540] 0.5051256 0.5345108 0.5151089 0.5310837 0.5167883 0.5427562 0.5345659
#>  [547] 0.5320827 0.5286277 0.5306279 0.5365740 0.5415169 0.4970257 0.5041428
#>  [554] 0.5040156 0.5266007 0.5228106 0.5164017 0.5350699 0.5500634 0.5560407
#>  [561] 0.5569512 0.5598512 0.5582503 0.5290159 0.5340261 0.5389697 0.5349097
#>  [568] 0.5554980 0.5585509 0.5435737 0.5355280 0.5376711 0.5372961 0.6079679
#>  [575] 0.5325755 0.5305156 0.5535538 0.5366627 0.5352750 0.5352471 0.5319017
#>  [582] 0.5342102 0.5375110 0.5331578 0.5358696 0.5610169 0.5779666 0.5379340
#>  [589] 0.5246907 0.5845812 0.5514753 0.5329756 0.5122247 0.4975694 0.5055426
#>  [596] 0.5110174 0.5046721 0.4911405 0.5005557 0.5006404 0.5122568 0.5062587
#>  [603] 0.4970996 0.5005279 0.5220694 0.5221047 0.5336418 0.5503039 0.5547012
#>  [610] 0.5462494 0.5842758 0.5577571 0.5538276 0.5179490 0.5132169 0.5217698
#>  [617] 0.5240006 0.5363877 0.5995910 0.5023657 0.5086097 0.5081061 0.5059894
#>  [624] 0.5229303 0.5171139 0.5140842 0.4882468 0.4878007 0.4826432 0.5045940
#>  [631] 0.5804867 0.4775015 0.4880713 0.4694239 0.4703300 0.4665110 0.4702532
#>  [638] 0.4732370 0.4635391 0.4628430 0.4573167 0.4577053 0.4622411 0.4644037
#>  [645] 0.4835694 0.4451997 0.4192345 0.4390932 0.4385605 0.4165191 0.4798016
#>  [652] 0.4524332 0.4439950 0.4016206 0.4826815 0.4822312 0.4035586 0.4095533
#>  [659] 0.4110497 0.4352005 0.4351536 0.4477772 0.4390472 0.4374270 0.4241933
#>  [666] 0.4370407 0.4314815 0.4067187 0.3985874 0.3699769 0.3773254 0.3816581
#>  [673] 0.3970593 0.3883211 0.3990659 0.4268772 0.4225481 0.4034114 0.3517878
#>  [680] 0.3307634 0.3244748 0.3099113 0.3021685 0.2893019 0.2936203 0.3028769
#>  [687] 0.3024462 0.3142780 0.3460843 0.3470904 0.3480405 0.3081353 0.3005412
#>  [694] 0.2856446 0.3362677 0.3362770 0.3636993 0.3752627 0.3366336 0.3272766
#>  [701] 0.3570207 0.4834878 0.4148295 0.3299800 0.3089195 0.2949386 0.2871944
#>  [708] 0.3144367 0.4061924 0.3929694 0.3369245 0.3797606 0.4185771 0.3701580
#>  [715] 0.3963934 0.3315165 0.3277375 0.3225984 0.3252648 0.2881282 0.3091382
#>  [722] 0.2912382 0.3182634 0.3260184 0.3278426 0.2725120 0.3047958 0.2876535
#>  [729] 0.2923091 0.2905050 0.3276232 0.4243793 0.4015137 0.3840798 0.3762483
#>  [736] 0.3377237 0.3277334 0.3367169 0.3104253 0.3037371 0.3307669 0.3032027
#>  [743] 0.3361211 0.3492959 0.3232989 0.3450603 0.3328304 0.3204374 0.3405879
#>  [750] 0.3487397 0.3272384 0.3893067 0.3723019 0.3897530 0.3445821 0.3713058
#>  [757] 0.3380059 0.4003792 0.2865909 0.3008350 0.3039571 0.3270695 0.3831384
#>  [764] 0.3791242 0.3972110 0.3251690 0.3096289 0.3305931 0.3389120 0.3460886
#>  [771] 0.3296840 0.3286577 0.3527046 0.3405531 0.3686523 0.3736898 0.4418102
#>  [778] 0.4271349 0.4298339 0.4624232 0.4381651 0.4345667 0.4382043 0.4282917
#>  [785] 0.4523966 0.4099681 0.2887483 0.3056179 0.3437499 0.4973286 0.4506008
#>  [792] 0.4042694 0.3699180 0.3619314 0.3781649 0.4163149 0.4260200 0.3611320
#>  [799] 0.3883764 0.3872214 0.3888770 0.4005962 0.4174909 0.4725441 0.4604049
#>  [806] 0.4550095 0.4402966 0.4056470 0.4390609 0.4345708 0.4706213 0.4599356
#>  [813] 0.4416928 0.4583524 0.4741057 0.4423026 0.4268313 0.4442159 0.4803780
#>  [820] 0.4443665 0.4551295 0.4494418 0.4722392 0.4251333 0.4994961 0.4204364
#>  [827] 0.4450978 0.4129988 0.4372416 0.4356005 0.4325610 0.4348972 0.4744876
#>  [834] 0.4460069 0.4638375 0.4423596 0.4455697 0.4420888 0.4478611 0.4604971
#>  [841] 0.4328454 0.4277752 0.4219208 0.4227447 0.4770684 0.4965076 0.5285647
#>  [848] 0.4987330 0.4818103 0.5184871 0.4513586 0.4219047 0.4225702 0.4254236
#>  [855] 0.4301022 0.4404954 0.4456087 0.4461354 0.4557163 0.4422688 0.4735590
#>  [862] 0.4862507 0.4757242 0.4483510 0.4563353 0.4586305 0.4791922 0.4759283
#>  [869] 0.5009832 0.4769603 0.4677946 0.4632135 0.4857465 0.4588204 0.4833105
#>  [876] 0.4975707 0.4086767 0.4597815 0.4555760 0.4799036 0.4676954 0.4563230
#>  [883] 0.4565215 0.4500764 0.4736196 0.4587756 0.4762487 0.4807046 0.4833961
#>  [890] 0.5247439 0.5383567 0.5357992 0.5121124 0.4887410 0.5110031 0.4969833
#>  [897] 0.4828355 0.4951219 0.4932486 0.5343823 0.5276865 0.5234446 0.5129284
#>  [904] 0.5202808 0.6006977 0.5350603 0.5164328 0.5260853 0.5193557 0.5247720
#>  [911] 0.5210536 0.4887571 0.4977333 0.5344271 0.5688979 0.5600294 0.5663880
#>  [918] 0.5442379 0.5378879 0.5351461 0.5664749 0.5598813 0.5684463 0.5348889
#>  [925] 0.5573686 0.5655687 0.5576409 0.5520161 0.5469385 0.5073592 0.5425926
#>  [932] 0.5552479 0.5470170 0.5514118 0.5406176 0.6108002 0.5881600 0.5482058
#>  [939] 0.5201368 0.5291975 0.5297003 0.5135582 0.4916304 0.5083547 0.5067175
#>  [946] 0.5451427 0.5699922 0.5423572 0.5493795 0.5480612 0.5544636 0.5313884
#>  [953] 0.5425181 0.5264845 0.5274826 0.5388284 0.5379538 0.5382846 0.5241465
#>  [960] 0.5249368 0.6454023 0.5414772 0.5424812 0.5170618 0.5252128 0.5306258
#>  [967] 0.5306628 0.5188606 0.5271764 0.5154590 0.5160248 0.5318141 0.5351997
#>  [974] 0.5233614 0.5013652 0.4984064 0.4860046 0.4706801 0.4563677 0.4840356
#>  [981] 0.4987403 0.4864344 0.4771024 0.4701059 0.4898877 0.4840636 0.4834523
#>  [988] 0.4894800 0.4862840 0.4846372 0.5417231 0.5348513 0.5154570 0.5125224
#>  [995] 0.5344016 0.5202745 0.4749637 0.4534018 0.4658724 0.4596325 0.4600664
#> [1002] 0.4821287 0.4498261 0.4412103 0.4943917 0.5304277 0.4506081 0.4586641
#> [1009] 0.4740073 0.5017973 0.4867833 0.4772817 0.4627883 0.4539488 0.4538888
#> [1016] 0.4895305 0.4807942 0.4604833 0.4555639 0.4741791 0.5228702 0.4834964
#> [1023] 0.4707100 0.4425047 0.4108415 0.3886963 0.3886207 0.4055281 0.4137122
#> [1030] 0.4004164 0.3843018 0.3927161 0.4076956 0.4128653 0.4217539 0.4287038
#> [1037] 0.4242551 0.4272025 0.4487709 0.4417685 0.4257916 0.4130966 0.4177455
#> [1044] 0.4264877 0.3889700 0.3978961 0.3979137 0.3899790 0.3832762 0.3485624
#> [1051] 0.3281434 0.3401071 0.3483510 0.3504738 0.3635355 0.3480907 0.3559292
#> [1058] 0.3455830 0.3530257 0.3484367 0.3611654 0.4127155 0.4020756 0.4216450
#> [1065] 0.4093163 0.3748117 0.3863582 0.3647359 0.3625260 0.3723278 0.3862391
#> [1072] 0.3707288 0.4052219 0.4032134 0.3982474 0.3915433 0.2994373 0.3109265
#> [1079] 0.3004285 0.2848115 0.3026786 0.3185745 0.3103091 0.2860157 0.3133792
#> [1086] 0.3202664 0.3447794 0.2973409 0.2895531 0.3035762 0.3379660 0.3558180
#> [1093] 0.3539748 0.3414933 0.3340600 0.3288500 0.3374335 0.3524173 0.3532300
#> [1100] 0.3977354 0.3996329 0.4042690 0.4087574 0.3531191 0.3553157 0.3531291
#> [1107] 0.3835030 0.4034315 0.3827663 0.3951136 0.3903412 0.3436706 0.3414194
#> [1114] 0.3734081 0.3620629 0.3334234 0.3428773 0.3482743 0.3604672 0.3190154
#> [1121] 0.3596406 0.3670897 0.3636364 0.3893677 0.4173505 0.4137480 0.3494829
#> [1128] 0.3157888 0.3204267 0.3100110 0.3034029 0.3391835 0.3644487 0.3631107
#> [1135] 0.3720876 0.3497760 0.3523246 0.3321474 0.3448485 0.3619430 0.3430416
#> [1142] 0.3364319 0.3452361 0.4193422 0.4394680 0.4882818 0.4431211 0.4003711
#> [1149] 0.3771816 0.3712853 0.3937761 0.3765974 0.3924227 0.4107484 0.4244752
#> [1156] 0.4050342 0.4041882 0.4243131 0.4097215 0.4360536 0.4276433 0.4300512
#> [1163] 0.4203786 0.4306503 0.4427343 0.4657771 0.4705161 0.4481282 0.4253645
#> [1170] 0.4328022 0.4238195 0.4217898 0.4575337 0.4520986 0.4420714 0.4272480
#> [1177] 0.4356621 0.4139834 0.4149523 0.4484900 0.4565963 0.4437066 0.5111741
#> [1184] 0.4249874 0.4260088 0.4183084 0.4564858 0.4478596 0.4660039 0.4471336
#> [1191] 0.4338226 0.4081242 0.4388662 0.3980784 0.4413437 0.4128435 0.4549185
#> [1198] 0.4797498 0.4669755 0.4303501 0.4388892 0.4642792 0.4442377 0.4549650
#> [1205] 0.4470246 0.4660183 0.4690118 0.4233214 0.4521404 0.4009893 0.3934173
#> [1212] 0.4075281 0.4225634 0.4422669 0.4337375 0.4107546 0.4389407 0.4668757
#> [1219] 0.4632980 0.4654020 0.4662260 0.4463356 0.4514412 0.4832712 0.5312268
#> [1226] 0.4967187 0.5004998 0.4884944 0.4848434 0.4704581 0.4733931 0.4723558
#> [1233] 0.4866453 0.4904615 0.5349443 0.5434350 0.5437460 0.5293609 0.5239488
#> [1240] 0.5043711 0.5089262 0.5507567 0.5240999 0.5314206 0.5314049 0.5252417
#> [1247] 0.5048795 0.5228726 0.5313543 0.5066394 0.5212237 0.5550057 0.5368914
#> [1254] 0.6225834 0.5290977 0.5246839 0.5277798 0.5167854 0.4992596 0.5442748
#> [1261] 0.5392483 0.5369386 0.5344451 0.5274022 0.5582772 0.5577659 0.5638716
#> [1268] 0.5528737 0.5440812 0.5136903 0.5367882 0.5659405 0.5549095 0.5628056
#> [1275] 0.5554960 0.5697582 0.5675796 0.5798986 0.5423957 0.5346558 0.5492805
#> [1282] 0.5629620 0.5639443 0.5490907 0.5583618 0.5604832 0.5411464 0.5656890
#> [1289] 0.5703004 0.5719281 0.5687652 0.5771397 0.5708343 0.5682970 0.5839773
#> [1296] 0.5924780 0.5789768 0.5619451 0.5460456 0.5484326 0.5387374 0.5370247
#> [1303] 0.5787150 0.5655553 0.5607104 0.5597327 0.5559286 0.5613638 0.5692249
#> [1310] 0.5395388 0.5373671 0.5569472 0.5405863 0.5569757 0.5611573 0.5674402
#> [1317] 0.5732481 0.5794808 0.5839239 0.5609944 0.5462939 0.5623886 0.5751717
#> [1324] 0.5628520 0.5402916 0.5433563 0.5310164 0.5784083 0.5628362 0.5529199
#> [1331] 0.5497817 0.5768226 0.5593783 0.5515857 0.5593201 0.5656170 0.5676441
#> [1338] 0.5688061 0.5687197 0.5570263 0.5801766 0.5509779 0.5389143 0.5483053
#> [1345] 0.5188542 0.5165243 0.5356642 0.5177722 0.5335775 0.5063009 0.5238491
#> [1352] 0.5291775 0.5344189 0.5441849 0.4948114 0.5020456 0.5762588 0.5050045
#> [1359] 0.5016889 0.5343000 0.5333043 0.5182702 0.5361350 0.5046734 0.5032754
#> [1366] 0.4955612 0.4933761 0.5185422 0.5050432 0.5207295 0.5282442 0.5254061
#> [1373] 0.5361016 0.5105976 0.5085912 0.5545499 0.5097526 0.4915294 0.4572253
#> [1380] 0.4754931 0.4725416 0.4737899 0.4652619 0.4516895 0.4469115 0.4473339
#> [1387] 0.4460038 0.4479919 0.4574080 0.4659833 0.4865252 0.4746810 0.4729381
#> [1394] 0.4838772 0.4522243 0.4524185 0.4434985 0.4346382 0.4526261 0.4327163
#> [1401] 0.4079106 0.4186709 0.4245352 0.4182805 0.4340419 0.4063167 0.4099949
#> [1408] 0.4250236 0.3803240 0.3699640 0.3871412 0.3954774 0.4047078 0.3963598
#> [1415] 0.3777552 0.3778402 0.3974012 0.3817047 0.3696988 0.3848261 0.3790641
#> [1422] 0.3811128 0.3819518 0.3729128 0.3592122 0.3721711 0.3579213 0.3276867
#> [1429] 0.3496301 0.4340765 0.4387627 0.4146141 0.3612933 0.3428114 0.3408164
#> [1436] 0.3742329 0.3785605 0.3623786 0.3730371 0.4068249 0.4018569 0.3736297
#> [1443] 0.3585942 0.3614012 0.3585252 0.3248321 0.3589063 0.3441221 0.3554496
#> [1450] 0.3790841 0.3941518 0.3344979 0.3480454 0.4023647 0.4343438 0.4040045
#> [1457] 0.3729772 0.3564808 0.4125747 0.4061477 0.4136029 0.3621730
#> 
#> $seasonal
#> Time Series:
#> Start = c(2013, 1) 
#> End = c(2017, 2) 
#> Frequency = 365 
#>    [1] -0.0944314775 -0.0812771463 -0.0861971883 -0.0814632051 -0.0713634752
#>    [6] -0.0481042666 -0.0737875891 -0.0946933236 -0.1120105645 -0.1145723044
#>   [11] -0.0998482712 -0.1033480338 -0.0942969906 -0.0855903675 -0.0861557196
#>   [16] -0.0809241484 -0.0964145714 -0.0999115056 -0.0830956339 -0.0833557623
#>   [21] -0.0845898215 -0.0554807363 -0.0647338574 -0.0611937293 -0.0905695655
#>   [26] -0.0681019171 -0.0812175317 -0.0684786232 -0.0954895052 -0.0871853697
#>   [31] -0.0839158788 -0.1050346732 -0.0973370358 -0.0818814924 -0.0739837221
#>   [36] -0.1179264331 -0.1066652422 -0.0702403216 -0.0823957468 -0.1036753070
#>   [41] -0.1282770797 -0.1213949729 -0.1090783577 -0.1105463006 -0.0681179474
#>   [46] -0.0844388930 -0.0637625674 -0.0677476756 -0.0547538203 -0.0310273357
#>   [51] -0.0150086213 -0.0236382193 -0.0272673153 -0.0426506952 -0.0534028697
#>   [56] -0.0603249135 -0.0996204393 -0.0748792494 -0.0569274900 -0.0028018294
#>   [61] -0.0321008027 -0.0594697397 -0.0597816945 -0.0635854837 -0.0560164043
#>   [66] -0.0436453280 -0.0277542736 -0.0560175919 -0.0381968683 -0.0170051826
#>   [71] -0.0273741861 -0.0300556547 -0.0351847192 -0.0194346853 -0.0142062406
#>   [76] -0.0129509083 -0.0178632841 -0.0250190760 -0.0238887328 -0.0167455699
#>   [81] -0.0091924370 -0.0068370949 -0.0079466402 -0.0183881198 -0.0015020913
#>   [86] -0.0076319160 -0.0089002561  0.0175834860 -0.0077145087 -0.0234794700
#>   [91] -0.0230261278 -0.0113039413 -0.0032389032 -0.0072567595  0.0087763124
#>   [96] -0.0134357993 -0.0128906768 -0.0264828167 -0.0396895042 -0.0305577683
#>  [101] -0.0380126340 -0.0144237554  0.0149440058 -0.0045300761 -0.0078458217
#>  [106] -0.0105058831 -0.0009743947  0.0076569776 -0.0033151123 -0.0082877579
#>  [111] -0.0177035522 -0.0113231921 -0.0309950941 -0.0185309601 -0.0137638529
#>  [116] -0.0090110140  0.0008482470 -0.0001096345  0.0015349128  0.0068561352
#>  [121] -0.0131007805 -0.0181394408 -0.0093614937 -0.0090095900  0.0114750670
#>  [126]  0.0085928241  0.0016411999  0.0093617371  0.0091060466  0.0185481772
#>  [131]  0.0187341435  0.0377162604  0.0318428090  0.0137611422  0.0085414167
#>  [136]  0.0146974792  0.0209401735  0.0276724448  0.0303567541  0.0310154825
#>  [141]  0.0399423362  0.0427139422  0.0634488309  0.0403561370  0.0489683167
#>  [146]  0.0428177813  0.0266307691  0.0380602123  0.0413755398  0.0572416547
#>  [151]  0.0428588782  0.0345583882  0.0305146688  0.0337437031  0.0353591402
#>  [156]  0.0368483948  0.0599564159  0.0585781813  0.0783070599  0.0676334182
#>  [161]  0.0646708618  0.0733680655  0.0760730682  0.0579871135  0.0789540668
#>  [166]  0.0717323338  0.0685872926  0.0827966029  0.0772601716  0.0979796517
#>  [171]  0.1021858619  0.0901408127  0.0725457434  0.0695186817  0.0912758932
#>  [176]  0.0869199537  0.0839978235  0.0887377435  0.0842855204  0.0922384415
#>  [181]  0.0929608119  0.0805850243  0.0896069315  0.0911055616  0.1029582759
#>  [186]  0.1136562030  0.1036608814  0.0973203883  0.0861232845  0.0958826563
#>  [191]  0.1015657300  0.0979860104  0.1141778654  0.1110149235  0.1065588610
#>  [196]  0.1292987236  0.1250698858  0.1207815670  0.1042150295  0.0906313082
#>  [201]  0.1021587394  0.1032181017  0.1070600483  0.1074486058  0.1055934602
#>  [206]  0.1274176757  0.1111710001  0.1021226112  0.1145751818  0.0966384926
#>  [211]  0.0970973632  0.0987240293  0.0778667019  0.0899337346  0.0879716681
#>  [216]  0.0908451089  0.1071380611  0.1010369655  0.0995283134  0.1037000199
#>  [221]  0.1089372403  0.1110365948  0.1013164616  0.0973517625  0.1161474674
#>  [226]  0.1052148457  0.1005149400  0.0913293887  0.0995167603  0.0773267073
#>  [231]  0.1264324731  0.0905100528  0.0896116593  0.0742327469  0.0775615414
#>  [236]  0.1090570401  0.0895996141  0.0795196435  0.0861974363  0.0767816881
#>  [241]  0.0744683326  0.0827674040  0.0897419745  0.0945397028  0.0814792247
#>  [246]  0.0897128875  0.0749781637  0.0644851559  0.0489485555  0.0479869169
#>  [251]  0.0601540249  0.1155248024  0.0604611420  0.0784415504  0.0510487250
#>  [256]  0.0595541753  0.0557326745  0.0511247825  0.0569030004  0.0429910120
#>  [261]  0.0662691808  0.0573957235  0.0663252757  0.0644883730  0.0777833184
#>  [266]  0.0951142045  0.0470151523  0.0464335247  0.0431778402  0.0411755417
#>  [271]  0.0297600317  0.0520780115  0.0404012274  0.0251657772  0.0395695188
#>  [276]  0.0444497023  0.0308373767  0.0247830114  0.0323959459  0.0475566670
#>  [281]  0.0283859593  0.0275177015  0.0219211287  0.0237154672  0.0150803750
#>  [286]  0.0505696469  0.0375630372  0.0192857463 -0.0016597557  0.0368779251
#>  [291]  0.0450077902 -0.0024127541 -0.0085886721 -0.0204368300 -0.0248290452
#>  [296] -0.0257399832 -0.0198959680 -0.0171303860 -0.0130715863 -0.0326144648
#>  [301] -0.0350728425 -0.0348242065 -0.0357287763 -0.0422555088 -0.0411343280
#>  [306] -0.0429117619 -0.0538309415 -0.0547192750 -0.0405700087 -0.0360180866
#>  [311] -0.0243315623 -0.0039761463 -0.0418804648 -0.0673039641 -0.0850798543
#>  [316] -0.0901110324 -0.0944673215 -0.1013853120 -0.1103099982 -0.1204225974
#>  [321] -0.1272103913 -0.1177204683 -0.1043538566 -0.1042556748 -0.0933422198
#>  [326] -0.0907087942 -0.0964308214 -0.1135750912 -0.1108612380 -0.0934564743
#>  [331] -0.0891247785 -0.0624967308 -0.0671764871 -0.0586137893 -0.0867948680
#>  [336] -0.0814653235 -0.0348632070 -0.0638262031 -0.0919584582 -0.1009938550
#>  [341] -0.0961869898 -0.1001725044 -0.0825277308 -0.0518929259 -0.0585550011
#>  [346] -0.0693903487 -0.0904070134 -0.0817820570 -0.0928763549 -0.0887589889
#>  [351] -0.1029222851 -0.0963760365 -0.0984141345 -0.1042827359 -0.1133368485
#>  [356] -0.1005671851 -0.0970093759 -0.1159871652 -0.0949105963 -0.1382943398
#>  [361] -0.1372814536 -0.1294949375 -0.1377172619 -0.1195679937 -0.1051445925
