SPR 2025 Data

setwd("C:/Work Files/Lab/Data Sets/SIF16 Data")

Packages:

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(haven)
library(psych)

Attaching package: 'psych'

The following objects are masked from 'package:ggplot2':

    %+%, alpha
library(purrr)
library(forcats)
library(haven)

Required Individual Data Sets

Demographics <- read.csv("demographics.csv")
Chris_Data <- read.csv("ChrisData.csv")
ASSM <- read.csv("ASSM.csv")
IBQ <- read.csv("IBQ.csv")
ECBQ <-read.csv("ECBQ.csv")
CBQ <-read.csv("CBQ.csv")
ASQ_Communication <-read.csv("ASQ Communication.csv")
ASQ_Fine_Motor <-read.csv("ASQ Fine Motor.csv")
ASQ_Gross_Motor <-read.csv("ASQ Gross Motor.csv")
ASQ_Personal_Social <-read.csv("ASQ Personal and Social.csv")
ASQ_Prob_Solving <-read.csv("ASQ Problem Solving.csv")

Demographics Data Wrangling

names(Demographics)
 [1] "FAMILYID"       "PARTICIPANTID"  "PARTTYPE2"      "PROGRAMNAME"   
 [5] "INTAKEDATE"     "AGEINTK"        "FEMALE"         "AGEFOCUSINTAKE"
 [9] "FOCUSFEMALE"    "AMINDR"         "ASIANR"         "BLACKR"        
[13] "HISPR"          "EASTR"          "HAWAIIR"        "WHITER"        
[17] "OTHERR"         "PRIMEENG"       "PRIMESPAN"      "PRIMEARAB"     
[21] "PRIMEOTH"       "LIVSPOUCE"      "RECEIVEPA"      "NUMHOUSE"      
[25] "EDUCATE"       
##Participant Type Restructure##
str(Demographics$PARTTYPE2)
 chr [1:992] "A_Intervention" "A_Intervention" "A_Intervention" ...
table(Demographics$PARTTYPE2)

A_Intervention   B_Comparison 
           518            474 
Demographics$PARTTYPE2 <- recode(Demographics$PARTTYPE2, 
                         "A_Intervention" = 1, 
                         "B_Comparison" = 0)

Demographics$PARTTYPE2 <-factor(Demographics$PARTTYPE2,
                                levels = c(0,1),
                                labels = c("Control", "Intervention"),
                                ordered = TRUE)

## Program Where Participant Recieved Services Restructure##

table(Demographics$PROGRAMNAME)

                        ACCESS CARE for Southeastern Michigan 
                           171                            201 
              Leaps and Bounds                           NKFM 
                           169                            237 
       Oakland Family Services 
                           214 
Demographics$PROGRAMNAME <- recode(Demographics$PROGRAMNAME,
                                   "ACCESS" = 1,
                                   "CARE for Southeastern Michigan" = 2,
                                   "Leaps and Bounds" = 3,
                                   "NKFM" = 4,
                                   "Oakland Family Services" = 5)
Demographics$PROGRAMNAME <- factor(Demographics$PROGRAMNAME,
                                   levels = c(1,2,3,4,5),
                                   labels = c("ACCESS", "CARE", "L_N_B", "NKFM", "OFS"),
                                   ordered = FALSE)

##Caregiver Gender##
table(Demographics$FEMALE)

  0   1 
 29 956 
str(Demographics$FEMALE)
 int [1:992] 1 1 1 1 1 1 1 1 1 1 ...
Demographics$FEMALE <- factor(Demographics$FEMALE,
                              levels = c(0,1),
                              labels = c("Male","Female"))

##Focus Child Gender##
table(Demographics$FOCUSFEMALE)

  0   1 
499 492 
Demographics$FOCUSFEMALE <-factor(Demographics$FOCUSFEMALE,
                                  levels = c(0,1),
                                  labels = c("Male","Female"))

##Age of Caregiver##

str(Demographics$CG_AGE_Intake)
 NULL
Demographics <- Demographics %>%
  rename(CG_AGE_Intake = AGEINTK)

##Age of Focus Child##
str(Demographics$AGEFOCUSINTAKE)
 num [1:992] 3.41 1.68 4.76 4.7 3.52 ...
##Race of Caregiver##

str(Demographics$BLACKR)
 int [1:992] 1 0 0 0 0 0 1 0 0 0 ...
Demographics$AMINDR <-factor(Demographics$AMINDR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$ASIANR <-factor(Demographics$ASIANR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$BLACKR <-factor(Demographics$BLACKR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$HISPR <-factor(Demographics$HISPR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$EASTR <-factor(Demographics$EASTR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$HAWAIIR <-factor(Demographics$HAWAIIR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$WHITER <-factor(Demographics$WHITER,
                             levels = c(0,1),
                             labels = c("No","Yes"))

Demographics$OTHERR <-factor(Demographics$OTHERR,
                             levels = c(0,1),
                             labels = c("No","Yes"))

table(Demographics$BLACKR)

 No Yes 
521 464 
##Race of Focus Child - NOT INCLUDED IN DEMOGRAPHIC DATA FRAME##


##Language Spoken At Home##

str(Demographics$PRIMEENG)
 int [1:992] 1 1 1 0 0 0 0 0 0 0 ...
Demographics$PRIMEARAB <-factor(Demographics$PRIMEARAB,
                                levels = c(0,1),
                                labels = c("No","Yes"))

