#eGarch

#import data
D1=read.csv("Inflation rates.csv");D1
##     Year     Month Annual Monthly
## 1   2025     April   3.74    4.11
## 2   2025     March   3.81    3.62
## 3   2025  February   3.98    3.45
## 4   2025   January   4.21    3.28
## 5   2024  December   4.50    2.99
## 6   2024  November   4.81    2.75
## 7   2024   October   5.14    2.72
## 8   2024 September   5.50    3.56
## 9   2024    August   5.77    4.36
## 10  2024      July   5.97    4.31
## 11  2024      June   4.64    6.22
## 12  2024       May   6.49    5.10
## 13  2024     April   6.73    5.00
## 14  2024     March   6.97    5.70
## 15  2024  February   7.26    6.31
## 16  2024   January   7.50    6.85
## 17  2023  December   7.67    6.63
## 18  2023  November   7.87    6.80
## 19  2023   October   8.10    6.92
## 20  2023 September   8.32    6.78
## 21  2023    August   8.52    6.73
## 22  2023      July   8.68    7.28
## 23  2023      June   8.77    7.88
## 24  2023       May   8.78    8.03
## 25  2023     April   8.71    7.90
## 26  2023     March   8.59    9.19
## 27  2023  February   8.30    9.23
## 28  2023   January   7.95    8.98
## 29  2022  December   7.66    9.06
## 30  2022  November   7.38    9.48
## 31  2022   October   7.48    9.59
## 32  2022 September   6.81    9.18
## 33  2022    August   6.61    8.53
## 34  2022      July   6.45    8.32
## 35  2022      June   6.29    7.91
## 36  2022       May   6.16    7.08
## 37  2022     April   6.05    6.47
## 38  2022     March   6.29    5.56
## 39  2022  February   6.23    5.08
## 40  2022   January   6.08    5.39
## 41  2021  December   5.62    5.73
## 42  2021  November   6.10    5.80
## 43  2021   October   6.07    6.45
## 44  2021 September   5.35    6.91
## 45  2021    August   5.71    6.57
## 46  2021      July   5.53    6.55
## 47  2021      June   5.35    6.32
## 48  2021       May   5.20    5.87
## 49  2021     April   4.66    5.76
## 50  2021     March   5.17    5.90
## 51  2021  February   5.16    5.78
## 52  2021   January   5.74    5.69
## 53  2020  December   5.41    5.62
## 54  2020  November   5.53    5.33
## 55  2020   October   5.67    4.84
## 56  2020 September   5.79    4.20
## 57  2020    August   5.87    4.36
## 58  2020      July   6.01    4.36
## 59  2020      June   6.16    4.59
## 60  2020       May   6.18    5.33
## 61  2020     April   6.03    6.01
## 62  2020     March   5.84    5.84
## 63  2020  February   5.72    7.17
## 64  2020   January   5.29    5.78
## 65  2019  December   5.20    5.82
## 66  2019  November   5.19    5.56
## 67  2019   October   5.19    4.95
## 68  2019 September   5.24    3.83
## 69  2019    August   5.40    5.00
## 70  2019      July   5.32    6.27
## 71  2019      June   5.16    5.70
## 72  2019       May   5.04    4.49
## 73  2019     April   4.91    6.58
## 74  2019     April   4.91    6.58
## 75  2019     March   4.67    4.35
## 76  2019  February   4.65    4.14
## 77  2019   January   4.68    4.70
## 78  2018  December   4.69    5.71
## 79  2018  November   4.59    5.58
## 80  2018   October   4.53    5.53
## 81  2018 September   4.53    5.70
## 82  2018    August   4.63    4.04
## 83  2018      July   4.95    4.35
## 84  2018      June   5.20    4.28
## 85  2018       May   5.61    3.95
## 86  2018     April   6.24    3.73
## 87  2018     March   6.89    4.18
## 88  2018  February   7.40    4.46
## 89  2018   January   7.79    4.83
## 90  2017  December   7.98    4.50
## 91  2017  November   8.15    4.73
## 92  2017   October   8.33    5.72
## 93  2017 September   8.40    7.06
## 94  2017    August   8.36    8.04
## 95  2017      July   8.21    7.47
## 96  2017      June   8.13    9.21
## 97  2017       May   7.84   11.70
## 98  2017     April   7.20   11.48
## 99  2017     March   6.76   10.28
## 100 2017  February   6.43    9.04
## 101 2017   January   6.26    6.99
## 102 2016  December   6.30    6.35
## 103 2016  November   6.43    6.68
## 104 2016   October   6.48    6.47
## 105 2016 September   6.50    6.34
## 106 2016    August   6.47    6.26
## 107 2016      July   6.44    6.40
## 108 2016      June   6.46    5.80
## 109 2016       May   6.59    5.00
## 110 2016     April   6.72    5.27
## 111 2016     March   6.88    6.45
## 112 2016  February   6.87    6.84
## 113 2016   January   6.77    7.78
## 114 2015  December   6.58    8.01
## 115 2015  November   6.42    7.32
## 116 2015   October   6.31    6.72
## 117 2015 September   6.29    5.97
## 118 2015    August   6.34    5.84
## 119 2015      July   6.54    6.62
D2=D1$Annual;D2