#>  [366] -0.0944314775 -0.0812771463 -0.0861971883 -0.0814632051 -0.0713634752
#>  [371] -0.0481042666 -0.0737875891 -0.0946933236 -0.1120105645 -0.1145723044
#>  [376] -0.0998482712 -0.1033480338 -0.0942969906 -0.0855903675 -0.0861557196
#>  [381] -0.0809241484 -0.0964145714 -0.0999115056 -0.0830956339 -0.0833557623
#>  [386] -0.0845898215 -0.0554807363 -0.0647338574 -0.0611937293 -0.0905695655
#>  [391] -0.0681019171 -0.0812175317 -0.0684786232 -0.0954895052 -0.0871853697
#>  [396] -0.0839158788 -0.1050346732 -0.0973370358 -0.0818814924 -0.0739837221
#>  [401] -0.1179264331 -0.1066652422 -0.0702403216 -0.0823957468 -0.1036753070
#>  [406] -0.1282770797 -0.1213949729 -0.1090783577 -0.1105463006 -0.0681179474
#>  [411] -0.0844388930 -0.0637625674 -0.0677476756 -0.0547538203 -0.0310273357
#>  [416] -0.0150086213 -0.0236382193 -0.0272673153 -0.0426506952 -0.0534028697
#>  [421] -0.0603249135 -0.0996204393 -0.0748792494 -0.0569274900 -0.0028018294
#>  [426] -0.0321008027 -0.0594697397 -0.0597816945 -0.0635854837 -0.0560164043
#>  [431] -0.0436453280 -0.0277542736 -0.0560175919 -0.0381968683 -0.0170051826
#>  [436] -0.0273741861 -0.0300556547 -0.0351847192 -0.0194346853 -0.0142062406
#>  [441] -0.0129509083 -0.0178632841 -0.0250190760 -0.0238887328 -0.0167455699
#>  [446] -0.0091924370 -0.0068370949 -0.0079466402 -0.0183881198 -0.0015020913
#>  [451] -0.0076319160 -0.0089002561  0.0175834860 -0.0077145087 -0.0234794700
#>  [456] -0.0230261278 -0.0113039413 -0.0032389032 -0.0072567595  0.0087763124
#>  [461] -0.0134357993 -0.0128906768 -0.0264828167 -0.0396895042 -0.0305577683
#>  [466] -0.0380126340 -0.0144237554  0.0149440058 -0.0045300761 -0.0078458217
#>  [471] -0.0105058831 -0.0009743947  0.0076569776 -0.0033151123 -0.0082877579
#>  [476] -0.0177035522 -0.0113231921 -0.0309950941 -0.0185309601 -0.0137638529
#>  [481] -0.0090110140  0.0008482470 -0.0001096345  0.0015349128  0.0068561352
#>  [486] -0.0131007805 -0.0181394408 -0.0093614937 -0.0090095900  0.0114750670
#>  [491]  0.0085928241  0.0016411999  0.0093617371  0.0091060466  0.0185481772
#>  [496]  0.0187341435  0.0377162604  0.0318428090  0.0137611422  0.0085414167
#>  [501]  0.0146974792  0.0209401735  0.0276724448  0.0303567541  0.0310154825
#>  [506]  0.0399423362  0.0427139422  0.0634488309  0.0403561370  0.0489683167
#>  [511]  0.0428177813  0.0266307691  0.0380602123  0.0413755398  0.0572416547
#>  [516]  0.0428588782  0.0345583882  0.0305146688  0.0337437031  0.0353591402
#>  [521]  0.0368483948  0.0599564159  0.0585781813  0.0783070599  0.0676334182
#>  [526]  0.0646708618  0.0733680655  0.0760730682  0.0579871135  0.0789540668
#>  [531]  0.0717323338  0.0685872926  0.0827966029  0.0772601716  0.0979796517
#>  [536]  0.1021858619  0.0901408127  0.0725457434  0.0695186817  0.0912758932
#>  [541]  0.0869199537  0.0839978235  0.0887377435  0.0842855204  0.0922384415
#>  [546]  0.0929608119  0.0805850243  0.0896069315  0.0911055616  0.1029582759
#>  [551]  0.1136562030  0.1036608814  0.0973203883  0.0861232845  0.0958826563
#>  [556]  0.1015657300  0.0979860104  0.1141778654  0.1110149235  0.1065588610
#>  [561]  0.1292987236  0.1250698858  0.1207815670  0.1042150295  0.0906313082
#>  [566]  0.1021587394  0.1032181017  0.1070600483  0.1074486058  0.1055934602
#>  [571]  0.1274176757  0.1111710001  0.1021226112  0.1145751818  0.0966384926
#>  [576]  0.0970973632  0.0987240293  0.0778667019  0.0899337346  0.0879716681
#>  [581]  0.0908451089  0.1071380611  0.1010369655  0.0995283134  0.1037000199
#>  [586]  0.1089372403  0.1110365948  0.1013164616  0.0973517625  0.1161474674
#>  [591]  0.1052148457  0.1005149400  0.0913293887  0.0995167603  0.0773267073
#>  [596]  0.1264324731  0.0905100528  0.0896116593  0.0742327469  0.0775615414
#>  [601]  0.1090570401  0.0895996141  0.0795196435  0.0861974363  0.0767816881
#>  [606]  0.0744683326  0.0827674040  0.0897419745  0.0945397028  0.0814792247
#>  [611]  0.0897128875  0.0749781637  0.0644851559  0.0489485555  0.0479869169
#>  [616]  0.0601540249  0.1155248024  0.0604611420  0.0784415504  0.0510487250
#>  [621]  0.0595541753  0.0557326745  0.0511247825  0.0569030004  0.0429910120
#>  [626]  0.0662691808  0.0573957235  0.0663252757  0.0644883730  0.0777833184
#>  [631]  0.0951142045  0.0470151523  0.0464335247  0.0431778402  0.0411755417
#>  [636]  0.0297600317  0.0520780115  0.0404012274  0.0251657772  0.0395695188
#>  [641]  0.0444497023  0.0308373767  0.0247830114  0.0323959459  0.0475566670
#>  [646]  0.0283859593  0.0275177015  0.0219211287  0.0237154672  0.0150803750
#>  [651]  0.0505696469  0.0375630372  0.0192857463 -0.0016597557  0.0368779251
#>  [656]  0.0450077902 -0.0024127541 -0.0085886721 -0.0204368300 -0.0248290452
#>  [661] -0.0257399832 -0.0198959680 -0.0171303860 -0.0130715863 -0.0326144648
#>  [666] -0.0350728425 -0.0348242065 -0.0357287763 -0.0422555088 -0.0411343280
#>  [671] -0.0429117619 -0.0538309415 -0.0547192750 -0.0405700087 -0.0360180866
#>  [676] -0.0243315623 -0.0039761463 -0.0418804648 -0.0673039641 -0.0850798543
#>  [681] -0.0901110324 -0.0944673215 -0.1013853120 -0.1103099982 -0.1204225974
#>  [686] -0.1272103913 -0.1177204683 -0.1043538566 -0.1042556748 -0.0933422198
#>  [691] -0.0907087942 -0.0964308214 -0.1135750912 -0.1108612380 -0.0934564743
#>  [696] -0.0891247785 -0.0624967308 -0.0671764871 -0.0586137893 -0.0867948680
#>  [701] -0.0814653235 -0.0348632070 -0.0638262031 -0.0919584582 -0.1009938550
#>  [706] -0.0961869898 -0.1001725044 -0.0825277308 -0.0518929259 -0.0585550011
#>  [711] -0.0693903487 -0.0904070134 -0.0817820570 -0.0928763549 -0.0887589889
#>  [716] -0.1029222851 -0.0963760365 -0.0984141345 -0.1042827359 -0.1133368485
#>  [721] -0.1005671851 -0.0970093759 -0.1159871652 -0.0949105963 -0.1382943398
#>  [726] -0.1372814536 -0.1294949375 -0.1377172619 -0.1195679937 -0.1051445925
#>  [731] -0.0944314775 -0.0812771463 -0.0861971883 -0.0814632051 -0.0713634752
#>  [736] -0.0481042666 -0.0737875891 -0.0946933236 -0.1120105645 -0.1145723044
#>  [741] -0.0998482712 -0.1033480338 -0.0942969906 -0.0855903675 -0.0861557196
#>  [746] -0.0809241484 -0.0964145714 -0.0999115056 -0.0830956339 -0.0833557623
#>  [751] -0.0845898215 -0.0554807363 -0.0647338574 -0.0611937293 -0.0905695655
#>  [756] -0.0681019171 -0.0812175317 -0.0684786232 -0.0954895052 -0.0871853697
#>  [761] -0.0839158788 -0.1050346732 -0.0973370358 -0.0818814924 -0.0739837221
#>  [766] -0.1179264331 -0.1066652422 -0.0702403216 -0.0823957468 -0.1036753070
#>  [771] -0.1282770797 -0.1213949729 -0.1090783577 -0.1105463006 -0.0681179474
#>  [776] -0.0844388930 -0.0637625674 -0.0677476756 -0.0547538203 -0.0310273357
#>  [781] -0.0150086213 -0.0236382193 -0.0272673153 -0.0426506952 -0.0534028697
#>  [786] -0.0603249135 -0.0996204393 -0.0748792494 -0.0569274900 -0.0028018294
#>  [791] -0.0321008027 -0.0594697397 -0.0597816945 -0.0635854837 -0.0560164043
#>  [796] -0.0436453280 -0.0277542736 -0.0560175919 -0.0381968683 -0.0170051826
#>  [801] -0.0273741861 -0.0300556547 -0.0351847192 -0.0194346853 -0.0142062406
#>  [806] -0.0129509083 -0.0178632841 -0.0250190760 -0.0238887328 -0.0167455699
#>  [811] -0.0091924370 -0.0068370949 -0.0079466402 -0.0183881198 -0.0015020913
#>  [816] -0.0076319160 -0.0089002561  0.0175834860 -0.0077145087 -0.0234794700
#>  [821] -0.0230261278 -0.0113039413 -0.0032389032 -0.0072567595  0.0087763124
#>  [826] -0.0134357993 -0.0128906768 -0.0264828167 -0.0396895042 -0.0305577683
#>  [831] -0.0380126340 -0.0144237554  0.0149440058 -0.0045300761 -0.0078458217
#>  [836] -0.0105058831 -0.0009743947  0.0076569776 -0.0033151123 -0.0082877579
#>  [841] -0.0177035522 -0.0113231921 -0.0309950941 -0.0185309601 -0.0137638529
#>  [846] -0.0090110140  0.0008482470 -0.0001096345  0.0015349128  0.0068561352
#>  [851] -0.0131007805 -0.0181394408 -0.0093614937 -0.0090095900  0.0114750670
#>  [856]  0.0085928241  0.0016411999  0.0093617371  0.0091060466  0.0185481772
#>  [861]  0.0187341435  0.0377162604  0.0318428090  0.0137611422  0.0085414167
#>  [866]  0.0146974792  0.0209401735  0.0276724448  0.0303567541  0.0310154825
#>  [871]  0.0399423362  0.0427139422  0.0634488309  0.0403561370  0.0489683167
#>  [876]  0.0428177813  0.0266307691  0.0380602123  0.0413755398  0.0572416547
#>  [881]  0.0428588782  0.0345583882  0.0305146688  0.0337437031  0.0353591402
#>  [886]  0.0368483948  0.0599564159  0.0585781813  0.0783070599  0.0676334182
#>  [891]  0.0646708618  0.0733680655  0.0760730682  0.0579871135  0.0789540668
#>  [896]  0.0717323338  0.0685872926  0.0827966029  0.0772601716  0.0979796517
#>  [901]  0.1021858619  0.0901408127  0.0725457434  0.0695186817  0.0912758932
#>  [906]  0.0869199537  0.0839978235  0.0887377435  0.0842855204  0.0922384415
#>  [911]  0.0929608119  0.0805850243  0.0896069315  0.0911055616  0.1029582759
#>  [916]  0.1136562030  0.1036608814  0.0973203883  0.0861232845  0.0958826563
#>  [921]  0.1015657300  0.0979860104  0.1141778654  0.1110149235  0.1065588610
#>  [926]  0.1292987236  0.1250698858  0.1207815670  0.1042150295  0.0906313082
#>  [931]  0.1021587394  0.1032181017  0.1070600483  0.1074486058  0.1055934602
#>  [936]  0.1274176757  0.1111710001  0.1021226112  0.1145751818  0.0966384926
#>  [941]  0.0970973632  0.0987240293  0.0778667019  0.0899337346  0.0879716681
#>  [946]  0.0908451089  0.1071380611  0.1010369655  0.0995283134  0.1037000199
#>  [951]  0.1089372403  0.1110365948  0.1013164616  0.0973517625  0.1161474674
#>  [956]  0.1052148457  0.1005149400  0.0913293887  0.0995167603  0.0773267073
#>  [961]  0.1264324731  0.0905100528  0.0896116593  0.0742327469  0.0775615414
#>  [966]  0.1090570401  0.0895996141  0.0795196435  0.0861974363  0.0767816881
#>  [971]  0.0744683326  0.0827674040  0.0897419745  0.0945397028  0.0814792247
#>  [976]  0.0897128875  0.0749781637  0.0644851559  0.0489485555  0.0479869169
#>  [981]  0.0601540249  0.1155248024  0.0604611420  0.0784415504  0.0510487250
#>  [986]  0.0595541753  0.0557326745  0.0511247825  0.0569030004  0.0429910120
#>  [991]  0.0662691808  0.0573957235  0.0663252757  0.0644883730  0.0777833184
#>  [996]  0.0951142045  0.0470151523  0.0464335247  0.0431778402  0.0411755417
#> [1001]  0.0297600317  0.0520780115  0.0404012274  0.0251657772  0.0395695188
#> [1006]  0.0444497023  0.0308373767  0.0247830114  0.0323959459  0.0475566670
#> [1011]  0.0283859593  0.0275177015  0.0219211287  0.0237154672  0.0150803750
#> [1016]  0.0505696469  0.0375630372  0.0192857463 -0.0016597557  0.0368779251
#> [1021]  0.0450077902 -0.0024127541 -0.0085886721 -0.0204368300 -0.0248290452
#> [1026] -0.0257399832 -0.0198959680 -0.0171303860 -0.0130715863 -0.0326144648
#> [1031] -0.0350728425 -0.0348242065 -0.0357287763 -0.0422555088 -0.0411343280
#> [1036] -0.0429117619 -0.0538309415 -0.0547192750 -0.0405700087 -0.0360180866
#> [1041] -0.0243315623 -0.0039761463 -0.0418804648 -0.0673039641 -0.0850798543
#> [1046] -0.0901110324 -0.0944673215 -0.1013853120 -0.1103099982 -0.1204225974
#> [1051] -0.1272103913 -0.1177204683 -0.1043538566 -0.1042556748 -0.0933422198
#> [1056] -0.0907087942 -0.0964308214 -0.1135750912 -0.1108612380 -0.0934564743
#> [1061] -0.0891247785 -0.0624967308 -0.0671764871 -0.0586137893 -0.0867948680
#> [1066] -0.0814653235 -0.0348632070 -0.0638262031 -0.0919584582 -0.1009938550
#> [1071] -0.0961869898 -0.1001725044 -0.0825277308 -0.0518929259 -0.0585550011
#> [1076] -0.0693903487 -0.0904070134 -0.0817820570 -0.0928763549 -0.0887589889
#> [1081] -0.1029222851 -0.0963760365 -0.0984141345 -0.1042827359 -0.1133368485
#> [1086] -0.1005671851 -0.0970093759 -0.1159871652 -0.0949105963 -0.1382943398
#> [1091] -0.1372814536 -0.1294949375 -0.1377172619 -0.1195679937 -0.1051445925
#> [1096] -0.0944314775 -0.0812771463 -0.0861971883 -0.0814632051 -0.0713634752
#> [1101] -0.0481042666 -0.0737875891 -0.0946933236 -0.1120105645 -0.1145723044
#> [1106] -0.0998482712 -0.1033480338 -0.0942969906 -0.0855903675 -0.0861557196
#> [1111] -0.0809241484 -0.0964145714 -0.0999115056 -0.0830956339 -0.0833557623
#> [1116] -0.0845898215 -0.0554807363 -0.0647338574 -0.0611937293 -0.0905695655
#> [1121] -0.0681019171 -0.0812175317 -0.0684786232 -0.0954895052 -0.0871853697
#> [1126] -0.0839158788 -0.1050346732 -0.0973370358 -0.0818814924 -0.0739837221
#> [1131] -0.1179264331 -0.1066652422 -0.0702403216 -0.0823957468 -0.1036753070
#> [1136] -0.1282770797 -0.1213949729 -0.1090783577 -0.1105463006 -0.0681179474
#> [1141] -0.0844388930 -0.0637625674 -0.0677476756 -0.0547538203 -0.0310273357
#> [1146] -0.0150086213 -0.0236382193 -0.0272673153 -0.0426506952 -0.0534028697
#> [1151] -0.0603249135 -0.0996204393 -0.0748792494 -0.0569274900 -0.0028018294
#> [1156] -0.0321008027 -0.0594697397 -0.0597816945 -0.0635854837 -0.0560164043
#> [1161] -0.0436453280 -0.0277542736 -0.0560175919 -0.0381968683 -0.0170051826
#> [1166] -0.0273741861 -0.0300556547 -0.0351847192 -0.0194346853 -0.0142062406
#> [1171] -0.0129509083 -0.0178632841 -0.0250190760 -0.0238887328 -0.0167455699
#> [1176] -0.0091924370 -0.0068370949 -0.0079466402 -0.0183881198 -0.0015020913
#> [1181] -0.0076319160 -0.0089002561  0.0175834860 -0.0077145087 -0.0234794700
#> [1186] -0.0230261278 -0.0113039413 -0.0032389032 -0.0072567595  0.0087763124
#> [1191] -0.0134357993 -0.0128906768 -0.0264828167 -0.0396895042 -0.0305577683
#> [1196] -0.0380126340 -0.0144237554  0.0149440058 -0.0045300761 -0.0078458217
#> [1201] -0.0105058831 -0.0009743947  0.0076569776 -0.0033151123 -0.0082877579
#> [1206] -0.0177035522 -0.0113231921 -0.0309950941 -0.0185309601 -0.0137638529
#> [1211] -0.0090110140  0.0008482470 -0.0001096345  0.0015349128  0.0068561352
#> [1216] -0.0131007805 -0.0181394408 -0.0093614937 -0.0090095900  0.0114750670
#> [1221]  0.0085928241  0.0016411999  0.0093617371  0.0091060466  0.0185481772
#> [1226]  0.0187341435  0.0377162604  0.0318428090  0.0137611422  0.0085414167
#> [1231]  0.0146974792  0.0209401735  0.0276724448  0.0303567541  0.0310154825
#> [1236]  0.0399423362  0.0427139422  0.0634488309  0.0403561370  0.0489683167
#> [1241]  0.0428177813  0.0266307691  0.0380602123  0.0413755398  0.0572416547
#> [1246]  0.0428588782  0.0345583882  0.0305146688  0.0337437031  0.0353591402
#> [1251]  0.0368483948  0.0599564159  0.0585781813  0.0783070599  0.0676334182
#> [1256]  0.0646708618  0.0733680655  0.0760730682  0.0579871135  0.0789540668
#> [1261]  0.0717323338  0.0685872926  0.0827966029  0.0772601716  0.0979796517
#> [1266]  0.1021858619  0.0901408127  0.0725457434  0.0695186817  0.0912758932
#> [1271]  0.0869199537  0.0839978235  0.0887377435  0.0842855204  0.0922384415
#> [1276]  0.0929608119  0.0805850243  0.0896069315  0.0911055616  0.1029582759
#> [1281]  0.1136562030  0.1036608814  0.0973203883  0.0861232845  0.0958826563
#> [1286]  0.1015657300  0.0979860104  0.1141778654  0.1110149235  0.1065588610
#> [1291]  0.1292987236  0.1250698858  0.1207815670  0.1042150295  0.0906313082
#> [1296]  0.1021587394  0.1032181017  0.1070600483  0.1074486058  0.1055934602
#> [1301]  0.1274176757  0.1111710001  0.1021226112  0.1145751818  0.0966384926
#> [1306]  0.0970973632  0.0987240293  0.0778667019  0.0899337346  0.0879716681
#> [1311]  0.0908451089  0.1071380611  0.1010369655  0.0995283134  0.1037000199
#> [1316]  0.1089372403  0.1110365948  0.1013164616  0.0973517625  0.1161474674
#> [1321]  0.1052148457  0.1005149400  0.0913293887  0.0995167603  0.0773267073
#> [1326]  0.1264324731  0.0905100528  0.0896116593  0.0742327469  0.0775615414
#> [1331]  0.1090570401  0.0895996141  0.0795196435  0.0861974363  0.0767816881
#> [1336]  0.0744683326  0.0827674040  0.0897419745  0.0945397028  0.0814792247
#> [1341]  0.0897128875  0.0749781637  0.0644851559  0.0489485555  0.0479869169
#> [1346]  0.0601540249  0.1155248024  0.0604611420  0.0784415504  0.0510487250
#> [1351]  0.0595541753  0.0557326745  0.0511247825  0.0569030004  0.0429910120
#> [1356]  0.0662691808  0.0573957235  0.0663252757  0.0644883730  0.0777833184
#> [1361]  0.0951142045  0.0470151523  0.0464335247  0.0431778402  0.0411755417
#> [1366]  0.0297600317  0.0520780115  0.0404012274  0.0251657772  0.0395695188
#> [1371]  0.0444497023  0.0308373767  0.0247830114  0.0323959459  0.0475566670
#> [1376]  0.0283859593  0.0275177015  0.0219211287  0.0237154672  0.0150803750
#> [1381]  0.0505696469  0.0375630372  0.0192857463 -0.0016597557  0.0368779251
#> [1386]  0.0450077902 -0.0024127541 -0.0085886721 -0.0204368300 -0.0248290452
#> [1391] -0.0257399832 -0.0198959680 -0.0171303860 -0.0130715863 -0.0326144648