Demographics$PRIMEENG <-factor(Demographics$PRIMEENG,
                                levels = c(0,1),
                                labels = c("No","Yes"))

Demographics$PRIMESPAN <-factor(Demographics$PRIMESPAN,
                                levels = c(0,1),
                                labels = c("No","Yes"))

Demographics$PRIMEOTH <-factor(Demographics$PRIMEOTH,
                                levels = c(0,1),
                                labels = c("No","Yes"))


table(Demographics$PRIMEARAB)

 No Yes 
789 195 

Data Wrangling Chris Data

names(Chris_Data)
 [1] "Program"                         "ParticipantType"                
 [3] "SiteID"                          "FamilyID"                       
 [5] "ResponseID"                      "DOB"                            
 [7] "Gender"                          "FamilyNeed"                     
 [9] "NeedCat"                         "PARTTYPE2"                      
[11] "HEALTHCARE"                      "LEGAL"                          
[13] "PARENTINGSKILLS"                 "INCOME"                         
[15] "SOCIAL"                          "EMPLOYMENT"                     
[17] "CHILDCARE"                       "EDUCATE"                        
[19] "ADULTED"                         "FOOD"                           
[21] "HOUSING"                         "TRANSPORTATION"                 
[23] "MENTAL"                          "SUBABUSE"                       
[25] "DISABILITIES"                    "COMMUNINVOLV"                   
[27] "SAFETY"                          "LIFESKILLS"                     
[29] "BASENEEDS2"                      "PARENTS2"                       
[31] "SOCIAL2"                         "BEHAVE2"                        
[33] "ReferralID"                      "Refer_for_Goal"                 
[35] "ASSMCategory"                    "ReferredTo"                     
[37] "GoalID"                          "GoalDomainCategory"             
[39] "DomainOther"                     "Goal"                           
[41] "PossibleResources"               "GoalStatus"                     
[43] "SiteName"                        "ProgramName"                    
[45] "DateofEnrollment"                "DateofBirthmmddyyyy"            
[47] "PrimaryLanguage"                 "PrimaryLanguageAtHome"          
[49] "AmericanIndianorAlaskaNative"    "Asian"                          
[51] "BlackorAfricanAmerican"          "HispanicLatinoorSpanish"        
[53] "MiddleEasternorNorthAfrican"     "NativeHawaiianorPacificIslander"
[55] "White"                           "SomeOtherRaceEthnicity"         
[57] "BornInUnitedStates"              "HowLongInUSIfNotBorn"           
[59] "PrimaryFirst"                   
table(Chris_Data$HowLongInUSIfNotBorn)

   0    4    5    7   15   18   20   21   22   27   28   35 1993 1999 2002 2003 
   1    1    2    1    1    1    2    1    1    1    1    1    1    3    1    1 
2005 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 
   1    3    1    1    1    1    3    1    4    5    3 
table(Chris_Data$BornInUnitedStates)

  0   1 
551 251 
Chris_Data <- Chris_Data %>%
  rename(Immigrant_Status = BornInUnitedStates)
table(Chris_Data$Immigrant_Status)

  0   1 
551 251 
Chris_Data$Immigrant_Status <-factor(Chris_Data$Immigrant_Status,
                                       levels = c(0,1),
                                       labels = c("No","Yes"))

str(Chris_Data$HowLongInUSIfNotBorn)
 int [1:13393] NA NA NA NA NA NA NA NA NA NA ...
Chris_Data$HowLongInUSIfNotBorn <- ifelse(Chris_Data$HowLongInUSIfNotBorn >= 1900, 2017 - Chris_Data$HowLongInUSIfNotBorn,                       Chris_Data$HowLongInUSIfNotBorn)


sum(!is.na(Chris_Data$HowLongInUSIfNotBorn))
[1] 44
##There are only 44 cases where the participant indicated how long they were in the US.##