##   [1] 3.74 3.81 3.98 4.21 4.50 4.81 5.14 5.50 5.77 5.97 4.64 6.49 6.73 6.97 7.26
##  [16] 7.50 7.67 7.87 8.10 8.32 8.52 8.68 8.77 8.78 8.71 8.59 8.30 7.95 7.66 7.38
##  [31] 7.48 6.81 6.61 6.45 6.29 6.16 6.05 6.29 6.23 6.08 5.62 6.10 6.07 5.35 5.71
##  [46] 5.53 5.35 5.20 4.66 5.17 5.16 5.74 5.41 5.53 5.67 5.79 5.87 6.01 6.16 6.18
##  [61] 6.03 5.84 5.72 5.29 5.20 5.19 5.19 5.24 5.40 5.32 5.16 5.04 4.91 4.91 4.67
##  [76] 4.65 4.68 4.69 4.59 4.53 4.53 4.63 4.95 5.20 5.61 6.24 6.89 7.40 7.79 7.98
##  [91] 8.15 8.33 8.40 8.36 8.21 8.13 7.84 7.20 6.76 6.43 6.26 6.30 6.43 6.48 6.50
## [106] 6.47 6.44 6.46 6.59 6.72 6.88 6.87 6.77 6.58 6.42 6.31 6.29 6.34 6.54
D3=diff(D2);D3
##   [1]  0.07  0.17  0.23  0.29  0.31  0.33  0.36  0.27  0.20 -1.33  1.85  0.24
##  [13]  0.24  0.29  0.24  0.17  0.20  0.23  0.22  0.20  0.16  0.09  0.01 -0.07
##  [25] -0.12 -0.29 -0.35 -0.29 -0.28  0.10 -0.67 -0.20 -0.16 -0.16 -0.13 -0.11
##  [37]  0.24 -0.06 -0.15 -0.46  0.48 -0.03 -0.72  0.36 -0.18 -0.18 -0.15 -0.54
##  [49]  0.51 -0.01  0.58 -0.33  0.12  0.14  0.12  0.08  0.14  0.15  0.02 -0.15
##  [61] -0.19 -0.12 -0.43 -0.09 -0.01  0.00  0.05  0.16 -0.08 -0.16 -0.12 -0.13
##  [73]  0.00 -0.24 -0.02  0.03  0.01 -0.10 -0.06  0.00  0.10  0.32  0.25  0.41
##  [85]  0.63  0.65  0.51  0.39  0.19  0.17  0.18  0.07 -0.04 -0.15 -0.08 -0.29
##  [97] -0.64 -0.44 -0.33 -0.17  0.04  0.13  0.05  0.02 -0.03 -0.03  0.02  0.13
## [109]  0.13  0.16 -0.01 -0.10 -0.19 -0.16 -0.11 -0.02  0.05  0.20
library(rugarch)
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma
m1=ugarchspec(variance.model = list("eGarch",garchOrder=c(1,1)),mean.model = list(armaOrder=c(0,0),include.mean=F),distribution.model = "norm");m1
## Warning: unidentified option(s) in variance.model:
## 
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : sGARCH(1,1)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(0,0,0)
## Include Mean     : FALSE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
summary(m1)
##     Length      Class       Mode 
##          1 uGARCHspec         S4
m1fit=ugarchfit(data=D3,spec=m1);m1fit
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.012176    0.007073   1.7214 0.085185
## alpha1  0.645848    0.200403   3.2228 0.001270
## beta1   0.353152    0.103362   3.4167 0.000634
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega   0.012176    0.009043   1.3464 0.178161
## alpha1  0.645848    0.216870   2.9780 0.002901
## beta1   0.353152    0.113637   3.1077 0.001885
## 
## LogLikelihood : -12.42652 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       0.26147
## Bayes        0.33191
## Shibata      0.26022
## Hannan-Quinn 0.29007
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic   p-value
## Lag[1]                      6.624 0.0100597
## Lag[2*(p+q)+(p+q)-1][2]    10.653 0.0012849
## Lag[4*(p+q)+(p+q)-1][5]    15.333 0.0003617
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1804  0.6710
## Lag[2*(p+q)+(p+q)-1][5]    0.7792  0.9073
## Lag[4*(p+q)+(p+q)-1][9]    1.1479  0.9793
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.01557 0.500 2.000  0.9007
## ARCH Lag[5]   0.29971 1.440 1.667  0.9403
## ARCH Lag[7]   0.56999 2.315 1.543  0.9716
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.8506
## Individual Statistics:             
## omega  0.5299
## alpha1 0.4818
## beta1  0.4534
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          0.846 1.01 1.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.2820 0.7785    
## Negative Sign Bias  0.1199 0.9048    
## Positive Sign Bias  0.4589 0.6472    
## Joint Effect        0.2257 0.9733    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     22.00       0.2843
## 2    30     35.56       0.1868
## 3    40     46.07       0.2030
## 4    50     50.83       0.4015
## 
## 
## Elapsed time : 0.4813418
plot(m1fit, which=9)