#> [1396] -0.0350728425 -0.0348242065 -0.0357287763 -0.0422555088 -0.0411343280
#> [1401] -0.0429117619 -0.0538309415 -0.0547192750 -0.0405700087 -0.0360180866
#> [1406] -0.0243315623 -0.0039761463 -0.0418804648 -0.0673039641 -0.0850798543
#> [1411] -0.0901110324 -0.0944673215 -0.1013853120 -0.1103099982 -0.1204225974
#> [1416] -0.1272103913 -0.1177204683 -0.1043538566 -0.1042556748 -0.0933422198
#> [1421] -0.0907087942 -0.0964308214 -0.1135750912 -0.1108612380 -0.0934564743
#> [1426] -0.0891247785 -0.0624967308 -0.0671764871 -0.0586137893 -0.0867948680
#> [1431] -0.0814653235 -0.0348632070 -0.0638262031 -0.0919584582 -0.1009938550
#> [1436] -0.0961869898 -0.1001725044 -0.0825277308 -0.0518929259 -0.0585550011
#> [1441] -0.0693903487 -0.0904070134 -0.0817820570 -0.0928763549 -0.0887589889
#> [1446] -0.1029222851 -0.0963760365 -0.0984141345 -0.1042827359 -0.1133368485
#> [1451] -0.1005671851 -0.0970093759 -0.1159871652 -0.0949105963 -0.1382943398
#> [1456] -0.1372814536 -0.1294949375 -0.1377172619 -0.1195679937 -0.1051445925
#> [1461] -0.0944314775 -0.0812771463
#> 
#> $trend
#> Time Series:
#> Start = c(2013, 1) 
#> End = c(2017, 2) 
#> Frequency = 365 
#>    [1]        NA        NA        NA        NA        NA        NA        NA
#>    [8]        NA        NA        NA        NA        NA        NA        NA
#>   [15]        NA        NA        NA        NA        NA        NA        NA
#>   [22]        NA        NA        NA        NA        NA        NA        NA
#>   [29]        NA        NA        NA        NA        NA        NA        NA
#>   [36]        NA        NA        NA        NA        NA        NA        NA
#>   [43]        NA        NA        NA        NA        NA        NA        NA
#>   [50]        NA        NA        NA        NA        NA        NA        NA
#>   [57]        NA        NA        NA        NA        NA        NA        NA
#>   [64]        NA        NA        NA        NA        NA        NA        NA
#>   [71]        NA        NA        NA        NA        NA        NA        NA
#>   [78]        NA        NA        NA        NA        NA        NA        NA
#>   [85]        NA        NA        NA        NA        NA        NA        NA
#>   [92]        NA        NA        NA        NA        NA        NA        NA
#>   [99]        NA        NA        NA        NA        NA        NA        NA
#>  [106]        NA        NA        NA        NA        NA        NA        NA
#>  [113]        NA        NA        NA        NA        NA        NA        NA
#>  [120]        NA        NA        NA        NA        NA        NA        NA
#>  [127]        NA        NA        NA        NA        NA        NA        NA
#>  [134]        NA        NA        NA        NA        NA        NA        NA
#>  [141]        NA        NA        NA        NA        NA        NA        NA
#>  [148]        NA        NA        NA        NA        NA        NA        NA
#>  [155]        NA        NA        NA        NA        NA        NA        NA
#>  [162]        NA        NA        NA        NA        NA        NA        NA
#>  [169]        NA        NA        NA        NA        NA        NA        NA
#>  [176]        NA        NA        NA        NA        NA        NA        NA
#>  [183] 0.4472048 0.4474660 0.4475238 0.4475962 0.4478957 0.4480877 0.4486047
#>  [190] 0.4489026 0.4490599 0.4491760 0.4493480 0.4494755 0.4493738 0.4492410
#>  [197] 0.4492293 0.4493431 0.4493490 0.4492869 0.4491701 0.4492802 0.4494175
#>  [204] 0.4497497 0.4501456 0.4505194 0.4508138 0.4511050 0.4513932 0.4516411
#>  [211] 0.4518810 0.4520796 0.4521925 0.4523051 0.4523031 0.4522614 0.4523948
#>  [218] 0.4523884 0.4521094 0.4520799 0.4523449 0.4524592 0.4523934 0.4522156
#>  [225] 0.4520549 0.4519773 0.4518732 0.4520416 0.4519626 0.4518054 0.4517930
#>  [232] 0.4515634 0.4514245 0.4513571 0.4513360 0.4513361 0.4513362 0.4512032
#>  [239] 0.4511601 0.4509995 0.4511177 0.4512344 0.4512975 0.4513096 0.4512233
#>  [246] 0.4511939 0.4511907 0.4510663 0.4509296 0.4510038 0.4509854 0.4510266
#>  [253] 0.4511418 0.4511055 0.4509853 0.4508145 0.4508249 0.4508644 0.4508932
#>  [260] 0.4507970 0.4506135 0.4505417 0.4504893 0.4504818 0.4504266 0.4504849
#>  [267] 0.4504915 0.4505281 0.4506632 0.4507386 0.4507899 0.4507711 0.4507552
#>  [274] 0.4508097 0.4507711 0.4507833 0.4508934 0.4509946 0.4512164 0.4514186
#>  [281] 0.4514920 0.4514423 0.4514160 0.4514290 0.4514911 0.4515574 0.4515907
#>  [288] 0.4516321 0.4516620 0.4518425 0.4520886 0.4522669 0.4522872 0.4521800
#>  [295] 0.4521581 0.4521254 0.4521141 0.4521168 0.4520576 0.4519601 0.4519539
#>  [302] 0.4519834 0.4519586 0.4520845 0.4521970 0.4522880 0.4523206 0.4525128
#>  [309] 0.4525607 0.4526000 0.4527036 0.4526737 0.4526125 0.4525769 0.4527060
#>  [316] 0.4528689 0.4529362 0.4529867 0.4530063 0.4530573 0.4530082 0.4529232
#>  [323] 0.4528429 0.4528492 0.4527548 0.4528243 0.4527511 0.4527868 0.4527574
#>  [330] 0.4527166 0.4527497 0.4528882 0.4531522 0.4531212 0.4529948 0.4527380
#>  [337] 0.4525121 0.4524300 0.4523118 0.4521983 0.4521723 0.4519053 0.4518177
#>  [344] 0.4516820 0.4515459 0.4515814 0.4515550 0.4515360 0.4514519 0.4513463
#>  [351] 0.4513506 0.4513589 0.4514054 0.4515846 0.4516347 0.4515854 0.4514314
#>  [358] 0.4513041 0.4512242 0.4511379 0.4511424 0.4510716 0.4510164 0.4510423
#>  [365] 0.4510328 0.4509831 0.4509250 0.4508425 0.4507614 0.4505353 0.4503388
#>  [372] 0.4502153 0.4501269 0.4500558 0.4499604 0.4498572 0.4497699 0.4498135
#>  [379] 0.4496975 0.4496102 0.4495334 0.4494185 0.4493346 0.4492803 0.4492294
#>  [386] 0.4492370 0.4492700 0.4492062 0.4491109 0.4490984 0.4490486 0.4492063
#>  [393] 0.4491227 0.4490249 0.4489951 0.4489834 0.4489101 0.4488483 0.4488503
#>  [400] 0.4487992 0.4487415 0.4486928 0.4486214 0.4486621 0.4487151 0.4486588
#>  [407] 0.4485187 0.4485550 0.4485310 0.4484420 0.4483157 0.4480034 0.4479201
#>  [414] 0.4477934 0.4476425 0.4474272 0.4473196 0.4472071 0.4469144 0.4467491
#>  [421] 0.4465845 0.4464063 0.4463919 0.4463982 0.4464425 0.4465297 0.4465691
#>  [428] 0.4466091 0.4467814 0.4468953 0.4470317 0.4470599 0.4471455 0.4472181
#>  [435] 0.4468139 0.4469044 0.4471739 0.4471897 0.4471537 0.4471444 0.4471776
#>  [442] 0.4472473 0.4473953 0.4474919 0.4475007 0.4473805 0.4472391 0.4471687
#>  [449] 0.4473332 0.4472046 0.4470793 0.4469121 0.4467490 0.4466594 0.4464673
#>  [456] 0.4462989 0.4461787 0.4460817 0.4460128 0.4458387 0.4457607 0.4456736
#>  [463] 0.4456429 0.4455179 0.4452319 0.4450605 0.4448470 0.4445830 0.4444713
#>  [470] 0.4442921 0.4441611 0.4439564 0.4439294 0.4439662 0.4438530 0.4437882
#>  [477] 0.4437513 0.4437958 0.4437869 0.4437985 0.4437862 0.4437544 0.4437746
#>  [484] 0.4438413 0.4438983 0.4438681 0.4438609 0.4437118 0.4436361 0.4436613
#>  [491] 0.4437859 0.4438052 0.4438268 0.4438609 0.4436689 0.4436957 0.4436722
#>  [498] 0.4435762 0.4435110 0.4434015 0.4432843 0.4431515 0.4430300 0.4429591
#>  [505] 0.4428406 0.4426990 0.4427360 0.4427243 0.4426536 0.4424327 0.4422827
#>  [512] 0.4420488 0.4419363 0.4418226 0.4417808 0.4418107 0.4416121 0.4415602
#>  [519] 0.4415331 0.4418478 0.4419651 0.4418426 0.4417057 0.4414906 0.4412230
#>  [526] 0.4410541 0.4411307 0.4411762 0.4409854 0.4409501 0.4410879 0.4410230
#>  [533] 0.4410255 0.4408381 0.4406200 0.4403675 0.4401110 0.4397999 0.4395176
#>  [540] 0.4391752 0.4390071 0.4386872 0.4387721 0.4386395 0.4386686 0.4386664
#>  [547] 0.4385059 0.4381964 0.4379878 0.4382247 0.4384181 0.4384795 0.4385370
#>  [554] 0.4381975 0.4380270 0.4380900 0.4379986 0.4378978 0.4378181 0.4376995
#>  [561] 0.4377412 0.4377271 0.4376092 0.4375545 0.4374324 0.4372647 0.4371566
#>  [568] 0.4370641 0.4367853 0.4366333 0.4364791 0.4364251 0.4362515 0.4361508
#>  [575] 0.4359957 0.4360682 0.4358098 0.4356379 0.4354462 0.4353786 0.4354628
#>  [582] 0.4354107 0.4353641 0.4352660 0.4350882 0.4347951 0.4346437 0.4347310
#>  [589] 0.4348693 0.4349523 0.4350107 0.4350494 0.4349403 0.4349410 0.4351273
#>  [596] 0.4352899 0.4355638 0.4358765 0.4360583 0.4361675 0.4362092 0.4362600
#>  [603] 0.4365150 0.4366560 0.4364089 0.4360939 0.4358902 0.4361204 0.4362817
#>  [610] 0.4364115 0.4364107 0.4363569 0.4364018 0.4365307 0.4365884 0.4364962
#>  [617] 0.4364347 0.4362268 0.4361763 0.4362248 0.4363466 0.4365782 0.4367206
#>  [624] 0.4367981 0.4368295 0.4368276 0.4369844 0.4370297 0.4371701 0.4372559
#>  [631] 0.4371914 0.4373065 0.4374611 0.4375141 0.4374575 0.4374636 0.4376396
#>  [638] 0.4377511 0.4378968 0.4380197 0.4381773 0.4381593 0.4383652 0.4382836
#>  [645] 0.4382622 0.4382608 0.4383885 0.4385507 0.4386796 0.4387432 0.4388506
#>  [652] 0.4389274 0.4390291 0.4390586 0.4390970 0.4389909 0.4390362 0.4391698
#>  [659] 0.4392812 0.4393203 0.4393635 0.4393874 0.4395294 0.4397179 0.4400394
#>  [666] 0.4402462 0.4404005 0.4406883 0.4407093 0.4406872 0.4406730 0.4406618
#>  [673] 0.4405132 0.4404470 0.4404111 0.4403284 0.4403875 0.4404273 0.4405423
#>  [680] 0.4405810 0.4405774 0.4405621 0.4405938 0.4405950 0.4406542 0.4406791
#>  [687] 0.4408293 0.4409640 0.4409982 0.4409851 0.4408853 0.4408130 0.4407505
#>  [694] 0.4408289 0.4406679 0.4406201 0.4405421 0.4404672 0.4404269 0.4403372
#>  [701] 0.4403304 0.4402845 0.4402863 0.4402345 0.4401813 0.4401144 0.4401348
#>  [708] 0.4402135 0.4403791 0.4404677 0.4403740 0.4402528 0.4402048 0.4401256
#>  [715] 0.4399887 0.4397958 0.4396193 0.4395829 0.4394744 0.4394588 0.4395003
#>  [722] 0.4395830 0.4398448 0.4398463 0.4398499 0.4398362 0.4398433 0.4397940
#>  [729] 0.4397570 0.4396383 0.4395536 0.4395640 0.4396526 0.4397033 0.4398934
#>  [736] 0.4400032 0.4400960 0.4401194 0.4402391 0.4403582 0.4404496 0.4404080
#>  [743] 0.4404117 0.4404353 0.4404292 0.4404122 0.4404613 0.4403882 0.4403981
#>  [750] 0.4404538 0.4404306 0.4404110 0.4404029 0.4406092 0.4407475 0.4407774
#>  [757] 0.4405368 0.4405275 0.4405253 0.4404157 0.4402923 0.4402186 0.4401404
#>  [764] 0.4401767 0.4402747 0.4402880 0.4403324 0.4403658 0.4403479 0.4402203
#>  [771] 0.4402328 0.4402377 0.4400813 0.4400467 0.4400603 0.4401317 0.4402045
#>  [778] 0.4402576 0.4406258 0.4407267 0.4408673 0.4409125 0.4409799 0.4410302
#>  [785] 0.4410970 0.4411567 0.4412297 0.4412116 0.4411949 0.4411899 0.4411485
#>  [792] 0.4410626 0.4409397 0.4407044 0.4405078 0.4402800 0.4401113 0.4400314
#>  [799] 0.4399683 0.4398654 0.4397029 0.4393482 0.4393140 0.4392467 0.4391792
#>  [806] 0.4391340 0.4390336 0.4389446 0.4390203 0.4391480 0.4392238 0.4393056
#>  [813] 0.4393873 0.4392223 0.4392154 0.4391204 0.4391107 0.4390813 0.4390637
#>  [820] 0.4390962 0.4390321 0.4389709 0.4390573 0.4392577 0.4392382 0.4392284
#>  [827] 0.4392547 0.4393047 0.4394186 0.4395776 0.4396425 0.4396847 0.4397871
#>  [834] 0.4398137 0.4398914 0.4399366 0.4400844 0.4400611 0.4401724 0.4403915
#>  [841] 0.4405590 0.4406452 0.4405784 0.4404512 0.4402891 0.4401973 0.4401323
#>  [848] 0.4400671 0.4399227 0.4398165 0.4398191 0.4398582 0.4400001 0.4401409
#>  [855] 0.4402576 0.4403402 0.4405058 0.4406228 0.4406198 0.4405939 0.4406332
#>  [862] 0.4408378 0.4409973 0.4411984 0.4414395 0.4416801 0.4419376 0.4420881
#>  [869] 0.4421573 0.4422605 0.4423539 0.4423659 0.4424109 0.4424111 0.4425420
#>  [876] 0.4426654 0.4428500 0.4428834 0.4429516 0.4430859 0.4431593 0.4433922
#>  [883] 0.4436170 0.4436657 0.4433996 0.4432624 0.4433515 0.4435253 0.4437754
#>  [890] 0.4440043 0.4442530 0.4442448 0.4442593 0.4444089 0.4441889 0.4438939
#>  [897] 0.4437029 0.4433972 0.4433182 0.4432931 0.4432594 0.4431519 0.4432211
#>  [904] 0.4432515 0.4433982 0.4433409 0.4432410 0.4431745 0.4433539 0.4434936
#>  [911] 0.4436753 0.4438101 0.4439294 0.4439328 0.4436946 0.4435601 0.4434755
#>  [918] 0.4435344 0.4437040 0.4439137 0.4441111 0.4442281 0.4443694 0.4444306
#>  [925] 0.4446506 0.4448350 0.4449267 0.4451235 0.4452476 0.4452773 0.4453347
#>  [932] 0.4454247 0.4454612 0.4454781 0.4453509 0.4452851 0.4452048 0.4451348
#>  [939] 0.4451028 0.4451825 0.4450818 0.4453634 0.4456826 0.4459834 0.4460449
#>  [946] 0.4458603 0.4456995 0.4454606 0.4454010 0.4454820 0.4455747 0.4456410
#>  [953] 0.4457122 0.4457673 0.4458321 0.4457758 0.4457876 0.4457692 0.4456852
#>  [960] 0.4453965 0.4451721 0.4451434 0.4450805 0.4452178 0.4452412 0.4451376
#>  [967] 0.4449976 0.4447753 0.4447310 0.4449717 0.4452095 0.4453930 0.4451934
#>  [974] 0.4450686 0.4450684 0.4452174 0.4453483 0.4455069 0.4455380 0.4455490
#>  [981] 0.4457113 0.4458272 0.4459792 0.4461899 0.4463815 0.4464654 0.4463362
#>  [988] 0.4462605 0.4461751 0.4461244 0.4462665 0.4463023 0.4463228 0.4462040
#>  [995] 0.4461375 0.4460616 0.4459427 0.4458725 0.4459116 0.4459579 0.4461413
#> [1002] 0.4459896 0.4459393 0.4458384 0.4458577 0.4457909 0.4459029 0.4457594
#> [1009] 0.4457961 0.4456948 0.4457657 0.4456584 0.4456741 0.4456201 0.4456749
#> [1016] 0.4456893 0.4457468 0.4456550 0.4456455 0.4456968 0.4457027 0.4457222
#> [1023] 0.4456852 0.4457761 0.4458891 0.4458929 0.4459735 0.4457650 0.4454826
#> [1030] 0.4451510 0.4449423 0.4448340 0.4446018 0.4444905 0.4445372 0.4446586
#> [1037] 0.4447624 0.4448591 0.4449296 0.4449316 0.4449461 0.4450216 0.4452653
#> [1044] 0.4453288 0.4453678 0.4454028 0.4455028 0.4455415 0.4455819 0.4455632
#> [1051] 0.4455925 0.4455637 0.4457226 0.4459298 0.4461504 0.4462699 0.4464484
#> [1058] 0.4465061 0.4465372 0.4469264 0.4471026 0.4473104 0.4474515 0.4476092
#> [1065] 0.4477422 0.4479240 0.4481467 0.4482372 0.4484083 0.4486240 0.4487780
#> [1072] 0.4491593 0.4491712 0.4491338 0.4491118 0.4491246 0.4491534 0.4492446
#> [1079] 0.4493604 0.4495086 0.4496163 0.4497099 0.4497754 0.4498578 0.4499685
#> [1086] 0.4500780 0.4501432 0.4499048 0.4499095 0.4500452 0.4501241 0.4502432
#> [1093] 0.4503274 0.4504608 0.4506767 0.4509019 0.4509237 0.4508299 0.4508004
#> [1100] 0.4507910 0.4508450 0.4508757 0.4509393 0.4509229 0.4508716 0.4508640
#> [1107] 0.4509610 0.4510009 0.4510097 0.4510631 0.4511147 0.4511732 0.4513831
#> [1114] 0.4515198 0.4515848 0.4516257 0.4516110 0.4516324 0.4514350 0.4512949
#> [1121] 0.4513785 0.4515029 0.4515892 0.4516715 0.4517876 0.4519786 0.4521454
#> [1128] 0.4522353 0.4522140 0.4521783 0.4521734 0.4521942 0.4522301 0.4522657
#> [1135] 0.4523804 0.4524816 0.4526390 0.4527308 0.4527513 0.4528182 0.4529193
#> [1142] 0.4530253 0.4530674 0.4527878 0.4527591 0.4528576 0.4529830 0.4530589
#> [1149] 0.4531114 0.4532378 0.4533488 0.4534157 0.4535359 0.4536718 0.4537699
#> [1156] 0.4538620 0.4539863 0.4541388 0.4543628 0.4545408 0.4547277 0.4549796
#> [1163] 0.4550750 0.4551237 0.4552586 0.4553700 0.4555439 0.4555889 0.4556979
#> [1170] 0.4558232 0.4559463 0.4561049 0.4561328 0.4560241 0.4561375 0.4561089
#> [1177] 0.4560792 0.4560789 0.4561146 0.4562333 0.4564600 0.4565663 0.4566858
#> [1184] 0.4567831 0.4568139 0.4570022 0.4571770 0.4572492 0.4572432 0.4574481
#> [1191] 0.4576603 0.4577605 0.4577792 0.4579648 0.4580538 0.4581325 0.4581415
#> [1198] 0.4582007 0.4581542 0.4581350 0.4581481 0.4581374 0.4580627 0.4578558
#> [1205] 0.4577531 0.4576908 0.4577317 0.4578827 0.4581508 0.4583865 0.4585712
#> [1212] 0.4587635 0.4589054 0.4590920 0.4592311 0.4593050 0.4594139 0.4594439
#> [1219] 0.4593870 0.4593717 0.4593643 0.4592808 0.4592596 0.4592063 0.4591978
#> [1226] 0.4592177 0.4590913 0.4590392 0.4590097 0.4590030 0.4590434 0.4590792
#> [1233] 0.4591592 0.4592954 0.4594523 0.4595437 0.4595964 0.4596547 0.4597396
#> [1240] 0.4598086 0.4599082 0.4599627 0.4599922 0.4600224 0.4598723 0.4596685
#> [1247] 0.4594712 0.4595390 0.4597142 0.4597916 0.4597822 0.4597282 0.4596418
#> [1254] 0.4596089 0.4596304 0.4595130 0.4594303 0.4594538 0.4594821 0.4596854
#> [1261] 0.4598160 0.4599830 0.4601850 0.4602457 0.4603562 0.4604488 0.4606390
#> [1268] 0.4608190 0.4610215 0.4609933 0.4611322 0.4614413 0.4617996 0.4619805
#> [1275] 0.4620275 0.4620344 0.4622291 0.4624266 0.4626588 0.4627266        NA
#> [1282]        NA        NA        NA        NA        NA        NA        NA
#> [1289]        NA        NA        NA        NA        NA        NA        NA
#> [1296]        NA        NA        NA        NA        NA        NA        NA
#> [1303]        NA        NA        NA        NA        NA        NA        NA
#> [1310]        NA        NA        NA        NA        NA        NA        NA
#> [1317]        NA        NA        NA        NA        NA        NA        NA
#> [1324]        NA        NA        NA        NA        NA        NA        NA
#> [1331]        NA        NA        NA        NA        NA        NA        NA
#> [1338]        NA        NA        NA        NA        NA        NA        NA