Data Wrangling ASSM scores

names(ASSM)
 [1] "FAMILYID"                  "PARTICIPANTID"            
 [3] "PARTTYPE2"                 "PROGRAMNAME"              
 [5] "DATETAKEN_200"             "ASSESSMENTTIMEFRAME_16255"
 [7] "BASENEEDS2"                "ASSM_HOUSING"             
 [9] "ASSM_INCOME"               "ASSM_FOOD"                
[11] "ASSM_ADULTED"              "ASSM_EMPLOYMENT"          
[13] "ASSM_TRANSPORTATION"       "ASSM_HEALTHCARE"          
[15] "ASSM_SAFETY"               "ASSM_LIFESKILLS"          
[17] "ASSM_PARENTS2"             "ASSM_CHILDCARE"           
[19] "ASSM_PARENTINGSKILLS"      "ASSM_EDUCATE"             
[21] "ASSM_SOCIAL2"              "ASSM_SOCIAL"              
[23] "ASSM_COMMUNINVOLV"         "ASSM_BEHAVE2"             
[25] "ASSM_MENTAL"               "ASSM_SUBABUSE"            
[27] "ASSM_DISABILITIES"         "ASSM_LEGAL"               
str(ASSM)
'data.frame':   2311 obs. of  28 variables:
 $ FAMILYID                 : int  572 572 573 574 574 574 579 579 579 580 ...
 $ PARTICIPANTID            : int  105899 105899 105901 105903 105903 105903 106524 106524 106524 106529 ...
 $ PARTTYPE2                : chr  "A_Intervention" "A_Intervention" "A_Intervention" "A_Intervention" ...
 $ PROGRAMNAME              : chr  "Oakland Family Services" "Oakland Family Services" "Oakland Family Services" "Oakland Family Services" ...
 $ DATETAKEN_200            : chr  "4/6/2020" "10/17/2019" "4/22/2019" "2/13/2019" ...
 $ ASSESSMENTTIMEFRAME_16255: chr  "6 Months" "Baseline" "Baseline" "12 Months" ...
 $ BASENEEDS2               : num  4.12 3.67 4 2.5 2.12 ...
 $ ASSM_HOUSING             : int  4 3 3 2 3 2 5 5 5 4 ...
 $ ASSM_INCOME              : int  3 2 3 2 2 2 4 5 5 3 ...
 $ ASSM_FOOD                : int  1 2 1 3 1 1 1 5 5 1 ...
 $ ASSM_ADULTED             : int  5 5 5 3 3 3 3 5 5 2 ...
 $ ASSM_EMPLOYMENT          : int  NA 1 NA NA NA NA NA NA NA NA ...
 $ ASSM_TRANSPORTATION      : int  5 5 5 3 1 1 4 4 4 4 ...
 $ ASSM_HEALTHCARE          : int  5 5 5 5 5 5 5 5 5 5 ...
 $ ASSM_SAFETY              : int  5 5 5 1 1 1 5 5 1 5 ...
 $ ASSM_LIFESKILLS          : int  5 5 5 1 1 NA 5 5 5 5 ...
 $ ASSM_PARENTS2            : num  5 5 5 2.33 3 ...
 $ ASSM_CHILDCARE           : int  NA NA NA 1 NA 1 NA 5 5 NA ...
 $ ASSM_PARENTINGSKILLS     : int  5 5 5 1 1 4 5 3 3 5 ...
 $ ASSM_EDUCATE             : int  5 5 5 5 5 NA 5 5 5 5 ...
 $ ASSM_SOCIAL2             : num  4.5 3.5 3.5 1 1.5 2 4.5 5 5 4.5 ...
 $ ASSM_SOCIAL              : int  5 5 5 1 2 2 5 5 5 5 ...
 $ ASSM_COMMUNINVOLV        : int  4 2 2 1 1 2 4 5 5 4 ...
 $ ASSM_BEHAVE2             : num  5 4 5 3.5 4 3 5 5 5 5 ...
 $ ASSM_MENTAL              : int  5 5 5 3 3 1 5 5 5 5 ...
 $ ASSM_SUBABUSE            : int  5 5 5 5 5 5 5 5 5 5 ...
 $ ASSM_DISABILITIES        : int  5 5 5 5 3 5 5 5 5 5 ...
 $ ASSM_LEGAL               : int  5 1 5 1 5 1 5 5 5 5 ...
table(ASSM$ASSESSMENTTIMEFRAME_16255)

12 Months  6 Months  Baseline 
      582       763       966 
ASSM <- ASSM %>%
  rename(Wave = ASSESSMENTTIMEFRAME_16255)

table(ASSM$Wave)

12 Months  6 Months  Baseline 
      582       763       966 
str(ASSM$Wave)
 chr [1:2311] "6 Months" "Baseline" "Baseline" "12 Months" "6 Months" ...
ASSM$Wave <- recode(ASSM$Wave,
                    "Baseline" = 1,
                    "6 Months" = 2,
                    "12 Months" = 3)

ASSM$Wave <-factor(ASSM$Wave,
                   levels = c(1,2,3),
                   labels = c("Baseline", "6 Months", "12 Months"), ordered = FALSE)

ASSM <- ASSM %>%
  mutate(across(c("ASSM_HOUSING", "ASSM_INCOME","ASSM_FOOD","ASSM_ADULTED","ASSM_EMPLOYMENT","ASSM_TRANSPORTATION","ASSM_HEALTHCARE","ASSM_SAFETY","ASSM_LIFESKILLS","ASSM_CHILDCARE","ASSM_PARENTINGSKILLS","ASSM_EDUCATE","ASSM_SOCIAL","ASSM_COMMUNINVOLV","ASSM_MENTAL","ASSM_SUBABUSE","ASSM_DISABILITIES","ASSM_LEGAL"), as.numeric))  