plot(m1fit, which=11)

plot(m1fit, which=7)

#forecasting
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
forc=ugarchforecast(m1fit,n.ahead = 30);forc
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: sGARCH
## Horizon: 30
## Roll Steps: 0
## Out of Sample: 0
## 
## 0-roll forecast [T0=1970-04-29]:
##      Series  Sigma
## T+1       0 0.2145
## T+2       0 0.2411
## T+3       0 0.2651
## T+4       0 0.2870
## T+5       0 0.3073
## T+6       0 0.3264
## T+7       0 0.3444
## T+8       0 0.3615
## T+9       0 0.3778
## T+10      0 0.3934
## T+11      0 0.4084
## T+12      0 0.4228
## T+13      0 0.4368
## T+14      0 0.4503
## T+15      0 0.4634
## T+16      0 0.4761
## T+17      0 0.4885
## T+18      0 0.5006
## T+19      0 0.5123
## T+20      0 0.5238
## T+21      0 0.5351
## T+22      0 0.5461
## T+23      0 0.5569
## T+24      0 0.5674
## T+25      0 0.5778
## T+26      0 0.5879
## T+27      0 0.5979
## T+28      0 0.6077
## T+29      0 0.6173
## T+30      0 0.6268
plot(forc, which=1)

plot(forc, which=3)