#> [1345]        NA        NA        NA        NA        NA        NA        NA
#> [1352]        NA        NA        NA        NA        NA        NA        NA
#> [1359]        NA        NA        NA        NA        NA        NA        NA
#> [1366]        NA        NA        NA        NA        NA        NA        NA
#> [1373]        NA        NA        NA        NA        NA        NA        NA
#> [1380]        NA        NA        NA        NA        NA        NA        NA
#> [1387]        NA        NA        NA        NA        NA        NA        NA
#> [1394]        NA        NA        NA        NA        NA        NA        NA
#> [1401]        NA        NA        NA        NA        NA        NA        NA
#> [1408]        NA        NA        NA        NA        NA        NA        NA
#> [1415]        NA        NA        NA        NA        NA        NA        NA
#> [1422]        NA        NA        NA        NA        NA        NA        NA
#> [1429]        NA        NA        NA        NA        NA        NA        NA
#> [1436]        NA        NA        NA        NA        NA        NA        NA
#> [1443]        NA        NA        NA        NA        NA        NA        NA
#> [1450]        NA        NA        NA        NA        NA        NA        NA
#> [1457]        NA        NA        NA        NA        NA        NA
#> 
#> $random
#> Time Series:
#> Start = c(2013, 1) 
#> End = c(2017, 2) 
#> Frequency = 365 
#>    [1]             NA             NA             NA             NA
#>    [5]             NA             NA             NA             NA
#>    [9]             NA             NA             NA             NA
#>   [13]             NA             NA             NA             NA
#>   [17]             NA             NA             NA             NA
#>   [21]             NA             NA             NA             NA
#>   [25]             NA             NA             NA             NA
#>   [29]             NA             NA             NA             NA
#>   [33]             NA             NA             NA             NA
#>   [37]             NA             NA             NA             NA
#>   [41]             NA             NA             NA             NA
#>   [45]             NA             NA             NA             NA
#>   [49]             NA             NA             NA             NA
#>   [53]             NA             NA             NA             NA
#>   [57]             NA             NA             NA             NA
#>   [61]             NA             NA             NA             NA
#>   [65]             NA             NA             NA             NA
#>   [69]             NA             NA             NA             NA
#>   [73]             NA             NA             NA             NA
#>   [77]             NA             NA             NA             NA
#>   [81]             NA             NA             NA             NA
#>   [85]             NA             NA             NA             NA
#>   [89]             NA             NA             NA             NA
#>   [93]             NA             NA             NA             NA
#>   [97]             NA             NA             NA             NA
#>  [101]             NA             NA             NA             NA
#>  [105]             NA             NA             NA             NA
#>  [109]             NA             NA             NA             NA
#>  [113]             NA             NA             NA             NA
#>  [117]             NA             NA             NA             NA
#>  [121]             NA             NA             NA             NA
#>  [125]             NA             NA             NA             NA
#>  [129]             NA             NA             NA             NA
#>  [133]             NA             NA             NA             NA
#>  [137]             NA             NA             NA             NA
#>  [141]             NA             NA             NA             NA
#>  [145]             NA             NA             NA             NA
#>  [149]             NA             NA             NA             NA
#>  [153]             NA             NA             NA             NA
#>  [157]             NA             NA             NA             NA
#>  [161]             NA             NA             NA             NA
#>  [165]             NA             NA             NA             NA
#>  [169]             NA             NA             NA             NA
#>  [173]             NA             NA             NA             NA
#>  [177]             NA             NA             NA             NA
#>  [181]             NA             NA  0.00993938634  0.01327097751
#>  [185]  0.01621873984  0.00986351683  0.02798231992  0.03045065764
#>  [189]  0.01436380748  0.01407849889 -0.00183381782  0.00403495571
#>  [193]  0.00922590400  0.02144557989 -0.01582228368  0.02077300469
#>  [197]  0.01742072672  0.01614864817  0.01739696290  0.02470611327
#>  [201]  0.00747385384  0.00097916326 -0.00375050167 -0.01068283336
#>  [205]  0.01109902792 -0.00760947363 -0.01973985402  0.00224881835
#>  [209] -0.01558151710  0.01480135881  0.01724806938  0.01362854788
#>  [213]  0.01088008491  0.01978661246  0.01752146465 -0.01191183177
#>  [217] -0.00669690606  0.00514969222 -0.00069441010  0.00615864950
#>  [221] -0.01511695390 -0.00487786905  0.00474323663  0.02628408475
#>  [225]  0.00313480158  0.00303161095  0.01305670460  0.01497816894
#>  [229]  0.06006299994  0.00681705503 -0.02097349547  0.01769718861
#>  [233]  0.02867791697  0.01424325384  0.01279786354  0.05869739130
#>  [237]  0.02565440326  0.02648867458  0.02819678742 -0.00046525072
#>  [241] -0.00577026801 -0.01651867364 -0.02258666235 -0.00551375493
#>  [245] -0.00105705021 -0.01950908664 -0.00998092133 -0.01150950495
#>  [249]  0.00776817975 -0.01702199764 -0.01587535654  0.10499569496
#>  [253] -0.00824248945 -0.02832839345 -0.00543047396  0.01136619826
#>  [257]  0.00494055160 -0.00811956635 -0.01031582154 -0.03069590884
#>  [261] -0.03805555766 -0.02290072967  0.01486460468  0.01930439510
#>  [265]  0.00208353156 -0.02516065489  0.02693344023  0.03684677860
#>  [269]  0.03660426590  0.03792317793  0.01866679397  0.03752259057
#>  [273]  0.04354895564  0.03143663351  0.00790095753 -0.01275755931
#>  [277]  0.03954270544  0.01490461971  0.01257991353 -0.00417716166
#>  [281]  0.01093457373  0.04468525114  0.02830485368  0.04134048513
#>  [285]  0.04629016620  0.01846631069  0.02869196291  0.02089643581
#>  [289]  0.02631930999  0.00380823731 -0.02827297512 -0.00500287709
#>  [293] -0.01046639347 -0.00725150778 -0.00837136926  0.01204587316
#>  [297]  0.01129028977  0.00857758545  0.01003729000 -0.00252905535
#>  [301] -0.00418050795 -0.00649240363  0.00153750802 -0.00864460721
#>  [305]  0.01334421313 -0.00440188620 -0.02603170765 -0.04620888100
#>  [309] -0.03073628966 -0.02540865368 -0.01393829471  0.04393133156
#>  [313] -0.01710600053 -0.02489319727 -0.00182515993 -0.01449353262
#>  [317] -0.00857548559 -0.00666369512 -0.00490195922  0.00530879438
#>  [321]  0.00294976921  0.01051798266  0.01746905794 -0.01602230987
#>  [325] -0.00805556968  0.01172565900  0.03245445588  0.01610136406
#>  [329]  0.02909258311  0.01809626375  0.01415006434 -0.01143648927
#>  [333] -0.02165336019  0.01464914414 -0.01998398166 -0.00438941582
#>  [337] -0.04902202839 -0.01657517810  0.01433904502  0.00768955170
#>  [341]  0.01745995557  0.03314508979  0.00678987427 -0.02155951436
#>  [345] -0.01662812938  0.02436933925  0.03151359756 -0.00149905349
#>  [349]  0.03526602354  0.03289366540  0.05149169394  0.05238436259
#>  [353]  0.06174177091  0.07160544173  0.06336553154  0.06115845636
#>  [357]  0.06180900617  0.04429018817  0.08648234765 -0.01599318647
#>  [361]  0.00703869827 -0.02739804505 -0.02482228435  0.01939866014
#>  [365]  0.05757997989  0.04723854700 -0.03176018315 -0.03372367422
#>  [369] -0.00761323799 -0.02390700675  0.05940228341  0.01351334894
#>  [373] -0.04168300560  0.00571568084  0.00515157873  0.00984030224
#>  [377]  0.00008658762 -0.03461466396 -0.00967878840  0.00288764982
#>  [381] -0.00360376679  0.02442352812  0.03221072983  0.01384978462
#>  [385]  0.01664369256  0.06433402949  0.05099580721  0.04411062110
#>  [389]  0.02155568245  0.04942496024  0.02712487668  0.02662820243
#>  [393] -0.00673689910  0.02737836345  0.00176625490  0.00885329066
#>  [397]  0.00786146409  0.00089368437  0.03119605202  0.03938279435
#>  [401]  0.03015590838  0.03250297873  0.05919277480  0.02791855979
#>  [405] -0.03080702899 -0.04118055886 -0.02877630554 -0.00807732095
#>  [409] -0.01157698932  0.02816656538  0.00956096767 -0.01041821261
#>  [413] -0.01242206268 -0.06315090816 -0.06834083546 -0.06062002201
#>  [417] -0.02894947516  0.00304788139  0.00548601879 -0.03403355194
#>  [421] -0.02776925695  0.03217802459  0.04906753919  0.02863260691
#>  [425] -0.03032840122 -0.02270684694 -0.03022896589 -0.01659685422
#>  [429] -0.00163742912 -0.02908346976 -0.03412184813 -0.01436963556
#>  [433]  0.00367977569  0.00179075407  0.03327712046 -0.01221023945
#>  [437] -0.03421228838 -0.03896644799 -0.03971411227 -0.02449804474
#>  [441] -0.00753134862 -0.00055524990 -0.01602225001 -0.04177333908
#>  [445] -0.01272853081 -0.01880219697 -0.01176785410  0.02601601778
#>  [449] -0.01262480811 -0.02803192506 -0.01646314827  0.00945780716
#>  [453] -0.02233662986 -0.02282840169 -0.01930498592 -0.02133669475
#>  [457] -0.03026836587 -0.02815082390 -0.00703059778 -0.03027143084
#>  [461]  0.01787725786  0.02013106913 -0.00562767805 -0.01519635820
#>  [465] -0.03830911876 -0.02153552548 -0.01871780231 -0.02424234852
#>  [469] -0.02195546171 -0.00973363833 -0.00205669424 -0.01145659203
#>  [473]  0.02923049828 -0.00930880693 -0.02383339510 -0.03390183461
#>  [477] -0.01893738570 -0.00665194873 -0.01122590742 -0.00479057339
#>  [481] -0.00705929125 -0.03338134276 -0.02042396250 -0.01987353957
#>  [485] -0.03734556238  0.01292849403  0.00426709611 -0.00660561796
#>  [489] -0.00509371251  0.02919443755  0.01228791177  0.01324390652
#>  [493]  0.02314848444 -0.01883009863 -0.03448834534 -0.03083932534
#>  [497] -0.00926967022  0.00162273301 -0.00334468740 -0.00714875972
#>  [501]  0.00021410445 -0.00653161091 -0.00386212701 -0.02715927864
#>  [505] -0.04604152752 -0.02732815840 -0.01745008079  0.01597511356
#>  [509]  0.00221299415  0.01472488048 -0.01616853885 -0.00123990676
#>  [513] -0.00276609836  0.00084765644  0.00825209782 -0.00227236273
#>  [517]  0.01289684647 -0.01308957092 -0.00844417296 -0.00423026077
#>  [521] -0.00113873121 -0.00614260506  0.00484672696 -0.04386188501
#>  [525] -0.01282090192 -0.02781361566 -0.01104842879  0.02908066128
#>  [529]  0.03398387815  0.00862370087  0.01306221644  0.02320563977
#>  [533]  0.04172759045  0.03955256559  0.00906826760  0.02474674155
#>  [537] -0.00112441163 -0.01455135085 -0.01893235697 -0.02532551512
#>  [541]  0.00858375790 -0.00757615233  0.00357390133 -0.00613677512
#>  [545]  0.01184916504  0.00293873370  0.01299172032  0.00082430221
#>  [549]  0.00153455451 -0.00460901596 -0.01055739244 -0.04511463663
#>  [553] -0.03171458878 -0.02030513323 -0.00730899424 -0.01684505951
#>  [557] -0.01958298639 -0.01700574219  0.00123033845  0.01178240206
#>  [561] -0.01008867244 -0.00294576087 -0.00014044071 -0.01275368610
#>  [565]  0.00596244454 -0.00045374628 -0.00546506025  0.01137389291
#>  [569]  0.01431700219  0.00134693951 -0.02836878384 -0.00992505629
#>  [573] -0.00107798141  0.05724194097 -0.00005862399 -0.00264995537
#>  [577]  0.01901996311  0.02315811152  0.00989505308  0.01189677103
#>  [581]  0.00559377992 -0.00833852530  0.00110989697 -0.00163659112
#>  [585] -0.00291862805  0.01728455791  0.03228631807  0.00188654224
#>  [589] -0.00753031865  0.03348142951  0.01124981280 -0.00258882350
#>  [593] -0.01404498016 -0.03688829419 -0.00691138121 -0.05070501874
#>  [597] -0.02140174185 -0.03434769700 -0.00973533676 -0.01308865702
#>  [601] -0.03300937482 -0.01960083920 -0.01893504698 -0.02232556028
#>  [605]  0.00887881637  0.01154250676  0.01498422908  0.02444154952
#>  [609]  0.02387985077  0.02835865454  0.05815220721  0.04642206594
#>  [613]  0.05294068641  0.03246981350  0.02864155710  0.02511963425
#>  [617] -0.02795893108  0.03969968197  0.08497314576  0.01509219246
#>  [621]  0.01270897424  0.01579522672  0.01814408838  0.02922912640
#>  [625]  0.03729334792  0.01098743437 -0.00613336195 -0.01555432443
#>  [629] -0.01901526084 -0.01044515926  0.04818115407 -0.00682012304
#>  [633]  0.00417666609 -0.01126799268 -0.00830305596 -0.00071259574
#>  [637] -0.01946448328 -0.00491538113  0.00047648976 -0.01474622891
#>  [641] -0.02531036871 -0.01129137780 -0.00090712143 -0.00627591847
#>  [645] -0.00224944847 -0.02144700845 -0.04667164197 -0.02137869454
#>  [649] -0.02383456744 -0.03730446567 -0.00961860730 -0.02405714697
#>  [653] -0.01431977215 -0.03577816943  0.00670657268 -0.00176753953
#>  [657] -0.03306487236 -0.02102777718 -0.00779465930  0.02070918614
#>  [661]  0.02153001627  0.02828570624  0.01664819241  0.01078076056
#>  [665]  0.01676835747  0.03186738574  0.02590527973  0.00175914335
#>  [669]  0.00013357970 -0.02957600566 -0.02043588450 -0.00517274708
#>  [673]  0.01126540070 -0.01155583363 -0.00532713625  0.01088042848
#>  [677] -0.01386329616  0.00486453593 -0.02145051801 -0.02473773109
#>  [681] -0.02599156816 -0.03618353424 -0.03703991709 -0.04098308328
#>  [685] -0.02661136916 -0.01059184819 -0.02066265302 -0.02233210158
#>  [689]  0.00934180165 -0.00055247713 -0.00213601063 -0.03624687661
#>  [693] -0.02663422787 -0.04432312392 -0.01094376901 -0.01521838523
#>  [697] -0.01434611530  0.00197202916 -0.04517952774 -0.02626572961
#>  [701] -0.00184439067  0.07806654014  0.03836946179 -0.01829604371
#>  [705] -0.03026798863 -0.04898883307 -0.05276793072 -0.04324905356
#>  [709]  0.01770621011  0.01105671075 -0.03405913824  0.02991474809
#>  [713]  0.06015431045  0.02290875070  0.04516366874 -0.00535700560
#>  [717] -0.01550574964 -0.01857038023 -0.00992688782 -0.03799380772
#>  [721] -0.02979489278 -0.05133537201 -0.00559421364 -0.01891733010
#>  [725]  0.02628702335 -0.03004281109 -0.00555251818 -0.01442319082
#>  [729] -0.02787989528 -0.04398865660 -0.01749896104  0.06609240123
#>  [733]  0.04805823874  0.02583968121  0.00771836756 -0.05417523286
#>  [737] -0.03857502566 -0.00870917464 -0.01780321886 -0.02204879185
#>  [741] -0.00983443873 -0.03385735420 -0.00999363164 -0.00554901476
#>  [745] -0.03097461208 -0.01442770354 -0.01121629503 -0.02003929902
#>  [749] -0.01671457324 -0.00835833049 -0.02860235607  0.00437635128
#>  [753] -0.00336716752  0.01033756697 -0.00559584420 -0.00136971650
#>  [757] -0.02131332396  0.02833035485 -0.05844483513 -0.05239529161
#>  [761] -0.05241934219 -0.00811439445  0.04033505314  0.02082903130
#>  [765]  0.03091998216  0.00280742622 -0.02403825020 -0.03953243631
#>  [769] -0.01904012244  0.00954366935  0.01772828793  0.00981497197
#>  [773]  0.02170163383  0.01105270389 -0.00329004844  0.01799701052
#>  [777]  0.06536824651  0.05462491823  0.04396187787  0.05272384762
#>  [781]  0.01230639137  0.01729237961  0.02449178424  0.02991225311
#>  [785]  0.06470240315  0.02913632553 -0.05286088866 -0.06071440991
#>  [789] -0.04051751030  0.05894052248  0.04155306113  0.02267648936
#>  [793] -0.01123998050 -0.01518756203 -0.00632655461  0.01968018254
#>  [797]  0.01366295574 -0.02288177215 -0.01339501060 -0.03563877308
#>  [801] -0.02345178752 -0.00869629356  0.01336161948  0.05273203212
#>  [805]  0.03543198347  0.02882642962  0.01912633667 -0.00827854533
#>  [809]  0.02392930368  0.01216835561  0.04058992594  0.02746709617
#>  [813]  0.01025214718  0.03751823865  0.03639238139  0.01081411628
#>  [817] -0.00337914914 -0.01244898525  0.04902878589  0.02874978969
#>  [821]  0.03912349006  0.02177483254  0.03642077545 -0.00686762450
#>  [825]  0.05148154149 -0.00535618339  0.01873377424  0.00017699506
#>  [829]  0.03751248662  0.02658065837  0.03093112582  0.00963621930
#>  [833]  0.01975650378  0.01072328766  0.03179190192  0.01292889644
#>  [837]  0.00645964679 -0.00562926403  0.01100373254  0.02839336259
#>  [841]  0.00998997898 -0.00154675974  0.01233742491  0.00082450035
#>  [845]  0.05054312864  0.06532139110  0.08758420230  0.05877549288
#>  [849]  0.04035275984  0.07181456384  0.02464029897  0.00018586524
#>  [853] -0.00806842644 -0.00570766774 -0.02163047106 -0.00843753253
#>  [857]  0.00346176789 -0.00384905575  0.00599046125 -0.01687322307