Data Wrangling ASQ

names(ASQ_Personal_Social)
 [1] "FAMILYID"      "DATE_TAKE"     "PARTTYPE2"     "WAVE"         
 [5] "AGERANGE"      "DATETAKEN_201" "PS2"           "PS4"          
 [9] "PS6"           "PS8"           "PS9"           "PS10"         
[13] "PS12"          "PS14"          "PS16"          "PS18"         
[17] "PS20"          "PS22"          "PS24"          "PS27"         
[21] "PS30"          "PS33"          "PS36"          "PS42"         
[25] "PS48"          "PS54"          "PS60"         
head(ASQ_Personal_Social)
  FAMILYID DATE_TAKE      PARTTYPE2     WAVE  AGERANGE DATETAKEN_201 PS2 PS4
1      572  4/6/2020 A_Intervention 6 Months 48 months    10/17/2019  NA  NA
2      572 11/6/2019 A_Intervention Baseline 42 months    10/17/2019  NA  NA
3      574 8/27/2018 A_Intervention 6 Months 60 months     2/22/2018  NA  NA
4      574 2/27/2018 A_Intervention Baseline 60 months     2/22/2018  NA  NA
5      579 6/18/2019   B_Comparison 6 Months 60 months     1/16/2019  NA  NA
6      579 1/16/2019   B_Comparison Baseline 54 months     1/16/2019  NA  NA
  PS6 PS8 PS9 PS10 PS12 PS14 PS16 PS18 PS20 PS22 PS24 PS27 PS30 PS33 PS36 PS42
1  NA  NA  NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
2  NA  NA  NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   60
3  NA  NA  NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
4  NA  NA  NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
5  NA  NA  NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
6  NA  NA  NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
  PS48 PS54 PS60
1   55   NA   NA
2   NA   NA   NA
3   NA   NA   45
4   NA   NA   60
5   NA   NA   50
6   NA   50   NA
table(ASQ_Personal_Social$WAVE)

12 Months  6 Months  Baseline 
      517       712       889 
str(ASQ_Personal_Social$WAVE)
 chr [1:2118] "6 Months" "Baseline" "6 Months" "Baseline" "6 Months" ...
ASQ_Personal_Social$WAVE <- recode(ASQ_Personal_Social$WAVE,
                    "Baseline" = 1,
                    "6 Months" = 2,
                    "12 Months" = 3)

ASQ_Personal_Social$WAVE <-factor(ASQ_Personal_Social$WAVE,
                   levels = c(1,2,3),
                   labels = c("Baseline", "6 Months", "12 Months"), ordered = FALSE)

ASQ_Personal_Social$PS_Score <- rowSums(ASQ_Personal_Social[, c("PS2", "PS4", "PS6","PS8","PS9","PS10","PS12","PS14","PS16","PS18","PS20","PS22","PS24","PS27","PS30","PS33","PS36","PS42","PS48","PS54","PS60")], na.rm = TRUE)

str(ASQ_Personal_Social$PS_Score)
 num [1:2118] 55 60 45 60 50 50 50 50 50 60 ...
describeBy(ASQ_Personal_Social$PS_Score,ASQ_Personal_Social$WAVE)

 Descriptive statistics by group 
group: Baseline
   vars   n  mean    sd median trimmed  mad min max range  skew kurtosis   se
X1    1 889 50.08 11.47     55    52.1 7.41   0  60    60 -1.52     2.45 0.38
------------------------------------------------------------ 
group: 6 Months
   vars   n  mean    sd median trimmed  mad min max range  skew kurtosis   se
X1    1 712 51.51 10.36     55   53.41 7.41   0  60    60 -1.68      3.4 0.39
------------------------------------------------------------ 
group: 12 Months
   vars   n  mean    sd median trimmed  mad min max range  skew kurtosis  se
X1    1 517 51.36 11.28     55   53.51 7.41   0  60    60 -1.75     3.49 0.5

Data Wrangling IBQ

names(IBQ)
[1] "FAMILYID"           "PARTICIPANTID"      "PARTTYPE2"         
[4] "PROGRAMNAME"        "WAVE"               "DATE"              
[7] "IBQ_NEGATIVESCORE"  "IBQ_EFFORTFULSCORE"
str(IBQ)
'data.frame':   398 obs. of  8 variables:
 $ FAMILYID          : int  585 585 586 586 592 592 594 595 601 610 ...
 $ PARTICIPANTID     : int  111516 111516 106590 106590 106666 106665 106674 106783 107035 107281 ...
 $ PARTTYPE2         : chr  "B_Comparison" "B_Comparison" "A_Intervention" "A_Intervention" ...
 $ PROGRAMNAME       : chr  "ACCESS" "ACCESS" "ACCESS" "ACCESS" ...
 $ WAVE              : chr  "12 Months" "6 Months" "6 Months" "Baseline" ...
 $ DATE              : chr  "4/25/2019" "11/15/2018" "8/14/2019" "4/12/2018" ...
 $ IBQ_NEGATIVESCORE : num  4.58 3.56 2.83 2.58 2.08 ...
 $ IBQ_EFFORTFULSCORE: num  6.08 6.08 4.17 4.91 6.17 ...
table(IBQ$WAVE)

12 Months  6 Months  Baseline 
       16       141       241 
IBQ$WAVE <- recode(IBQ$WAVE,
                    "Baseline" = 1,
                    "6 Months" = 2,
                    "12 Months" = 3)

IBQ$WAVE <-factor(IBQ$WAVE,
                   levels = c(1,2,3),
                   labels = c("Baseline", "6 Months", "12 Months"), ordered = FALSE)