#fGarch

library(fGarch)
## NOTE: Packages 'fBasics', 'timeDate', and 'timeSeries' are no longer
## attached to the search() path when 'fGarch' is attached.
## 
## If needed attach them yourself in your R script by e.g.,
##         require("timeSeries")
library(timeSeries)
## Loading required package: timeDate
## 
## Attaching package: 'timeSeries'
## The following object is masked from 'package:rugarch':
## 
##     quantile
## The following objects are masked from 'package:graphics':
## 
##     lines, points
import=read.csv("Inflation rates.csv");import
##     Year     Month Annual Monthly
## 1   2025     April   3.74    4.11
## 2   2025     March   3.81    3.62
## 3   2025  February   3.98    3.45
## 4   2025   January   4.21    3.28
## 5   2024  December   4.50    2.99
## 6   2024  November   4.81    2.75
## 7   2024   October   5.14    2.72
## 8   2024 September   5.50    3.56
## 9   2024    August   5.77    4.36
## 10  2024      July   5.97    4.31
## 11  2024      June   4.64    6.22
## 12  2024       May   6.49    5.10
## 13  2024     April   6.73    5.00
## 14  2024     March   6.97    5.70
## 15  2024  February   7.26    6.31
## 16  2024   January   7.50    6.85
## 17  2023  December   7.67    6.63
## 18  2023  November   7.87    6.80
## 19  2023   October   8.10    6.92
## 20  2023 September   8.32    6.78
## 21  2023    August   8.52    6.73
## 22  2023      July   8.68    7.28
## 23  2023      June   8.77    7.88
## 24  2023       May   8.78    8.03
## 25  2023     April   8.71    7.90
## 26  2023     March   8.59    9.19
## 27  2023  February   8.30    9.23
## 28  2023   January   7.95    8.98
## 29  2022  December   7.66    9.06
## 30  2022  November   7.38    9.48
## 31  2022   October   7.48    9.59
## 32  2022 September   6.81    9.18
## 33  2022    August   6.61    8.53
## 34  2022      July   6.45    8.32
## 35  2022      June   6.29    7.91
## 36  2022       May   6.16    7.08
## 37  2022     April   6.05    6.47
## 38  2022     March   6.29    5.56
## 39  2022  February   6.23    5.08
## 40  2022   January   6.08    5.39
## 41  2021  December   5.62    5.73
## 42  2021  November   6.10    5.80
## 43  2021   October   6.07    6.45
## 44  2021 September   5.35    6.91
## 45  2021    August   5.71    6.57
## 46  2021      July   5.53    6.55
## 47  2021      June   5.35    6.32
## 48  2021       May   5.20    5.87
## 49  2021     April   4.66    5.76
## 50  2021     March   5.17    5.90
## 51  2021  February   5.16    5.78
## 52  2021   January   5.74    5.69
## 53  2020  December   5.41    5.62
## 54  2020  November   5.53    5.33
## 55  2020   October   5.67    4.84
## 56  2020 September   5.79    4.20
## 57  2020    August   5.87    4.36
## 58  2020      July   6.01    4.36
## 59  2020      June   6.16    4.59
## 60  2020       May   6.18    5.33
## 61  2020     April   6.03    6.01
## 62  2020     March   5.84    5.84
## 63  2020  February   5.72    7.17
## 64  2020   January   5.29    5.78
## 65  2019  December   5.20    5.82
## 66  2019  November   5.19    5.56
## 67  2019   October   5.19    4.95
## 68  2019 September   5.24    3.83
## 69  2019    August   5.40    5.00
## 70  2019      July   5.32    6.27
## 71  2019      June   5.16    5.70
## 72  2019       May   5.04    4.49
## 73  2019     April   4.91    6.58
## 74  2019     April   4.91    6.58
## 75  2019     March   4.67    4.35
## 76  2019  February   4.65    4.14
## 77  2019   January   4.68    4.70
## 78  2018  December   4.69    5.71
## 79  2018  November   4.59    5.58
## 80  2018   October   4.53    5.53
## 81  2018 September   4.53    5.70
## 82  2018    August   4.63    4.04
## 83  2018      July   4.95    4.35
## 84  2018      June   5.20    4.28
## 85  2018       May   5.61    3.95
## 86  2018     April   6.24    3.73
## 87  2018     March   6.89    4.18
## 88  2018  February   7.40    4.46
## 89  2018   January   7.79    4.83
## 90  2017  December   7.98    4.50
## 91  2017  November   8.15    4.73
## 92  2017   October   8.33    5.72
## 93  2017 September   8.40    7.06
## 94  2017    August   8.36    8.04
## 95  2017      July   8.21    7.47
## 96  2017      June   8.13    9.21
## 97  2017       May   7.84   11.70
## 98  2017     April   7.20   11.48
## 99  2017     March   6.76   10.28
## 100 2017  February   6.43    9.04
## 101 2017   January   6.26    6.99
## 102 2016  December   6.30    6.35
## 103 2016  November   6.43    6.68
## 104 2016   October   6.48    6.47
## 105 2016 September   6.50    6.34
## 106 2016    August   6.47    6.26
## 107 2016      July   6.44    6.40
## 108 2016      June   6.46    5.80
## 109 2016       May   6.59    5.00
## 110 2016     April   6.72    5.27
## 111 2016     March   6.88    6.45
## 112 2016  February   6.87    6.84
## 113 2016   January   6.77    7.78
## 114 2015  December   6.58    8.01
## 115 2015  November   6.42    7.32
## 116 2015   October   6.31    6.72
## 117 2015 September   6.29    5.97
## 118 2015    August   6.34    5.84
## 119 2015      July   6.54    6.62
l=import$Monthly;l
##   [1]  4.11  3.62  3.45  3.28  2.99  2.75  2.72  3.56  4.36  4.31  6.22  5.10
##  [13]  5.00  5.70  6.31  6.85  6.63  6.80  6.92  6.78  6.73  7.28  7.88  8.03
##  [25]  7.90  9.19  9.23  8.98  9.06  9.48  9.59  9.18  8.53  8.32  7.91  7.08
##  [37]  6.47  5.56  5.08  5.39  5.73  5.80  6.45  6.91  6.57  6.55  6.32  5.87
##  [49]  5.76  5.90  5.78  5.69  5.62  5.33  4.84  4.20  4.36  4.36  4.59  5.33
##  [61]  6.01  5.84  7.17  5.78  5.82  5.56  4.95  3.83  5.00  6.27  5.70  4.49
##  [73]  6.58  6.58  4.35  4.14  4.70  5.71  5.58  5.53  5.70  4.04  4.35  4.28
##  [85]  3.95  3.73  4.18  4.46  4.83  4.50  4.73  5.72  7.06  8.04  7.47  9.21
##  [97] 11.70 11.48 10.28  9.04  6.99  6.35  6.68  6.47  6.34  6.26  6.40  5.80
## [109]  5.00  5.27  6.45  6.84  7.78  8.01  7.32  6.72  5.97  5.84  6.62
plot(l)