#>  [861]  0.01419171958  0.00769664294  0.00288410591 -0.00660860040
#>  [865]  0.00635438295  0.00225288949  0.01631448374  0.00616770490
#>  [869]  0.02846912486  0.00368428910 -0.01450156845 -0.02186638556
#>  [873] -0.02011324285 -0.02394686563 -0.00819983877  0.01208752389
#>  [877] -0.06080414731 -0.02116209898 -0.02875110595 -0.02042386160
#>  [881] -0.01832283461 -0.02162762470 -0.01761016425 -0.02733299046
#>  [885] -0.00513915736 -0.02133516217 -0.02705925475 -0.02139886990
#>  [889] -0.03868634257  0.01310625186  0.02943284569  0.01818627391
#>  [893] -0.00821997138 -0.01365501584 -0.01213987612 -0.01864295673
#>  [897] -0.02945468654 -0.03107185118 -0.02732973732 -0.00689044646
#>  [901] -0.01775873028 -0.00984809005 -0.00283837008  0.00751056766
#>  [905]  0.06602358802  0.00479940695 -0.01080600729 -0.00582692222
#>  [909] -0.00828363614 -0.01096004120 -0.01558255226 -0.03563797410
#>  [913] -0.03580309483 -0.00061123246  0.02224500807  0.00281308966
#>  [917]  0.01925153076  0.00338314518  0.00806053979 -0.00465029060
#>  [921]  0.02079809137  0.01766724472  0.00989905223 -0.02055670429
#>  [925]  0.00615909566 -0.00856511820 -0.01235575181 -0.01388899341
#>  [929] -0.00252406275 -0.02854934376 -0.00490089351  0.00660511103
#>  [933] -0.00550417719 -0.00151495479 -0.01032675338  0.03809747151
#>  [937]  0.03178412436  0.00094837711 -0.03954120982 -0.01262352078
#>  [941] -0.01247889997 -0.03052929694 -0.03191898238 -0.02756245150
#>  [945] -0.02729902164  0.00843726589  0.01715464540 -0.00414037514
#>  [949]  0.00445021527 -0.00112080740 -0.00004838996 -0.02528923498
#>  [953] -0.00451056483 -0.01663455205 -0.03449701704 -0.01216220971
#>  [957] -0.00834866705  0.00118602527 -0.02105549170  0.00221354023
#>  [961]  0.07379772826  0.00582376729  0.00778899408 -0.00238870304
#>  [965]  0.00241000753 -0.02356880243 -0.00393435002 -0.00543441355
#>  [969] -0.00375201309 -0.00629435160 -0.00365302470  0.00365365860
#>  [973]  0.00026432687 -0.01624688179 -0.02518239028 -0.03652390653
#>  [977] -0.03432193056 -0.03931196741 -0.03811877920 -0.00950034542
#>  [981] -0.00712506367 -0.07491754983 -0.02933797848 -0.05452553826
#>  [985] -0.00754250445 -0.02195595846 -0.01861656428 -0.00790530798
#>  [989] -0.01679409082 -0.00447822503  0.02918733734  0.03115330567
#>  [993]  0.00280893379  0.00183007979  0.01048084174 -0.02090128513
#>  [997] -0.01799410314 -0.03890423064 -0.02321705917 -0.02750090792
#> [1001] -0.01583498419 -0.01593889325 -0.03651436046 -0.02979390922
#> [1005]  0.00896448543  0.04018714207 -0.02613211360 -0.01187828423
#> [1009] -0.00418478101  0.00854582417  0.01263164877  0.00410560488
#> [1013] -0.00480694510 -0.01538670364 -0.00686648648 -0.00672848934
#> [1017] -0.00251560189 -0.00445744962  0.01157807349 -0.00839559595
#> [1021]  0.03215972869  0.04018696349  0.03361338469  0.01716538112
#> [1025] -0.01021860283 -0.03145667539 -0.03745678196 -0.02310656382
#> [1029] -0.01869883651 -0.01212008807 -0.02556766374 -0.01729366206
#> [1033] -0.00117743732  0.01063024156  0.01835100657  0.02695698476
#> [1037]  0.03332366878  0.03706269434  0.04441133733  0.03285500398
#> [1041]  0.00517708028 -0.02794882136  0.01436067864  0.04846292932
#> [1045]  0.02868210507  0.04260431483  0.04687823387  0.04582282626
#> [1049]  0.04800425654  0.02342178882  0.00976129302  0.01226388440
#> [1053]  0.00698225769  0.00879972227  0.01072726085 -0.00747043433
#> [1057]  0.00591163477  0.01265207786  0.01734975485 -0.00503328069
#> [1061]  0.00318753494  0.02790181861  0.02180054507  0.03264959764
#> [1065]  0.04836892532  0.00835302053 -0.02692529770 -0.01967506965
#> [1069]  0.00607621273  0.02469765098  0.03364809155  0.02174205498
#> [1073]  0.03857839333  0.00597251830  0.00769063268  0.01180901304
#> [1077] -0.05930913161 -0.05653604291 -0.05605556020 -0.07593812010
#> [1081] -0.04401547430 -0.03475939890 -0.04105217664 -0.05955933987
#> [1085] -0.02325250978 -0.02924434953 -0.00835442011 -0.03657676049
#> [1089] -0.06544580350 -0.00817462283  0.02512332686  0.03506977728
#> [1093]  0.04136468922  0.01060044919 -0.01147210924 -0.02762037192
#> [1097] -0.03221300403 -0.01221535048 -0.01610722918  0.01830785323
#> [1101] -0.00310783651  0.02718089076  0.05251139428  0.01420675207
#> [1105]  0.01901642716  0.00211335054  0.03588998063  0.04672750965
#> [1109]  0.01734701720  0.03020617630  0.02015068438 -0.01108801905
#> [1113] -0.01005221677  0.00498400266 -0.00616614803 -0.03361245938
#> [1117] -0.05325294445 -0.03862423953 -0.02977403538 -0.04170990200
#> [1121] -0.02363594614 -0.00319566442 -0.01947424170  0.03318568572
#> [1125]  0.05274825076  0.04568526558  0.00237214441 -0.03910952347
#> [1129] -0.04990586928 -0.06818356247 -0.03084412055 -0.00634551449
#> [1133] -0.01754112444 -0.00675922330  0.02338257368  0.02557148497
#> [1137]  0.02108054762 -0.01150509883  0.00264349947 -0.02275730290
#> [1141] -0.02543876414 -0.05283081986 -0.04008364150  0.02130824434
#> [1145]  0.01773620189  0.05043284468  0.01377630960 -0.02542045159
#> [1149] -0.03327905785 -0.02854963716  0.00075214547  0.02280207812
#> [1153]  0.01376608477  0.01400411744 -0.02649290721 -0.01672700015
#> [1157]  0.00967169058  0.02995604877  0.01894420519  0.03752923842
#> [1161]  0.01656087964  0.00282589386  0.02132121051  0.01372347058
#> [1165]  0.00448086667  0.03778124101  0.04502779599  0.02772404256
#> [1169] -0.01089870580 -0.00881472468 -0.01917586695 -0.01645187272
#> [1173]  0.02642000938  0.01996324945  0.00267938925 -0.01966851492
#> [1177] -0.01358002802 -0.03414895091 -0.02277421649 -0.00624124229
#> [1181]  0.00776824603 -0.00395944398  0.03690482915 -0.02408117016
#> [1185] -0.00732558973 -0.01566758127  0.01061274737 -0.00615073751
#> [1189]  0.01601743633 -0.01909089660 -0.01040186043 -0.03674562933
#> [1193]  0.00756989703 -0.02019691438  0.01384767444 -0.00727638629
#> [1197]  0.01120079706  0.00660505878  0.01335138810 -0.01993904955
#> [1201] -0.00875298816  0.00711615928 -0.02148202020  0.00042428844
#> [1205] -0.00244075344  0.02603106968  0.02260335949 -0.00356626213
#> [1209]  0.01252062112 -0.04363334120 -0.05614288580 -0.05208364549
#> [1213] -0.03623231634 -0.01836000622 -0.03234978742 -0.03544957895
#> [1217] -0.00233374730  0.01679325845  0.01292059429 -0.00544475245
#> [1221] -0.00173116519 -0.01458646036 -0.01718021465  0.01495885143
#> [1225]  0.05348078246  0.01876681981  0.00369224132 -0.00238762488
#> [1229]  0.01207250185  0.00291359081 -0.00034777989 -0.00766365878
#> [1233] -0.00018636384  0.00080936783  0.04447645247  0.04394894090
#> [1237]  0.04143568040  0.00625734333  0.02385308552 -0.00440582766
#> [1241]  0.00620022901  0.06416326811  0.02604741139  0.03002266355
#> [1245]  0.01429097783  0.02271441139  0.01084999228  0.03281894921
#> [1249]  0.03789637747  0.01148863218  0.02459310742  0.03532107385
#> [1253]  0.01867135699  0.08466744163  0.00183386411  0.00049998401
#> [1257] -0.00501863107 -0.01874147586 -0.01820964826  0.00563538929
#> [1261]  0.00769995433  0.00836826082 -0.00853652522 -0.01010361423
#> [1265] -0.00005860709 -0.00486879723  0.01309171573  0.01950893498
#> [1269]  0.01354100335 -0.03857885885 -0.01126395080  0.02050137367
#> [1273]  0.00437223493  0.01653962530  0.00123009021  0.01476303261
#> [1277]  0.02476546783  0.02786502501 -0.01136868084 -0.03102911323
#> [1281]             NA             NA             NA             NA
#> [1285]             NA             NA             NA             NA
#> [1289]             NA             NA             NA             NA
#> [1293]             NA             NA             NA             NA
#> [1297]             NA             NA             NA             NA
#> [1301]             NA             NA             NA             NA
#> [1305]             NA             NA             NA             NA
#> [1309]             NA             NA             NA             NA
#> [1313]             NA             NA             NA             NA
#> [1317]             NA             NA             NA             NA
#> [1321]             NA             NA             NA             NA
#> [1325]             NA             NA             NA             NA
#> [1329]             NA             NA             NA             NA
#> [1333]             NA             NA             NA             NA
#> [1337]             NA             NA             NA             NA
#> [1341]             NA             NA             NA             NA
#> [1345]             NA             NA             NA             NA
#> [1349]             NA             NA             NA             NA
#> [1353]             NA             NA             NA             NA
#> [1357]             NA             NA             NA             NA
#> [1361]             NA             NA             NA             NA
#> [1365]             NA             NA             NA             NA
#> [1369]             NA             NA             NA             NA
#> [1373]             NA             NA             NA             NA
#> [1377]             NA             NA             NA             NA
#> [1381]             NA             NA             NA             NA
#> [1385]             NA             NA             NA             NA
#> [1389]             NA             NA             NA             NA
#> [1393]             NA             NA             NA             NA
#> [1397]             NA             NA             NA             NA
#> [1401]             NA             NA             NA             NA
#> [1405]             NA             NA             NA             NA
#> [1409]             NA             NA             NA             NA
#> [1413]             NA             NA             NA             NA
#> [1417]             NA             NA             NA             NA
#> [1421]             NA             NA             NA             NA
#> [1425]             NA             NA             NA             NA
#> [1429]             NA             NA             NA             NA
#> [1433]             NA             NA             NA             NA
#> [1437]             NA             NA             NA             NA
#> [1441]             NA             NA             NA             NA
#> [1445]             NA             NA             NA             NA
#> [1449]             NA             NA             NA             NA
#> [1453]             NA             NA             NA             NA
#> [1457]             NA             NA             NA             NA
#> [1461]             NA             NA
#> 
#> $figure
#>   [1] -0.0944314775 -0.0812771463 -0.0861971883 -0.0814632051 -0.0713634752
#>   [6] -0.0481042666 -0.0737875891 -0.0946933236 -0.1120105645 -0.1145723044
#>  [11] -0.0998482712 -0.1033480338 -0.0942969906 -0.0855903675 -0.0861557196
#>  [16] -0.0809241484 -0.0964145714 -0.0999115056 -0.0830956339 -0.0833557623
#>  [21] -0.0845898215 -0.0554807363 -0.0647338574 -0.0611937293 -0.0905695655
#>  [26] -0.0681019171 -0.0812175317 -0.0684786232 -0.0954895052 -0.0871853697
#>  [31] -0.0839158788 -0.1050346732 -0.0973370358 -0.0818814924 -0.0739837221
#>  [36] -0.1179264331 -0.1066652422 -0.0702403216 -0.0823957468 -0.1036753070
#>  [41] -0.1282770797 -0.1213949729 -0.1090783577 -0.1105463006 -0.0681179474
#>  [46] -0.0844388930 -0.0637625674 -0.0677476756 -0.0547538203 -0.0310273357
#>  [51] -0.0150086213 -0.0236382193 -0.0272673153 -0.0426506952 -0.0534028697
#>  [56] -0.0603249135 -0.0996204393 -0.0748792494 -0.0569274900 -0.0028018294
#>  [61] -0.0321008027 -0.0594697397 -0.0597816945 -0.0635854837 -0.0560164043
#>  [66] -0.0436453280 -0.0277542736 -0.0560175919 -0.0381968683 -0.0170051826
#>  [71] -0.0273741861 -0.0300556547 -0.0351847192 -0.0194346853 -0.0142062406
#>  [76] -0.0129509083 -0.0178632841 -0.0250190760 -0.0238887328 -0.0167455699
#>  [81] -0.0091924370 -0.0068370949 -0.0079466402 -0.0183881198 -0.0015020913
#>  [86] -0.0076319160 -0.0089002561  0.0175834860 -0.0077145087 -0.0234794700
#>  [91] -0.0230261278 -0.0113039413 -0.0032389032 -0.0072567595  0.0087763124
#>  [96] -0.0134357993 -0.0128906768 -0.0264828167 -0.0396895042 -0.0305577683
#> [101] -0.0380126340 -0.0144237554  0.0149440058 -0.0045300761 -0.0078458217
#> [106] -0.0105058831 -0.0009743947  0.0076569776 -0.0033151123 -0.0082877579
#> [111] -0.0177035522 -0.0113231921 -0.0309950941 -0.0185309601 -0.0137638529
#> [116] -0.0090110140  0.0008482470 -0.0001096345  0.0015349128  0.0068561352
#> [121] -0.0131007805 -0.0181394408 -0.0093614937 -0.0090095900  0.0114750670
#> [126]  0.0085928241  0.0016411999  0.0093617371  0.0091060466  0.0185481772
#> [131]  0.0187341435  0.0377162604  0.0318428090  0.0137611422  0.0085414167
#> [136]  0.0146974792  0.0209401735  0.0276724448  0.0303567541  0.0310154825
#> [141]  0.0399423362  0.0427139422  0.0634488309  0.0403561370  0.0489683167
#> [146]  0.0428177813  0.0266307691  0.0380602123  0.0413755398  0.0572416547
#> [151]  0.0428588782  0.0345583882  0.0305146688  0.0337437031  0.0353591402
#> [156]  0.0368483948  0.0599564159  0.0585781813  0.0783070599  0.0676334182
#> [161]  0.0646708618  0.0733680655  0.0760730682  0.0579871135  0.0789540668
#> [166]  0.0717323338  0.0685872926  0.0827966029  0.0772601716  0.0979796517
#> [171]  0.1021858619  0.0901408127  0.0725457434  0.0695186817  0.0912758932
#> [176]  0.0869199537  0.0839978235  0.0887377435  0.0842855204  0.0922384415
#> [181]  0.0929608119  0.0805850243  0.0896069315  0.0911055616  0.1029582759
#> [186]  0.1136562030  0.1036608814  0.0973203883  0.0861232845  0.0958826563
#> [191]  0.1015657300  0.0979860104  0.1141778654  0.1110149235  0.1065588610
#> [196]  0.1292987236  0.1250698858  0.1207815670  0.1042150295  0.0906313082
#> [201]  0.1021587394  0.1032181017  0.1070600483  0.1074486058  0.1055934602
#> [206]  0.1274176757  0.1111710001  0.1021226112  0.1145751818  0.0966384926
#> [211]  0.0970973632  0.0987240293  0.0778667019  0.0899337346  0.0879716681
#> [216]  0.0908451089  0.1071380611  0.1010369655  0.0995283134  0.1037000199
#> [221]  0.1089372403  0.1110365948  0.1013164616  0.0973517625  0.1161474674
#> [226]  0.1052148457  0.1005149400  0.0913293887  0.0995167603  0.0773267073
#> [231]  0.1264324731  0.0905100528  0.0896116593  0.0742327469  0.0775615414
#> [236]  0.1090570401  0.0895996141  0.0795196435  0.0861974363  0.0767816881
#> [241]  0.0744683326  0.0827674040  0.0897419745  0.0945397028  0.0814792247
#> [246]  0.0897128875  0.0749781637  0.0644851559  0.0489485555  0.0479869169
#> [251]  0.0601540249  0.1155248024  0.0604611420  0.0784415504  0.0510487250
#> [256]  0.0595541753  0.0557326745  0.0511247825  0.0569030004  0.0429910120
#> [261]  0.0662691808  0.0573957235  0.0663252757  0.0644883730  0.0777833184
#> [266]  0.0951142045  0.0470151523  0.0464335247  0.0431778402  0.0411755417
#> [271]  0.0297600317  0.0520780115  0.0404012274  0.0251657772  0.0395695188
#> [276]  0.0444497023  0.0308373767  0.0247830114  0.0323959459  0.0475566670
#> [281]  0.0283859593  0.0275177015  0.0219211287  0.0237154672  0.0150803750
#> [286]  0.0505696469  0.0375630372  0.0192857463 -0.0016597557  0.0368779251
#> [291]  0.0450077902 -0.0024127541 -0.0085886721 -0.0204368300 -0.0248290452
#> [296] -0.0257399832 -0.0198959680 -0.0171303860 -0.0130715863 -0.0326144648
#> [301] -0.0350728425 -0.0348242065 -0.0357287763 -0.0422555088 -0.0411343280
#> [306] -0.0429117619 -0.0538309415 -0.0547192750 -0.0405700087 -0.0360180866
#> [311] -0.0243315623 -0.0039761463 -0.0418804648 -0.0673039641 -0.0850798543
#> [316] -0.0901110324 -0.0944673215 -0.1013853120 -0.1103099982 -0.1204225974
#> [321] -0.1272103913 -0.1177204683 -0.1043538566 -0.1042556748 -0.0933422198
#> [326] -0.0907087942 -0.0964308214 -0.1135750912 -0.1108612380 -0.0934564743
#> [331] -0.0891247785 -0.0624967308 -0.0671764871 -0.0586137893 -0.0867948680
#> [336] -0.0814653235 -0.0348632070 -0.0638262031 -0.0919584582 -0.1009938550
#> [341] -0.0961869898 -0.1001725044 -0.0825277308 -0.0518929259 -0.0585550011
#> [346] -0.0693903487 -0.0904070134 -0.0817820570 -0.0928763549 -0.0887589889
#> [351] -0.1029222851 -0.0963760365 -0.0984141345 -0.1042827359 -0.1133368485
#> [356] -0.1005671851 -0.0970093759 -0.1159871652 -0.0949105963 -0.1382943398
#> [361] -0.1372814536 -0.1294949375 -0.1377172619 -0.1195679937 -0.1051445925
#> 
#> $type
#> [1] "additive"
#> 
#> attr(,"class")
#> [1] "decomposed.ts"
# Visualisasi hasil decompose
decompose(climate_ts) %>% autoplot()