Data Wrangling ECBQ

names(ECBQ)
[1] "FAMILYID"            "PARTICIPANTID"       "PARTTYPE2"          
[4] "PROGRAMNAME"         "WAVE"                "DATE"               
[7] "ECBQ_NEGATIVESCORE"  "ECBQ_EFFORTFULSCORE"
str(ECBQ)
'data.frame':   918 obs. of  8 variables:
 $ FAMILYID           : int  582 582 583 584 586 587 587 587 589 589 ...
 $ PARTICIPANTID      : int  106556 106556 106574 106578 106590 106634 106634 106634 106659 106659 ...
 $ PARTTYPE2          : chr  "B_Comparison" "B_Comparison" "A_Intervention" "A_Intervention" ...
 $ PROGRAMNAME        : chr  "ACCESS" "ACCESS" "ACCESS" "ACCESS" ...
 $ WAVE               : chr  "6 Months" "Baseline" "Baseline" "Baseline" ...
 $ DATE               : chr  "11/19/2018" "5/22/2018" "5/31/2018" "3/29/2018" ...
 $ ECBQ_NEGATIVESCORE : num  2.1 3 4.17 3.17 4.08 ...
 $ ECBQ_EFFORTFULSCORE: num  4 4.5 5.33 5.33 5.58 ...
table(ECBQ$WAVE)

12 Months  6 Months  Baseline 
      272       309       337 
ECBQ$WAVE <- recode(ECBQ$WAVE,
                    "Baseline" = 1,
                    "6 Months" = 2,
                    "12 Months" = 3)

ECBQ$WAVE <-factor(ECBQ$WAVE,
                   levels = c(1,2,3),
                   labels = c("Baseline", "6 Months", "12 Months"), ordered = FALSE)

Data Wrangling CBQ

names(CBQ)
[1] "FAMILYID"           "PARTICIPANTID"      "PARTTYPE2"         
[4] "PROGRAMNAME"        "WAVE"               "DATE"              
[7] "CBQ_NEGATIVESCORE"  "CBQ_EFFORTFULSCORE"
str(CBQ)
'data.frame':   863 obs. of  8 variables:
 $ FAMILYID          : int  572 572 574 574 574 579 579 579 580 580 ...
 $ PARTICIPANTID     : int  105900 105900 105904 105904 105904 106525 106525 106525 106530 106530 ...
 $ PARTTYPE2         : chr  "A_Intervention" "A_Intervention" "A_Intervention" "A_Intervention" ...
 $ PROGRAMNAME       : chr  "Oakland Family Services" "Oakland Family Services" "Oakland Family Services" "Oakland Family Services" ...
 $ WAVE              : chr  "6 Months" "Baseline" "12 Months" "6 Months" ...
 $ DATE              : chr  "4/6/2020" "11/6/2019" "2/13/2019" "8/27/2018" ...
 $ CBQ_NEGATIVESCORE : num  1.67 4 4.33 3.42 3.08 ...
 $ CBQ_EFFORTFULSCORE: num  7 6.42 2.92 3.17 2.67 ...
table(CBQ$WAVE)

12 Months  6 Months  Baseline 
      291       298       274 
CBQ$WAVE <- recode(CBQ$WAVE,
                    "Baseline" = 1,
                    "6 Months" = 2,
                    "12 Months" = 3)

CBQ$WAVE <-factor(CBQ$WAVE,
                   levels = c(1,2,3),
                   labels = c("Baseline", "6 Months", "12 Months"), ordered = FALSE)

Creating Data Subsets specific to the SPR analyses

names(Demographics)
 [1] "FAMILYID"       "PARTICIPANTID"  "PARTTYPE2"      "PROGRAMNAME"   
 [5] "INTAKEDATE"     "CG_AGE_Intake"  "FEMALE"         "AGEFOCUSINTAKE"
 [9] "FOCUSFEMALE"    "AMINDR"         "ASIANR"         "BLACKR"        
[13] "HISPR"          "EASTR"          "HAWAIIR"        "WHITER"        
[17] "OTHERR"         "PRIMEENG"       "PRIMESPAN"      "PRIMEARAB"     
[21] "PRIMEOTH"       "LIVSPOUCE"      "RECEIVEPA"      "NUMHOUSE"      
[25] "EDUCATE"       
SPR_Demographics <-Demographics[,c(1,2,3,4,6,7,8,9:21)]
names(SPR_Demographics)
 [1] "FAMILYID"       "PARTICIPANTID"  "PARTTYPE2"      "PROGRAMNAME"   
 [5] "CG_AGE_Intake"  "FEMALE"         "AGEFOCUSINTAKE" "FOCUSFEMALE"   
 [9] "AMINDR"         "ASIANR"         "BLACKR"         "HISPR"         
[13] "EASTR"          "HAWAIIR"        "WHITER"         "OTHERR"        
[17] "PRIMEENG"       "PRIMESPAN"      "PRIMEARAB"      "PRIMEOTH"      
names(ASSM)
 [1] "FAMILYID"             "PARTICIPANTID"        "PARTTYPE2"           
 [4] "PROGRAMNAME"          "DATETAKEN_200"        "Wave"                
 [7] "BASENEEDS2"           "ASSM_HOUSING"         "ASSM_INCOME"         
[10] "ASSM_FOOD"            "ASSM_ADULTED"         "ASSM_EMPLOYMENT"     
[13] "ASSM_TRANSPORTATION"  "ASSM_HEALTHCARE"      "ASSM_SAFETY"         
[16] "ASSM_LIFESKILLS"      "ASSM_PARENTS2"        "ASSM_CHILDCARE"      
[19] "ASSM_PARENTINGSKILLS" "ASSM_EDUCATE"         "ASSM_SOCIAL2"        
[22] "ASSM_SOCIAL"          "ASSM_COMMUNINVOLV"    "ASSM_BEHAVE2"        
[25] "ASSM_MENTAL"          "ASSM_SUBABUSE"        "ASSM_DISABILITIES"   
[28] "ASSM_LEGAL"          
SPR_ASSM <-ASSM[,c(1,2,6:28)]
names(SPR_ASSM)
 [1] "FAMILYID"             "PARTICIPANTID"        "Wave"                
 [4] "BASENEEDS2"           "ASSM_HOUSING"         "ASSM_INCOME"         
 [7] "ASSM_FOOD"            "ASSM_ADULTED"         "ASSM_EMPLOYMENT"     
[10] "ASSM_TRANSPORTATION"  "ASSM_HEALTHCARE"      "ASSM_SAFETY"         
[13] "ASSM_LIFESKILLS"      "ASSM_PARENTS2"        "ASSM_CHILDCARE"      
[16] "ASSM_PARENTINGSKILLS" "ASSM_EDUCATE"         "ASSM_SOCIAL2"        
[19] "ASSM_SOCIAL"          "ASSM_COMMUNINVOLV"    "ASSM_BEHAVE2"        
[22] "ASSM_MENTAL"          "ASSM_SUBABUSE"        "ASSM_DISABILITIES"   
[25] "ASSM_LEGAL"          
SPR_ASSM <- SPR_ASSM %>%
  rename(WAVE = Wave)