ts.plot(l)

log.l=diff(l);log.l
##   [1] -0.49 -0.17 -0.17 -0.29 -0.24 -0.03  0.84  0.80 -0.05  1.91 -1.12 -0.10
##  [13]  0.70  0.61  0.54 -0.22  0.17  0.12 -0.14 -0.05  0.55  0.60  0.15 -0.13
##  [25]  1.29  0.04 -0.25  0.08  0.42  0.11 -0.41 -0.65 -0.21 -0.41 -0.83 -0.61
##  [37] -0.91 -0.48  0.31  0.34  0.07  0.65  0.46 -0.34 -0.02 -0.23 -0.45 -0.11
##  [49]  0.14 -0.12 -0.09 -0.07 -0.29 -0.49 -0.64  0.16  0.00  0.23  0.74  0.68
##  [61] -0.17  1.33 -1.39  0.04 -0.26 -0.61 -1.12  1.17  1.27 -0.57 -1.21  2.09
##  [73]  0.00 -2.23 -0.21  0.56  1.01 -0.13 -0.05  0.17 -1.66  0.31 -0.07 -0.33
##  [85] -0.22  0.45  0.28  0.37 -0.33  0.23  0.99  1.34  0.98 -0.57  1.74  2.49
##  [97] -0.22 -1.20 -1.24 -2.05 -0.64  0.33 -0.21 -0.13 -0.08  0.14 -0.60 -0.80
## [109]  0.27  1.18  0.39  0.94  0.23 -0.69 -0.60 -0.75 -0.13  0.78
plot(log.l)