4.2.1 Trend Analysis

Komponen trend time series menunjukkan pergerakan jangka panjang, ini digunakan untuk melihat pergerakan data secara jangka panjang apakah meningkat, menurun, atau tetap.

Untuk mendapatkan pola trend, decompose() menggunakan Moving Average (MA), metode yang menggunakan rata-rata pada suatu periode waktu tertentu secara beruntun untuk merepresentasikan pola general.

climate_trend <- climate_daily %>% 
  mutate(date = ymd(date),
         trend = (climate_ts %>% decompose())$trend) # ekstraksi trend

ggplot(climate_daily, aes(date, weather_index)) +
  geom_line() +
  geom_line(color='red',data = climate_trend, aes(x=date, y=trend))

4.2.2 Seasonality Analysis

Analisis seasonality bertujuan untuk mengetahui pola berulang yang terjadi pada data, menunjukkan pada waktu kapan saja datanya tinggi/rendah.

Untuk mendapatkan pola seasonality, decompose() menggunakan Rata-Rata seluruh musim untuk masing-masing interval waktu (Seasonality untuk januari adalah rata-rata indeks cuaca januari, dst.)

climate_seasonality <- climate_daily %>% 
  mutate(date = ymd(date),
         month = month(date, label = T)) %>% # ekstraksi bulan
  group_by(month) %>% 
  summarise(mean_index = mean(weather_index)) # rata-rata sales untuk setiap bulan

ggplot(climate_seasonality, aes(month, mean_index, group = 1)) +
  geom_line()

5 Cross Validation

Tahapan cross validation akan selalu dilakukan sebelum pembuatan model. Data akan dibagi menjadi data train dan data test. Khusus untuk data deret waktu/time series pembagian data tidak boleh diambil secara acak melainkan dibagi dengan cara dipisah secara berurutan.

  • Train data menggunakan data awal
  • Test data menggunakan data akhir

Data test akan diibaratkan sebagai data masa depan yang ingin kita lakukan forecasting, sehingga dapat dibandingkan untuk melakukan evaluasi.

Mari kita coba ambil data climate_ts 1 tahun terakhir (1 Januari 2016 - 1 Januari 2017) untuk dijadikan sebagai data test, sedangkan data diawalnya akan dijadikan sebagai data train.

# Subsetting Data Test
climate_test <- climate_ts %>% tail(367)
climate_test %>% head()
#> Time Series:
#> Start = c(2016, 1) 
#> End = c(2016, 6) 
#> Frequency = 365 
#> [1] 0.3288500 0.3374335 0.3524173 0.3532300 0.3977354 0.3996329
# Subsetting Data Train
climate_train <- climate_ts %>% head(-367)
climate_train %>% head()
#> Time Series:
#> Start = c(2013, 1) 
#> End = c(2013, 6) 
#> Frequency = 365 
#> [1] 0.3084558 0.3167998 0.3044633 0.2523879 0.2851714 0.2729247

Di bawah ini adalah visualisasi terhadap data_train dan data_test kita.

# autoplot + autolayer
autoplot(climate_train) + autolayer(climate_test)

6 Modelling

Untuk pemodelannya, di sini saya akan menggunakan 2 metode yaitu Triple Exponential Smoothing (Holt-Winters Exponential) dan Seasonal ARIMA (SARIMA) karena data kita memiliki trend dan seasonality dan nantinya akan kita bandingkan.

6.1 Triple Exponential Smoothing (Holt-Winters Exponential)

6.1.1 Model Fitting

Triple Exponential Smoothing (Holt-Winters Exponential) merupakan metode forecasting yang tepat digunakan untuk data yang memiliki efek trend dan seasonal.

climate_triple <- HoltWinters(climate_train, seasonal = "additive")

Mari kita bandingkan secara visualisasi.

climate_train %>% 
  autoplot() +
  autolayer(climate_test, series = "Data Test") +
  autolayer(climate_triple$fitted[,1], series = "Data Fitted")