names(Chris_Data)
 [1] "Program"                         "ParticipantType"                
 [3] "SiteID"                          "FamilyID"                       
 [5] "ResponseID"                      "DOB"                            
 [7] "Gender"                          "FamilyNeed"                     
 [9] "NeedCat"                         "PARTTYPE2"                      
[11] "HEALTHCARE"                      "LEGAL"                          
[13] "PARENTINGSKILLS"                 "INCOME"                         
[15] "SOCIAL"                          "EMPLOYMENT"                     
[17] "CHILDCARE"                       "EDUCATE"                        
[19] "ADULTED"                         "FOOD"                           
[21] "HOUSING"                         "TRANSPORTATION"                 
[23] "MENTAL"                          "SUBABUSE"                       
[25] "DISABILITIES"                    "COMMUNINVOLV"                   
[27] "SAFETY"                          "LIFESKILLS"                     
[29] "BASENEEDS2"                      "PARENTS2"                       
[31] "SOCIAL2"                         "BEHAVE2"                        
[33] "ReferralID"                      "Refer_for_Goal"                 
[35] "ASSMCategory"                    "ReferredTo"                     
[37] "GoalID"                          "GoalDomainCategory"             
[39] "DomainOther"                     "Goal"                           
[41] "PossibleResources"               "GoalStatus"                     
[43] "SiteName"                        "ProgramName"                    
[45] "DateofEnrollment"                "DateofBirthmmddyyyy"            
[47] "PrimaryLanguage"                 "PrimaryLanguageAtHome"          
[49] "AmericanIndianorAlaskaNative"    "Asian"                          
[51] "BlackorAfricanAmerican"          "HispanicLatinoorSpanish"        
[53] "MiddleEasternorNorthAfrican"     "NativeHawaiianorPacificIslander"
[55] "White"                           "SomeOtherRaceEthnicity"         
[57] "Immigrant_Status"                "HowLongInUSIfNotBorn"           
[59] "PrimaryFirst"                   
SPR_Immigration <-Chris_Data[,c(4,57,58)]
names(SPR_Immigration)
[1] "FamilyID"             "Immigrant_Status"     "HowLongInUSIfNotBorn"
SPR_Immigration <- SPR_Immigration %>%
  rename(FAMILYID = FamilyID)