ts.plot(log.l)

acf(log.l)

pacf(log.l)

s=log.l^2;s
##   [1] 0.2401 0.0289 0.0289 0.0841 0.0576 0.0009 0.7056 0.6400 0.0025 3.6481
##  [11] 1.2544 0.0100 0.4900 0.3721 0.2916 0.0484 0.0289 0.0144 0.0196 0.0025
##  [21] 0.3025 0.3600 0.0225 0.0169 1.6641 0.0016 0.0625 0.0064 0.1764 0.0121
##  [31] 0.1681 0.4225 0.0441 0.1681 0.6889 0.3721 0.8281 0.2304 0.0961 0.1156
##  [41] 0.0049 0.4225 0.2116 0.1156 0.0004 0.0529 0.2025 0.0121 0.0196 0.0144
##  [51] 0.0081 0.0049 0.0841 0.2401 0.4096 0.0256 0.0000 0.0529 0.5476 0.4624
##  [61] 0.0289 1.7689 1.9321 0.0016 0.0676 0.3721 1.2544 1.3689 1.6129 0.3249
##  [71] 1.4641 4.3681 0.0000 4.9729 0.0441 0.3136 1.0201 0.0169 0.0025 0.0289
##  [81] 2.7556 0.0961 0.0049 0.1089 0.0484 0.2025 0.0784 0.1369 0.1089 0.0529
##  [91] 0.9801 1.7956 0.9604 0.3249 3.0276 6.2001 0.0484 1.4400 1.5376 4.2025
## [101] 0.4096 0.1089 0.0441 0.0169 0.0064 0.0196 0.3600 0.6400 0.0729 1.3924
## [111] 0.1521 0.8836 0.0529 0.4761 0.3600 0.5625 0.0169 0.6084
m2=garchFit(~garch(1,1),data = s,trace = F);m2
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = s, trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x000001be4cc53dd8>
##  [data = s]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##      mu    omega   alpha1    beta1  
## 0.37718  0.16609  1.00000  0.26924  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu       0.37718     0.05859    6.438 1.21e-10 ***
## omega    0.16609     0.08168    2.033   0.0420 *  
## alpha1   1.00000     0.41289    2.422   0.0154 *  
## beta1    0.26924     0.12652    2.128   0.0333 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -146.7789    normalized:  -1.243889 
## 
## Description:
##  Sun May 18 10:18:57 2025 by user: peter
summary(m2)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = s, trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x000001be4cc53dd8>
##  [data = s]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##      mu    omega   alpha1    beta1  
## 0.37718  0.16609  1.00000  0.26924  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu       0.37718     0.05859    6.438 1.21e-10 ***
## omega    0.16609     0.08168    2.033   0.0420 *  
## alpha1   1.00000     0.41289    2.422   0.0154 *  
## beta1    0.26924     0.12652    2.128   0.0333 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -146.7789    normalized:  -1.243889 
## 
## Description:
##  Sun May 18 10:18:57 2025 by user: peter 
## 
## 
## Standardised Residuals Tests:
##                                   Statistic      p-Value
##  Jarque-Bera Test   R    Chi^2  344.5777330 0.000000e+00
##  Shapiro-Wilk Test  R    W        0.7075887 5.111457e-14
##  Ljung-Box Test     R    Q(10)   12.9991126 2.237214e-01
##  Ljung-Box Test     R    Q(15)   18.5794522 2.334273e-01
##  Ljung-Box Test     R    Q(20)   24.1434939 2.361802e-01
##  Ljung-Box Test     R^2  Q(10)    2.0081647 9.962772e-01
##  Ljung-Box Test     R^2  Q(15)    6.5529652 9.688898e-01
##  Ljung-Box Test     R^2  Q(20)    8.2853815 9.898050e-01
##  LM Arch Test       R    TR^2     3.5410980 9.903686e-01
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 2.555575 2.649496 2.553376 2.593710
plot(m2, which=10)

plot(m2, which=9)