6.1.2 Forecasting

forecast_triple <- forecast(object = climate_triple,
                            h = 367)
forecast_triple
#>           Point Forecast        Lo 80     Hi 80         Lo 95     Hi 95
#> 2016.0000      0.3924882  0.349462370 0.4355140  0.3266858880 0.4582905
#> 2016.0027      0.3936101  0.347088684 0.4401315  0.3224617418 0.4647584
#> 2016.0055      0.3545075  0.304735403 0.4042796  0.2783876440 0.4306274
#> 2016.0082      0.3534166  0.300593432 0.4062397  0.2726305546 0.4342026
#> 2016.0110      0.3470831  0.291375808 0.4027904  0.2618861386 0.4322801
#> 2016.0137      0.3960092  0.337559885 0.4544586  0.3066186706 0.4853998
#> 2016.0164      0.3734057  0.312337361 0.4344741  0.2800097121 0.4668018
#> 2016.0192      0.3355635  0.271983920 0.3991432  0.2383269002 0.4328002
#> 2016.0219      0.3314227  0.265427303 0.3974181  0.2304914604 0.4323539
#> 2016.0247      0.3293169  0.260991111 0.3976427  0.2248216319 0.4338121
#> 2016.0274      0.3538009  0.283221647 0.4243802  0.2458592419 0.4617426
#> 2016.0301      0.3347283  0.261965272 0.4074913  0.2234468680 0.4460097
#> 2016.0329      0.3349068  0.260023713 0.4097899  0.2203830077 0.4494306
#> 2016.0356      0.3520106  0.275065817 0.4289553  0.2343337208 0.4696874
#> 2016.0384      0.3472308  0.268278178 0.4261834  0.2264831805 0.4679784
#> 2016.0411      0.3605569  0.279646250 0.4414676  0.2368147207 0.4842991
#> 2016.0438      0.3624905  0.279668022 0.4453129  0.2358244584 0.4891565
#> 2016.0466      0.3637727  0.279081615 0.4484638  0.2342488574 0.4932966
#> 2016.0493      0.3758472  0.289327779 0.4623665  0.2435271870 0.5081671
#> 2016.0521      0.3799413  0.291631478 0.4682511  0.2448830840 0.5149995
#> 2016.0548      0.3978050  0.307740364 0.4878697  0.2600630060 0.5355471
#> 2016.0575      0.4425719  0.350785872 0.5343578  0.3021973070 0.5829464
#> 2016.0603      0.4245556  0.331079960 0.5180312  0.2815969660 0.5675142
#> 2016.0630      0.4193868  0.324251612 0.5145220  0.2738900704 0.5648836
#> 2016.0658      0.3938921  0.297125764 0.4906585  0.2459007415 0.5418835
#> 2016.0685      0.4080856  0.309715149 0.5064561  0.2576409603 0.5585303
#> 2016.0712      0.3842180  0.284269191 0.4841669  0.2313594636 0.5370766
#> 2016.0740      0.3986887  0.297186054 0.5001914  0.2434537790 0.5539237
#> 2016.0767      0.3446439  0.241610772 0.4476769  0.1870683536 0.5022194
#> 2016.0795      0.3524819  0.247940822 0.4570230  0.1926001181 0.5123637
#> 2016.0822      0.3620783  0.256050675 0.4681059  0.1999230378 0.5242336
#> 2016.0849      0.3605377  0.253044098 0.4680314  0.1961404090 0.5249350
#> 2016.0877      0.3774244  0.268484534 0.4863643  0.2108152358 0.5440336
#> 2016.0904      0.3905326  0.280165339 0.5008998  0.2217404642 0.5593246
#> 2016.0932      0.4081404  0.296364117 0.5199167  0.2371933122 0.5790875
#> 2016.0959      0.3474786  0.234310742 0.4606465  0.1744032947 0.5205539
#> 2016.0986      0.3525418  0.237999290 0.4670843  0.1773641483 0.5277194
#> 2016.1014      0.4053914  0.289490521 0.5212922  0.2281363153 0.5826464
#> 2016.1041      0.3935976  0.276354154 0.5108411  0.2142892154 0.5729060
#> 2016.1068      0.3464303  0.227859444 0.4650012  0.1650918187 0.5277688
#> 2016.1096      0.3032328  0.183349218 0.4231164  0.1198866873 0.4865789
#> 2016.1123      0.3020430  0.180860927 0.4232251  0.1167110173 0.4873750
#> 2016.1151      0.3275746  0.205107784 0.4500414  0.1402777826 0.5148714
#> 2016.1178      0.3188963  0.195158112 0.4426345  0.1296550798 0.5081375
#> 2016.1205      0.3800462  0.255049559 0.5050428  0.1888803418 0.5712120
#> 2016.1233      0.3704385  0.244195969 0.4966810  0.1773672072 0.5635098
#> 2016.1260      0.3969962  0.269519973 0.5244725  0.2020381121 0.5919544
#> 2016.1288      0.3757303  0.247032104 0.5044285  0.1789034044 0.5725572
#> 2016.1315      0.3486879  0.218779277 0.4785965  0.1500098232 0.5473659
#> 2016.1342      0.3629200  0.231812120 0.4940278  0.1624078268 0.5634321
#> 2016.1370      0.3592048  0.226908632 0.4915010  0.1568752536 0.5615344
#> 2016.1397      0.3746568  0.241182820 0.5081308  0.1705259578 0.5787877
#> 2016.1425      0.3993130  0.264671485 0.5339544  0.1933965926 0.6052293
#> 2016.1452      0.3952655  0.259466590 0.5310644  0.1875789809 0.6029521
#> 2016.1479      0.3788594  0.241912821 0.5158060  0.1694176727 0.5883012
#> 2016.1507      0.3515396  0.213454915 0.4896244  0.1403572773 0.5627220
#> 2016.1534      0.3163237  0.177110175 0.4555373  0.1034149738 0.5292325
#> 2016.1562      0.3720647  0.231731361 0.5123980  0.1574434016 0.5866859
#> 2016.1589      0.4041181  0.262673909 0.5455623  0.1877978854 0.6204383
#> 2016.1616      0.4668764  0.324329984 0.6094228  0.2488704781 0.6848823
#> 2016.1644      0.4114071  0.267766899 0.5550472  0.1917283875 0.6310857
#> 2016.1671      0.3620621  0.217336447 0.5067878  0.1407233061 0.5834009
#> 2016.1699      0.3523266  0.206523494 0.4981297  0.1293400022 0.5753132
#> 2016.1726      0.3613714  0.214498783 0.5082440  0.1367491237 0.5859936
#> 2016.1753      0.3623985  0.214464097 0.5103329  0.1361523627 0.5886446
#> 2016.1781      0.3799105  0.230921910 0.5288991  0.1520521072 0.6077689
#> 2016.1808      0.3987441  0.248708717 0.5487795  0.1692847660 0.6282035
#> 2016.1836      0.3671011  0.216026118 0.5181761  0.1360518597 0.5981503
#> 2016.1863      0.3968704  0.244762998 0.5489778  0.1642421919 0.6294986
#> 2016.1890      0.4314355  0.278302630 0.5845685  0.1972389620 0.6656321
#> 2016.1918      0.4096542  0.255502599 0.5638058  0.1738996797 0.6454087
#> 2016.1945      0.3966105  0.241446982 0.5517741  0.1593083520 0.6339127
#> 2016.1973      0.3896665  0.233497503 0.5458355  0.1508266340 0.6285064
#> 2016.2000      0.4116939  0.254525927 0.5688619  0.1713262226 0.6520616
#> 2016.2027      0.4071254  0.248964768 0.5652861  0.1652395699 0.6490113
#> 2016.2055      0.4142124  0.255065263 0.5733596  0.1708178475 0.6576070
#> 2016.2082      0.4124620  0.252334441 0.5725896  0.1675680259 0.6573560
#> 2016.2110      0.3895085  0.228406506 0.5506105  0.1431242494 0.6358928
#> 2016.2137      0.3927802  0.230709562 0.5548508  0.1449145660 0.6406458
#> 2016.2164      0.4057603  0.242726859 0.5687937  0.1564221692 0.6550984
#> 2016.2192      0.4237120  0.259721396 0.5877026  0.1729100050 0.6745140
#> 2016.2219      0.4208502  0.255907957 0.5857925  0.1685928052 0.6731076
#> 2016.2247      0.4363306  0.270442216 0.6022190  0.1826261937 0.6900351
#> 2016.2274      0.4232149  0.256385695 0.5900441  0.1680716419 0.6783582
#> 2016.2301      0.4251574  0.257392666 0.5929222  0.1685833755 0.6817314
#> 2016.2329      0.4101819  0.241486792 0.5788770  0.1521850107 0.6681787
#> 2016.2356      0.4216301  0.252009772 0.5912504  0.1622182004 0.6810420
#> 2016.2384      0.4337266  0.263186038 0.6042671  0.1729073342 0.6945458
#> 2016.2411      0.4339354  0.262479587 0.6053912  0.1717163646 0.6961544
#> 2016.2438      0.4025807  0.230214486 0.5749469  0.1389693180 0.6661921
#> 2016.2466      0.4042225  0.230950651 0.5774944  0.1392260702 0.6692189
#> 2016.2493      0.4005551  0.226382351 0.5747279  0.1341808495 0.6669294
#> 2016.2521      0.4153921  0.240323047 0.5904612  0.1476470790 0.6831372
#> 2016.2548      0.4044150  0.228454232 0.5803758  0.1353062146 0.6735238
#> 2016.2575      0.4391183  0.262270316 0.6159664  0.1686526300 0.7095840
#> 2016.2603      0.4148976  0.237166812 0.5926284  0.1430818011 0.6867135
#> 2016.2630      0.4390416  0.260432349 0.6176509  0.1658823232 0.7122009
#> 2016.2658      0.4064002  0.226916773 0.5858835  0.1319040074 0.6808963
#> 2016.2685      0.4034967  0.223143447 0.5838500  0.1276701849 0.6793233
#> 2016.2712      0.3872506  0.206031582 0.5684696  0.1101000340 0.6644011
#> 2016.2740      0.3853304  0.203249832 0.5674111  0.1068621775 0.6637987
#> 2016.2767      0.4003988  0.217460685 0.5833370  0.1206190721 0.6801786
#> 2016.2795      0.4335115  0.249719765 0.6173032  0.1524263113 0.7145966
#> 2016.2822      0.4109540  0.226312700 0.5955953  0.1285694939 0.6933385
#> 2016.2849      0.4247869  0.239299862 0.6102739  0.1411089647 0.7084648
#> 2016.2877      0.4184953  0.232166383 0.6048242  0.1335298252 0.7034607
#> 2016.2904      0.4238045  0.236637495 0.6109715  0.1375572816 0.7100517
#> 2016.2932      0.4537836  0.265782279 0.6417849  0.1662603880 0.7413068
#> 2016.2959      0.4362549  0.247422900 0.6250869  0.1474612830 0.7250485
#> 2016.2986      0.4262639  0.236604845 0.6159229  0.1362054273 0.7163223
#> 2016.3014      0.3962056  0.205723173 0.5866881  0.1048878565 0.6875234
#> 2016.3041      0.4039997  0.212697360 0.5953020  0.1114280201 0.6965714
#> 2016.3068      0.3998548  0.207736092 0.5919735  0.1060345810 0.6936751
#> 2016.3096      0.4061859  0.213254274 0.5991176  0.1111224205 0.7012495
#> 2016.3123      0.4365958  0.242854562 0.6303369  0.1402941718 0.7328973
#> 2016.3151      0.4398761  0.245328754 0.6344234  0.1423416107 0.7374106
#> 2016.3178      0.4365264  0.241176190 0.6318765  0.1377640542 0.7352887
#> 2016.3205      0.4200013  0.223851612 0.6161510  0.1200162230 0.7199864
#> 2016.3233      0.4145138  0.217567745 0.6114598  0.1133108220 0.7157167
#> 2016.3260      0.4250851  0.227345974 0.6228242  0.1226692134 0.7275009
#> 2016.3288      0.4100729  0.211543829 0.6086019  0.1064489083 0.7136968
#> 2016.3315      0.4024417  0.203125904 0.6017575  0.0976144809 0.7072690
#> 2016.3342      0.4112994  0.211199898 0.6113989  0.1052736103 0.7173252
#> 2016.3370      0.4188968  0.218016606 0.6197769  0.1116770711 0.7261165
#> 2016.3397      0.4565642  0.254906394 0.6582220  0.1481552128 0.7649731
#> 2016.3425      0.4589236  0.256491206 0.6613560  0.1493299591 0.7685173
#> 2016.3452      0.4582901  0.255085979 0.6614942  0.1475162296 0.7690639
#> 2016.3479      0.4677442  0.263771382 0.6717171  0.1557946757 0.7796938
#> 2016.3507      0.4483333  0.243594547 0.6530720  0.1352124116 0.7614541
#> 2016.3534      0.4318031  0.226301329 0.6373048  0.1175152762 0.7460909
#> 2016.3562      0.4435049  0.237242991 0.6497669  0.1280545138 0.7589554
#> 2016.3589      0.4664806  0.259461254 0.6734999  0.1498718313 0.7830894
#> 2016.3616      0.4660610  0.258287008 0.6738350  0.1482981012 0.7838239
#> 2016.3644      0.4443013  0.235775395 0.6528272  0.1253884486 0.7632141
#> 2016.3671      0.4445701  0.235295018 0.6538453  0.1245114638 0.7646288
#> 2016.3699      0.4522178  0.242196118 0.6622394  0.1310173703 0.7734182
#> 2016.3726      0.4611914  0.250425844 0.6719569  0.1388533016 0.7835295
#> 2016.3753      0.4626299  0.251123104 0.6741368  0.1391581532 0.7861017
#> 2016.3781      0.4607275  0.248481963 0.6729730  0.1361259729 0.7853290
#> 2016.3808      0.4328538  0.219872149 0.6458354  0.1071264773 0.7585811
#> 2016.3836      0.4423545  0.228639314 0.6560698  0.1155053022 0.7692038
#> 2016.3863      0.4522043  0.237757945 0.6666506  0.1242369211 0.7801716
#> 2016.3890      0.4989271  0.283752152 0.7141020  0.1698454319 0.8280087
#> 2016.3918      0.4743393  0.258438223 0.6902403  0.1441471075 0.8045314
#> 2016.3945      0.5000028  0.283378071 0.7166276  0.1687038495 0.8313018
#> 2016.3973      0.4848551  0.267509051 0.7022012  0.1524529983 0.8172572
#> 2016.4000      0.4407197  0.222654761 0.6587847  0.1072181402 0.7742213
#> 2016.4027      0.4770695  0.258287954 0.6958510  0.1424720156 0.8116669
#> 2016.4055      0.4785671  0.259071422 0.6980629  0.1428774051 0.8142569
#> 2016.4082      0.5035375  0.283329850 0.7237451  0.1667589799 0.8403159
#> 2016.4110      0.4843120  0.263394789 0.7052292  0.1464482804 0.8221757
#> 2016.4137      0.4820557  0.260431134 0.7036802  0.1431101896 0.8210012
#> 2016.4164      0.4661087  0.243779060 0.6884383  0.1260848715 0.8061325
#> 2016.4192      0.4644022  0.241369731 0.6874347  0.1233034773 0.8055009
#> 2016.4219      0.4775137  0.253780646 0.7012468  0.1353434965 0.8196840
#> 2016.4247      0.4714493  0.247017754 0.6958809  0.1282108668 0.8146877
#> 2016.4274      0.4907561  0.265628253 0.7158839  0.1464527756 0.8350594
#> 2016.4301      0.4992296  0.273407604 0.7250516  0.1538646718 0.8445945
#> 2016.4329      0.4843118  0.257797769 0.7108257  0.1378885088 0.8307350
#> 2016.4356      0.5086341  0.281430239 0.7358380  0.1611557658 0.8561125
#> 2016.4384      0.4972560  0.269364342 0.7251477  0.1487257614 0.8457863
#> 2016.4411      0.5027349  0.274157468 0.7313124  0.1531558771 0.8523140
#> 2016.4438      0.5183551  0.289093955 0.7476162  0.1677304384 0.8689798
#> 2016.4466      0.5116848  0.281741988 0.7416276  0.1600176221 0.8633520
#> 2016.4493      0.5259195  0.295297101 0.7565420  0.1732129517 0.8786261
#> 2016.4521      0.5189372  0.287637154 0.7502373  0.1651942788 0.8726802
#> 2016.4548      0.5194405  0.287464767 0.7514163  0.1646642142 0.8742169
#> 2016.4575      0.5486272  0.315977743 0.7812767  0.1928205516 0.9044339
#> 2016.4603      0.5493152  0.315993949 0.7826364  0.1924811483 0.9061492
#> 2016.4630      0.5625399  0.328548866 0.7965310  0.2046814771 0.9203984
#> 2016.4658      0.5648509  0.330191905 0.7995099  0.2059709395 0.9237308
#> 2016.4685      0.5407371  0.305412130 0.7760622  0.1808385925 0.9006357
#> 2016.4712      0.5125292  0.276540079 0.7485184  0.1516149637 0.8734435
#> 2016.4740      0.5044614  0.267809976 0.7411129  0.1425342697 0.8663886
#> 2016.4767      0.5395827  0.302270860 0.7768946  0.1766455418 0.9025199
#> 2016.4795      0.5165126  0.278542168 0.7544831  0.1525682073 0.8804571
#> 2016.4822      0.5047733  0.266146066 0.7434006  0.1398244258 0.8697222
#> 2016.4849      0.5223820  0.283099719 0.7616642  0.1564313524 0.8883326
#> 2016.4877      0.5146741  0.274738620 0.7546095  0.1477244746 0.8816236
#> 2016.4904      0.5332253  0.292638423 0.7738121  0.1652794372 0.9011711
#> 2016.4932      0.5307034  0.289466842 0.7719399  0.1617639467 0.8996428
#> 2016.4959      0.5178537  0.275969239 0.7597381  0.1479233583 0.8877840
#> 2016.4986      0.5269744  0.284443765 0.7695050  0.1560558155 0.8978929
#> 2016.5014      0.5478862  0.304711136 0.7910613  0.1759820263 0.9197904
#> 2016.5041      0.5656912  0.321873325 0.8095090  0.1928039568 0.9385784
#> 2016.5068      0.5605666  0.316107692 0.8050255  0.1866989599 0.9344343
#> 2016.5096      0.5553574  0.310259059 0.8004557  0.1805118509 0.9302029
#> 2016.5123      0.5490193  0.303283234 0.7947553  0.1731984300 0.9248401
#> 2016.5151      0.5421744  0.295802265 0.7885465  0.1653807393 0.9189680
#> 2016.5178      0.5494166  0.302410017 0.7964232  0.1716526367 0.9271805
#> 2016.5205      0.5583235  0.310684081 0.8059629  0.1795917071 0.9370552
#> 2016.5233      0.5478466  0.299575988 0.7961172  0.1681494733 0.9275437
#> 2016.5260      0.5604691  0.311568853 0.8093693  0.1798090460 0.9411291
#> 2016.5288      0.5542350  0.304706752 0.8037632  0.1726144926 0.9358554
#> 2016.5315      0.5568054  0.306650696 0.8069600  0.1742268199 0.9393839
#> 2016.5342      0.5734618  0.322682312 0.8242414  0.1899276472 0.9569960
#> 2016.5370      0.5724189  0.321016045 0.8238218  0.1879314131 0.9569064
#> 2016.5397      0.5707123  0.318687700 0.8227370  0.1852739174 0.9561508
#> 2016.5425      0.5579244  0.305279532 0.8105693  0.1715374087 0.9443114
#> 2016.5452      0.5407860  0.287522339 0.7940496  0.1534526795 0.9281192
#> 2016.5479      0.5594228  0.305542005 0.8133037  0.1711456068 0.9477001
#> 2016.5507      0.5575328  0.303036218 0.8120293  0.1683138748 0.9467517
#> 2016.5534      0.5530966  0.297985834 0.8082074  0.1629383316 0.9432549
#> 2016.5562      0.5501140  0.294390453 0.8058376  0.1590185720 0.9412095
#> 2016.5589      0.5446340  0.288299083 0.8009688  0.1526035995 0.9366643
#> 2016.5616      0.5747111  0.317766399 0.8316558  0.1817480825 0.9676741
#> 2016.5644      0.5474135  0.289860357 0.8049666  0.1535199728 0.9413070
#> 2016.5671      0.5295708  0.271410718 0.7877309  0.1347490247 0.9243926
#> 2016.5699      0.5382956  0.279529994 0.7970613  0.1425477448 0.9340435
#> 2016.5726      0.5325288  0.273159069 0.7918986  0.1358570125 0.9292006
#> 2016.5753      0.5371722  0.277199742 0.7971447  0.1395786217 0.9347658
#> 2016.5781      0.5395583  0.278984477 0.8001321  0.1410450300 0.9380716
#> 2016.5808      0.5229669  0.261793103 0.7841406  0.1235360627 0.9223977
#> 2016.5836      0.5389552  0.277182908 0.8007276  0.1386090023 0.9393015
#> 2016.5863      0.5391334  0.276763841 0.8015029  0.1378737931 0.9403930
#> 2016.5890      0.5454670  0.282501648 0.8084324  0.1432961755 0.9476379
#> 2016.5918      0.5530922  0.289532301 0.8166521  0.1500121171 0.9561723
#> 2016.5945      0.5381273  0.273974267 0.8022804  0.1341400805 0.9421146
#> 2016.5973      0.5390709  0.274326041 0.8038158  0.1341785553 0.9439633
#> 2016.6000      0.5419155  0.276580081 0.8072509  0.1361199942 0.9477110
#> 2016.6027      0.5463693  0.280444664 0.8122939  0.1396726706 0.9530659
#> 2016.6055      0.5417341  0.275221566 0.8082466  0.1341383556 0.9493298
#> 2016.6082      0.5389650  0.271865889 0.8060642  0.1304721465 0.9474579
#> 2016.6110      0.5358156  0.268131121 0.8035000  0.1264275274 0.9452036
#> 2016.6137      0.5563467  0.288078181 0.8246152  0.1460654122 0.9666280
#> 2016.6164      0.5515330  0.282681753 0.8203843  0.1403604805 0.9627056
#> 2016.6192      0.5461413  0.276708545 0.8155741  0.1340794362 0.9582033
#> 2016.6219      0.5389949  0.268981827 0.8090080  0.1260455441 0.9519442
#> 2016.6247      0.5489134  0.278321334 0.8195055  0.1350785364 0.9627483
#> 2016.6274      0.5381664  0.266996528 0.8093363  0.1234478702 0.9528849
#> 2016.6301      0.5907192  0.318972786 0.8624656  0.1751189184 1.0063195
#> 2016.6329      0.5289335  0.256611703 0.8012552  0.1124532716 0.9454137
#> 2016.6356      0.5359540  0.263058116 0.8088499  0.1185957625 0.9533122
#> 2016.6384      0.5234453  0.249976540 0.7969141  0.1052109032 0.9416798
#> 2016.6411      0.5297460  0.255705516 0.8037865  0.1106372293 0.9488548
#> 2016.6438      0.5622253  0.287614278 0.8368364  0.1422439718 0.9822067
#> 2016.6466      0.5555172  0.280336776 0.8306976  0.1346650772 0.9763693
#> 2016.6493      0.5446489  0.268900335 0.8203975  0.1229278649 0.9663699
#> 2016.6521      0.5515361  0.275220519 0.8278516  0.1289478958 0.9741243
#> 2016.6548      0.5381588  0.261277356 0.8150402  0.1147051954 0.9616123
#> 2016.6575      0.5292634  0.251817272 0.8067095  0.1049461846 0.9535805
#> 2016.6603      0.5305013  0.252491665 0.8085109  0.1053222574 0.9556803
#> 2016.6630      0.5274392  0.248867168 0.8060112  0.1014000438 0.9534783
#> 2016.6658      0.5244430  0.245309675 0.8035763  0.0975454347 0.9513405
#> 2016.6685      0.5113595  0.231666040 0.7910529  0.0836052790 0.9391137
#> 2016.6712      0.5181938  0.237941366 0.7984463  0.0895846774 0.9468030
#> 2016.6740      0.5036104  0.222799992 0.7844207  0.0741479645 0.9330727
#> 2016.6767      0.4919047  0.210537578 0.7732719  0.0615907982 0.9222187
#> 2016.6795      0.4787520  0.196829180 0.7606749  0.0475882289 0.9099159
#> 2016.6822      0.4833053  0.200827841 0.7657828  0.0512932987 0.9153173
#> 2016.6849      0.4896475  0.206616490 0.7726785  0.0567889306 0.9225060
#> 2016.6877      0.5445464  0.260962994 0.8281299  0.1108429898 0.9782499
#> 2016.6904      0.5179796  0.233844830 0.8021144  0.0834329492 0.9525263
#> 2016.6932      0.5226119  0.237926815 0.8072970  0.0872236233 0.9580002
#> 2016.6959      0.4980324  0.212798066 0.7832668  0.0618041256 0.9342607
#> 2016.6986      0.4978230  0.212040459 0.7836055  0.0607563280 0.9348896
#> 2016.7014      0.4953018  0.208972167 0.7816315  0.0573984020 0.9332052
#> 2016.7041      0.4908107  0.203934922 0.7776864  0.0520720742 0.9295493
#> 2016.7068      0.4907169  0.203296121 0.7781377  0.0511447405 0.9302891
#> 2016.7096      0.4743316  0.186366815 0.7622965  0.0339274475 0.9147358
#> 2016.7123      0.4941829  0.205675079 0.7826907  0.0529482679 0.9354175
#> 2016.7151      0.4754851  0.186435288 0.7645349  0.0334215731 0.9175486
#> 2016.7178      0.4803740  0.190783207 0.7699647  0.0374831252 0.9232648
#> 2016.7205      0.4897852  0.199654516 0.7799159  0.0460686012 0.9335018
#> 2016.7233      0.5117522  0.221082558 0.8024219  0.0672113414 0.9562931
#> 2016.7260      0.5223845  0.231176928 0.8135921  0.0770209378 0.9677481
#> 2016.7288      0.4797704  0.188025800 0.7715149  0.0335855604 0.9259552
#> 2016.7315      0.4856329  0.193352386 0.7779134  0.0386284201 0.9326374
#> 2016.7342      0.4965698  0.203754275 0.7893853  0.0487471019 0.9443925
#> 2016.7370      0.4996339  0.206284396 0.7929835  0.0509945318 0.9482733
#> 2016.7397      0.4929655  0.199082951 0.7868481  0.0435109104 0.9424202
#> 2016.7425      0.5149530  0.220538340 0.8093677  0.0646846328 0.9652214
#> 2016.7452      0.5031236  0.208177831 0.7980694  0.0520429652 0.9542043
#> 2016.7479      0.4938307  0.198354750 0.7893066  0.0419392319 0.9457222
#> 2016.7507      0.5119680  0.215962795 0.8079731  0.0592671270 0.9646688
#> 2016.7534      0.5086619  0.212128479 0.8051953  0.0551531602 0.9621707
#> 2016.7562      0.4749344  0.177873606 0.7719951  0.0206191353 0.9292496
#> 2016.7589      0.4792661  0.181678902 0.7768532  0.0241457728 0.9343864
#> 2016.7616      0.4874970  0.189384370 0.7856096  0.0315730743 0.9434209
#> 2016.7644      0.5003761  0.201738971 0.7990133  0.0436499991 0.9571023
#> 2016.7671      0.4765613  0.177400449 0.7757221  0.0190342878 0.9340882
#> 2016.7699      0.4763277  0.176644236 0.7760113  0.0180013691 0.9346541
#> 2016.7726      0.4756589  0.175453562 0.7758642  0.0165344716 0.9347833
#> 2016.7753      0.4814619  0.180735666 0.7821881  0.0215408313 0.9413829
#> 2016.7781      0.4816479  0.180401690 0.7828941  0.0209315873 0.9423642
#> 2016.7808      0.5183137  0.216548428 0.8200790  0.0568035326 0.9798239
#> 2016.7836      0.5041375  0.201854011 0.8064210  0.0418347937 0.9664402
#> 2016.7863      0.4834817  0.180680905 0.7862825  0.0203878360 0.9465756
#> 2016.7890      0.4635929  0.160275639 0.7669101 -0.0002908146 0.9274766
#> 2016.7918      0.4936587  0.189825859 0.7974915  0.0289864854 0.9583309
#> 2016.7945      0.5008487  0.196501176 0.8051962  0.0353893444 0.9663080
#> 2016.7973      0.4410879  0.136226618 0.7459492 -0.0251572117 0.9073331
#> 2016.8000      0.4263199  0.120945675 0.7316942 -0.0407096948 0.8933496
#> 2016.8027      0.4083925  0.102506181 0.7142789 -0.0594202734 0.8762053
#> 2016.8055      0.3999852  0.093587646 0.7063828 -0.0686094407 0.8685799
#> 2016.8082      0.4013418  0.094433801 0.7082497 -0.0680334662 0.8707170
#> 2016.8110      0.4145657  0.107148188 0.7219832 -0.0555888119 0.8847202
#> 2016.8137      0.4247413  0.116815110 0.7326675 -0.0461911752 0.8956738
#> 2016.8164      0.4300857  0.121651603 0.7385197 -0.0416235243 0.9017948
#> 2016.8192      0.4102113  0.101270265 0.7191524 -0.0622732630 0.8826959
#> 2016.8219      0.4019689  0.092521631 0.7114162 -0.0712898565 0.8752277
#> 2016.8247      0.4023210  0.092368399 0.7122737 -0.0717106117 0.8763527
#> 2016.8274      0.4020748  0.091617617 0.7125320 -0.0727284808 0.8768781
#> 2016.8301      0.3939464  0.082985497 0.7049073 -0.0816272543 0.8695200
#> 2016.8329      0.3943861  0.082922256 0.7058498 -0.0819567178 0.8707288
#> 2016.8356      0.3934564  0.081490497 0.7054223 -0.0836542699 0.8705670
#> 2016.8384      0.3781869  0.065719719 0.6906541 -0.0996904142 0.8560642
#> 2016.8411      0.3681413  0.055173648 0.6811090 -0.1105014261 0.8467841
#> 2016.8438      0.3749025  0.061435146 0.6883699 -0.1045044466 0.8543094
#> 2016.8466      0.3731239  0.059157673 0.6870902 -0.1070460166 0.8532939
#> 2016.8493      0.3815891  0.067124800 0.6960535 -0.0993425680 0.8625209
#> 2016.8521      0.4097967  0.094835058 0.7247584 -0.0718955719 0.8914890
#> 2016.8548      0.3928692  0.077410966 0.7083273 -0.0895825097 0.8753208
#> 2016.8575      0.3670888  0.051134871 0.6830427 -0.1161210383 0.8502986
#> 2016.8603      0.3387440  0.022295137 0.6551929 -0.1452227943 0.8227109
#> 2016.8630      0.3363848  0.019441746 0.6533280 -0.1483377976 0.8211075
#> 2016.8658      0.3305123  0.013075784 0.6479488 -0.1549649652 0.8159896
#> 2016.8685      0.3228155  0.004886309 0.6407447 -0.1634152399 0.8090462
#> 2016.8712      0.3150220 -0.003399114 0.6334431 -0.1719610601 0.8020050
#> 2016.8740      0.3029630 -0.015949203 0.6218753 -0.1847711437 0.7906972
#> 2016.8767      0.3001476 -0.019255010 0.6195502 -0.1883365459 0.7886318
#> 2016.8795      0.3160993 -0.003792951 0.6359916 -0.1731336841 0.8053323
#> 2016.8822      0.3335197  0.013138513 0.6539008 -0.1564610218 0.8235003
#> 2016.8849      0.3348555  0.013986182 0.6557248 -0.1558717591 0.8255827
#> 2016.8877      0.3423068  0.020950126 0.6636635 -0.1491658293 0.8337795
#> 2016.8904      0.3415188  0.019675412 0.6633621 -0.1506981666 0.8337357
#> 2016.8932      0.3452739  0.022944593 0.6676032 -0.1476862204 0.8382340
#> 2016.8959      0.3334108  0.010596279 0.6562252 -0.1602913822 0.8271129
#> 2016.8986      0.3390677  0.015768734 0.6623666 -0.1553753894 0.8335107
#> 2016.9014      0.3546871  0.030904404 0.6784698 -0.1404957966 0.8498700
#> 2016.9041      0.3630629  0.038797182 0.6873286 -0.1328587149 0.8589845
#> 2016.9068      0.3898966  0.065148604 0.7146446 -0.1067626095 0.8865558
#> 2016.9096      0.3730343  0.047804727 0.6982639 -0.1243614233 0.8704301
#> 2016.9123      0.3792875  0.053577031 0.7049980 -0.1188436796 0.8774187
#> 2016.9151      0.3502361  0.024045441 0.6764267 -0.1486294549 0.8491016
#> 2016.9178      0.3428819  0.016211846 0.6695521 -0.1567168606 0.8424808
#> 2016.9205      0.3820829  0.054934069 0.7092318 -0.1182480775 0.8824139
#> 2016.9233      0.3539959  0.026369016 0.6816229 -0.1470661995 0.8550581
#> 2016.9260      0.3340296  0.005925289 0.6621339 -0.1677626265 0.8358218
#> 2016.9288      0.3308978  0.002316898 0.6594788 -0.1716233503 0.8334190
#> 2016.9315      0.3386882  0.009631243 0.6677451 -0.1645609735 0.8419373
#> 2016.9342      0.3375023  0.007970032 0.6670345 -0.1664737880 0.8414783
#> 2016.9370      0.3631027  0.033095844 0.6931095 -0.1415992177 0.8678046
#> 2016.9397      0.3832563  0.052775563 0.7137371 -0.1221703790 0.8886830
#> 2016.9425      0.3740277  0.043073746 0.7049817 -0.1321227168 0.8801782
#> 2016.9452      0.3650712  0.033644662 0.6964978 -0.1418019649 0.8719444
#> 2016.9479      0.3390329  0.007134403 0.6709313 -0.1685620315 0.8466278
#> 2016.9507      0.3602230  0.027853261 0.6925926 -0.1480926253 0.8685385
#> 2016.9534      0.3544549  0.021614624 0.6872951 -0.1545803618 0.8634901
#> 2016.9562      0.3619491  0.028638936 0.6952592 -0.1478047982 0.8717030
#> 2016.9589      0.3620046  0.028225210 0.6957840 -0.1484669218 0.8724761
#> 2016.9616      0.3740358  0.039787848 0.7082838 -0.1371523323 0.8852239
#> 2016.9644      0.3751359  0.040420061 0.7098518 -0.1367678210 0.8870397
#> 2016.9671      0.3735597  0.038376520 0.7087428 -0.1390587183 0.8861780
#> 2016.9699      0.3788328  0.043183041 0.7144826 -0.1344992086 0.8921648
#> 2016.9726      0.3899491  0.053833383 0.7260648 -0.1240955353 0.9039938
#> 2016.9753      0.3979151  0.061334082 0.7344962 -0.1168411631 0.9126714
#> 2016.9781      0.3704696  0.033423866 0.7075153 -0.1449973669 0.8859366
#> 2016.9808      0.3913131  0.053803293 0.7288228 -0.1248635879 0.9074897
#> 2016.9836      0.3569635  0.018990324 0.6949367 -0.1599218685 0.8738489
#> 2016.9863      0.3426506  0.004214668 0.6810866 -0.1749424993 0.8602437
#> 2016.9890      0.3315065 -0.007391559 0.6704046 -0.1867933670 0.8498064
#> 2016.9918      0.3056883 -0.033671254 0.6450479 -0.2133173691 0.8246940
#> 2016.9945      0.3111831 -0.028637339 0.6510036 -0.2085274304 0.8308937
#> 2016.9973      0.3325933 -0.007687414 0.6728740 -0.1878211507 0.8530078
#> 2017.0000      0.3814185  0.039347484 0.7234896 -0.1417339983 0.9045711
#> 2017.0027      0.3825405  0.040012166 0.7250688 -0.1413113610 0.9063923
# Tambahkan nilai forecast pada visualisasi sebelumnya
climate_train %>% 
  autoplot() +
  autolayer(climate_test, series = "Data Test") + # Visualisasi data test
  autolayer(climate_triple$fitted[,1], series = "Model") + # Visualisasi hasil smoothing model
  autolayer(forecast_triple$mean, series = "Forecast")