str(SPR_Immigration$FAMILYID)
 chr [1:13393] "495" "495" "506" "Leaps and Bounds" "506" "506" " " "506" ...
SPR_Immigration %>%
  filter(!grepl("^[0-9]+$", FAMILYID)) %>%
  select(FAMILYID)
                           FAMILYID
1                  Leaps and Bounds
2                                  
3                                  
4                                  
5                                  
6                                  
7                                  
8                                  
9                                  
10                                 
11                                 
12                                 
13                                 
14                                 
15                                 
16                                 
17                                 
18                                 
19                                 
20                                 
21                                 
22                                 
23                                 
24                                 
25                                 
26                                 
27                                 
28                                 
29                                 
30                                 
31                                 
32                                 
33                                 
34                                 
35                                 
36                                 
37                                 
38                                 
39                                 
40                                 
41                                 
42                                 
43                                 
44                                 
45                                 
46                                 
47                                 
48                                 
49                                 
50                                 
51                                 
52                                 
53                                 
54                                 
55                                 
56                                 
57                                 
58                                 
59                                 
60                                 
61                                 
62                                 
63                                 
64                                 
65                                 
66                                 
67                                 
68                                 
69                                 
70                                 
71                                 
72                                 
73                                 
74                                 
75                                 
76                                 
77                                 
78                                 
79                                 
80                                 
81                                 
82                                 
83                                 
84                                 
85                                 
86                                 
87                                 
88                                 
89                                 
90                                 
91                                 
92                                 
93                                 
94                                 
95                                 
96                                 
97                                 
98                                 
99                                 
100                                
101                                
102                                
103                                
104                                
105                                
106                                
107                                
108                                
109                                
110                                
111                                
112                                
113                                
114                                
115                                
116                                
117                                
118                                
119                                
120                                
121                                
122                                
123                                
124                                
125                                
126                                
127                                
128                                
129                                
130                                
131                                
132                                
133                                
134                                
135                                
136                                
137                                
138                                
139                                
140                                
141                                
142                                
143                                
144                                
145                                
146                                
147                                
148                                
149                                
150                                
151                                
152                                
153                                
154                                
155                                
156                                
157                                
158                                
159                                
160                                
161                                
162                                
163                                
164                                
165                                
166                                
167                                
168                                
169                                
170                                
171                                
172                                
173                                
174                                
175                                
176                                
177                                
178                                
179                                
180                                
181                                
182                                
183                                
184                                
185                                
186                                
187                                
188                                
189                                
190                                
191                                
192                                
193                                
194                                
195                                
196                                
197                                
198                                
199                                
200                                
201                                
202                                
203                                
204                                
205                                
206                                
207                                
208                                
209                                
210                                
211                                
212                                
213                                
214                                
215                                
216                                
217                                
218                                
219                                
220                                
221                                
222                                
223                                
224                                
225                                
226                                
227                                
228                                
229                                
230                                
231                                
232                                
233                                
234                                
235                                
236                                
237                                
238                                
239                                
240                                
241                                
242                                
243                                
244                                
245                                
246                                
247                                
248                                
249                                
250                                
251                                
252                                
253                                
254                                
255                                
256                                
257                                
258                                
259                                
260                                
261                                
262                                
263                                
264                                
265                                
266                                
267                                
268                                
269                                
270                                
271                                
272                                
273                                
274                                
275                                
276                                
277                                
278                                
279                                
280                                
281                                
282                                
283                                
284                                
285                                
286                                
287                                
288                                
289                                
290                                
291                                
292                                
293                                
294                                
295                                
296                                
297                                
298                                
299                                
300                                
301                                
302                                
303                                
304                                
305                                
306                                
307                                
308                                
309                                
310                Leaps and Bounds
311                                
312                                
313                                
314                                
315                                
316                                
317                                
318                                
319                                
320                                
321                                
322                                
323                                
324                                
325                                
326                                
327                                
328                                
329                                
330                                
331                                
332                                
333                                
334                                
335                                
336                                
337                                
338                                
339                                
340                                
341                                
342                                
343                                
344                                
345                                
346                                
347                                
348                                
349                                
350                                
351                                
352                                
353                                
354                                
355                                
356                                
357                                
358                                
359                                
360                                
361                                
362                            NKFM
363                                
364                                
365                                
366                            NKFM
367                                
368                                
369                                
370                                
371                                
372                                
373                          ACCESS
374                                
375                                
376                                
377                                
378                                
379                                
380                                
381                                
382                                
383                                
384                                
385                                
386                                
387                                
388                                
389                                
390                                
391                    Goal Dropped
392                                
393                                
394                                
395                        Goal Met
396                    Goal Dropped
397                        Goal Met
398                                
399                                
400                                
401                                
402                                
403                                
404                                
405                                
406                                
407                                
408                                
409                                
410                                
411                                
412                                
413                                
414                                
415                                
416                                
417                                
418                                
419                                
420                                
421                                
422                                
423                                
424                                
425                                
426                                
427                                
428                                
429                                
430                                
431                                
432                                
433                                
434                                
435                                
436                                
437                                
438                                
439                                
440                                
441                                
442                                
443                                
444                                
445                                
446                          ACCESS
447                                
448                                
449                                
450                                
451                                
452                                
453                                
454                                
455                                
456                                
457                                
458                                
459                                
460                                
461                                
462                                
463                                
464                                
465                                
466                                
467                                
468                          ACCESS
469                                
470                                
471                                
472                                
473                                
474                                
475                                
476                                
477                                
478                                
479                                
480                                
481                                
482                                
483                                
484                                
485                                
486                                
487                                
488                                
489                                
490                                
491                                
492                                
493                                
494                                
495                                
496                                
497                                
498                                
499                                
500                                
501                                
502                                
503                                
504                                
505                                
506                                
507                                
508                                
509                                
510                                
511                                
512                                
513                                
514                                
515                                
516                                
517                                
518                                
519                                
520                                
521                                
522                                
523                                
524                                
525                                
526                                
527                                
528                                
529                                
530                                
531                                
532                                
533                                
534                                
535                                