Dari hasil visualisasi di atas hasil prediksi memiliki seasonality (membentuk fluktuasi) dan mendekati data test. Namun kita akan melakukan evaluasi model agar lebih jelas apakah model triple menghasilkan prediksi yang bagus.

6.1.3 Model Evaluation

Untuk membandingkan performa model mana yang lebih baik, kita dapat menghitung besar error dari hasil forecast dibandingkan dengan nilai sebenarnya. Mirip seperti regresi, kita dapat menggunakan metrics error seperti MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), dan MAPE (Mean Absolute Percentage Error).

accuracy(object = forecast_triple$mean,
         x = climate_test)
#>                  ME       RMSE        MAE      MPE     MAPE      ACF1 Theil's U
#> Test set 0.02118966 0.04205517 0.03390281 4.216693 7.617656 0.6041524   1.79428

Untuk mengetahui apakah model sudah memprediksi dengan baik kita bisa melihat nilai nilai pada MAE dan MAPE. Nilai MAE adalah 0.0339 dimana rata-rata prediksi meleset sebesar 0.0339 satuan, sedangkan Nilai MAPE adalah 7.617 dimana berarti prediksi melenceng sebesar 7.6% dari data asli/aktual. Dari hasil Evaluasi Model di atas, dapat disimpulkan model **climate_triple** sudah bagus dalam melakukan prediksi.

6.2 Seasonal Arima (SARIMA)

6.2.1 Stationer

Sebelum melakukan pemodelan dengan menggunakan SARIMA, data harus bersifat stationer. Stasioner berarti data yang digunakan datar dan hanya berfluktuasi di sekitar rata-ratanya.

Data sudah stationer ketika p-value < alpha (0.05).

# Autoplot
climate_train %>% autoplot()

# adf.test
adf.test(climate_train)
#> 
#>  Augmented Dickey-Fuller Test
#> 
#> data:  climate_train
#> Dickey-Fuller = -2.2804, Lag order = 10, p-value = 0.4596
#> alternative hypothesis: stationary

Dari hasil visualisasi dan pengujian p-value dapat disimpulkan jika data train kita masih bersifat stationer sehingga kita perlu melakukan Differencing Seasonality.

climate_train %>% diff(lag = 365) %>% autoplot()

climate_train %>% diff(lag = 365) %>% adf.test()
#> 
#>  Augmented Dickey-Fuller Test
#> 
#> data:  .
#> Dickey-Fuller = -6.9161, Lag order = 8, p-value = 0.01
#> alternative hypothesis: stationary

Setelah dilakukan 1x differencing seasonility, climate_train sudah bersifat stationer dengan p-value < alpha yaitu 0.01 < 0.05.

Dengan begitu, Nilai parameter Integrated untuk SARIMA:

  • D (seasonal) = 1 (karena 1x melakukan diff(lag = frequency))

6.2.2 Model Fitting

auto_climate <- auto.arima(climate_train, D = 1)
auto_climate
#> Series: climate_train 
#> ARIMA(4,1,1)(0,1,0)[365] 
#> 
#> Coefficients:
#>          ar1      ar2      ar3     ar4      ma1
#>       0.5476  -0.0139  -0.0226  0.0487  -0.9685
#> s.e.  0.0403   0.0427   0.0428  0.0394   0.0158
#> 
#> sigma^2 = 0.001403:  log likelihood = 1358.45
#> AIC=-2704.89   AICc=-2704.78   BIC=-2677.34

6.2.3 Forecasting

forecast_auto <- forecast(auto_climate, h = 367)

Kemudian, kita bisa memvisualisasikan hasil fitted model dan juga forecast hasil prediksi model:

climate_train %>% 
  autoplot() +
  autolayer(climate_test, series = "Data Test") +
  autolayer(forecast_auto$fitted, series = "Model") + 
  autolayer(forecast_auto$mean, series = "Forecast")

6.2.4 Model Evaluation

# Evaluasi model Auto ARIMA
accuracy(object = forecast_auto$mean,
         x = climate_test)
#>                   ME       RMSE        MAE        MPE     MAPE      ACF1
#> Test set 0.002041005 0.04352209 0.03381135 -0.1207572 7.721811 0.5764321
#>          Theil's U
#> Test set    1.9006

Untuk mengetahui apakah model sudah memprediksi dengan baik kita bisa melihat nilai nilai pada MAE dan MAPE. Nilai MAE adalah 0.0338 dimana rata-rata prediksi meleset sebesar 0.0338 satuan, sedangkan Nilai MAPE adalah 7.721 dimana berarti prediksi melenceng sebesar 7.7% dari data asli/aktual. Dari hasil Evaluasi Model di atas, dapat disimpulkan model SARIMA **auto_climate** sudah bagus dalam melakukan prediksi.

6.2.5 Assumption

Asumsi pada time series diujikan untuk mengukur apakah model SARIMA sudah cukup baik untuk menggambarkan informasi pada data berdasarkan residual model yang terbentuk.

6.2.5.1 No-autocorrelation residual

Pada pengujian ini, kondisi yang diinginkan adalah :

  • \(H_0\): residual tidak berkorelasi
  • \(H_1\): residual berkorelasi

dan ketika p-value > 0.05 (alpha), maka tidak ada autocorrelation.

Box.test(auto_climate$residuals, type = "Ljung-Box")
#> 
#>  Box-Ljung test
#> 
#> data:  auto_climate$residuals
#> X-squared = 0.010763, df = 1, p-value = 0.9174

Lulus uji asumsi no-autocorrelation residual. Sehingga tidak ada residual yang memiliki autokorelasi (karena p-value 0.9174 > 0.05)

6.2.5.2 Normality of Residual

Untuk mengecek normality residual pada hasil forecasting time series.

\(H_0\): residual menyebar normal \(H_1\): residual tidak menyebar normal

Kondisi yang diinginkan adalah : p-value > 0.05 (alpha), sehingga residual menyebar normal.

shapiro.test(auto_climate$residuals)
#> 
#>  Shapiro-Wilk normality test
#> 
#> data:  auto_climate$residuals
#> W = 0.90456, p-value < 0.00000000000000022

Tidak lulus uji asumsi Normality of Residual yaitu p-value 0.00000000000000022 < 0.05. Namun, asumsi ini tidak wajib jika jika tujuan kita hanya untuk melakukan forecasting bukan untuk analisis statistik lanjutan. Cukup asumsi No-autocorrelation residual yang wajib terpenuhi.

Sehingga dari hasil pengujian asumsi di atas, model SARIMA **auto_climate** bisa digunakan dalam melakukan forecasting.

7 Conclusion

Model Evaluation menggunakan Exponential Smoothing

accuracy(object = forecast_auto$mean,
         x = climate_test)
#>                   ME       RMSE        MAE        MPE     MAPE      ACF1
#> Test set 0.002041005 0.04352209 0.03381135 -0.1207572 7.721811 0.5764321
#>          Theil's U
#> Test set    1.9006

Model Evaluation menggunakan SARIMA

accuracy(object = forecast_triple$mean,
         x = climate_test)
#>                  ME       RMSE        MAE      MPE     MAPE      ACF1 Theil's U
#> Test set 0.02118966 0.04205517 0.03390281 4.216693 7.617656 0.6041524   1.79428

Dari hasil Model Evaluation terhadap 2 model tersebut dapat disimpulkan bahwa keduanya sama-sama memiliki hasil prediksi yang sangat bagus dilihat dari nilai MAPE yaitu di ankga 7%, sehingga dalam melakukan forecasting terhadap Daily Climate bisa menggunakan salah satu dari 2 model di atas.