536                                
537                                
538                                
539                                
540                                
541                                
542                                
543                                
544                                
545                                
546                                
547                                
548                                
549                                
550                                
551                                
552                                
553                                
554                                
555                                
556                                
557                                
558                                
559                                
560                                
561                                
562                                
563                            NKFM
564                 Bib to Backpack
565                                
566                                
567                                
568                                
569                                
570                 Bib to Backpack
571                                
572         Oakland Family Services
573                                
574                                
575                                
576                                
577                                
578                                
579                                
580                                
581                                
582                                
583                                
584                                
585                                
586                                
587                                
588                                
589                                
590                                
591                                
592                 Bib to Backpack
593                                
594  CARE for Southeastern Michigan
595         Oakland Family Services
596                                
597                                
598                                
599                                
600                                
601                                
602                                
603                                
604                                
605                                
606                                
607                                
608                                
609                                
610                                
611                                
612                                
613                                
614                                
615                                
616                                
617                                
618                                
619                                
620                                
621                                
622                                
623                                
624                                
625                                
626                                
627                                
628                                
629                                
630                                
631                                
632                                
633                                
634                                
635                                
636                                
637                                
638                                
639                                
640                                
641                                
642                                
643                                
644                                
645                                
646                                
647                                
648                                
649                                
650                                
651                                
652                                
653                                
654                                
655                                
656                                
657                                
658                                
659                          ACCESS
660                            NKFM
661                                
662                                
663                                
664                          ACCESS
665                                
666                                
667                                
668                                
669                                
670                                
671                                
672                                
673                                
674                                
675                                
676                                
677                                
678                                
679                                
680                 Bib to Backpack
681                                
682                                
683                                
684                                
685                                
686                                
687                                
688                                
689                                
690                                
691                                
692                                
693                                
694                                
695                                
696                                
697                                
698                                
699                                
700                                
701                                
702                                
703                                
704                                
705                                
706                                
707                                
708                                
709                                
710                                
711                                
712                                
713                                
714                                
715                                
716                                
717                                
718                                
719                                
720                                
721                                
722                                
723                                
724                                
725                                
726                                
727                                
728                                
729                                
730                                
731                                
732                                
733                                
734                                
735                                
736                                
737                                
738                                
739                                
740                                
741                                
742                 Bib to Backpack
743                 Bib to Backpack
744                                
745                                
746                                
747                                
748                                
749                                
750                                
751         Oakland Family Services
752                                
753                                
754                                
755                                
756                                
757                                
758                                
759                                
760                                
761                                
762                                
763                                
764                                
765                                
766                                
767                                
768                                
769                                
770                                
771                                
772                                
773                                
774                                
775                                
776                                
777                                
778                                
779                                
780                                
781                                
782                                
783                                
784                                
785                                
786                                
787                                
788                                
789                                
790                                
791                                
792                                
793                                
794                                
795                                
796                                
797                                
798                                
799                                
800                                
801                                
802                                
803                                
804                                
805                                
806                 Bib to Backpack
807                                
808                                
809                                
810                                
811                                
812                                
813                                
814                                
815                                
816                                
817                                
818                                
819                                
820                                
821                                
822                                
823                                
824                                
825                                
826                                
827                                
828                                
829                                
830                                
831                                
832                                
833                                
834                                
835                                
836                                
837                                
838                                
839                                
840                                
841                                
842                                
843                                
844                                
845                                
846                                
847                                
848                                
849                                
850                                
851                                
852                                
853                                
854                                
855                                
856                                
857                                
858                                
859                                
860                                
861                                
862                                
863                                
864                            NKFM
865                                
866                                
867                                
868                                
869                                
870                                
871                                
872                                
873                                
874                                
875                                
876                                
877                                
878                                
879                                
880                                
881                                
882                                
883                                
884                                
885                                
886                                
887                                
888                                
889                                
890                                
891                                
892                                
893                                
894                                
895                                
896                                
897                                
898                                
899                                
900                                
901                                
902                                
903                                
904                                
905                                
906                                
907                                
908                                
909                                
910                                
911                                
912                                
913                                
914                                
915                                
916                                
917                                
918                                
919                                
920                                
921                                
922                                
923                                
924                                
925                                
926                                
927                                
928                                
929                                
930                                
931                                
932                                
933                                
934                                
935                                
936                                
937                                
938                                
939                                
940                                
941                                
942                                
943                                
944                                
945                                
946                                
947                                
948                                
949                                
950                 Bib to Backpack
951                                
952                                
953                                
954                                
955                                
956                                
957                                
958                                
959                                
960                                
961                                
962                                
963                                
964                                
965                                
966                                
967                                
968                                
969                                
970                                
971                                
972                                
973                                
974                                
975                                
976                                
977                                
978                                
979                                
980                                
981                                
982                                
983                                
984                                
985                                
986                                
987                                
988                                
989                                
990                                
991                                
992                                
993                                
994                          ACCESS
995                                
996                                
997                          ACCESS
998                                
999                                
1000                               
1001                               
1002                               
1003                               
1004                               
1005                               
1006                               
1007                               
1008                               
1009                               
1010                               
1011                               
1012                               
1013                               
1014                               
1015                               
1016                               
1017                               
1018                               
1019                               
1020                               
1021                               
1022                               
1023                               
1024                               
1025                               
1026                               
1027                               
1028                               
1029                               
1030                               
1031                           NKFM
1032                               
1033                               
1034                               
1035                               
1036                               
1037                               
1038                               
1039                               
1040                               
1041                               
1042                Bib to Backpack
1043                               
1044                               
1045                Bib to Backpack
1046                               
1047                               
1048                               
1049                           NKFM
1050                               
1051                               
1052                               
1053                               
1054 CARE for Southeastern Michigan
1055                               
1056                               
1057                               
1058                Bib to Backpack
1059                               
1060                               
1061                               
1062                               
1063                           NKFM
1064                               
1065                               
1066                               
1067                               
1068                               
1069                               
1070                               
1071                               
1072                               
1073                               
1074                               
1075                               
1076                               
1077                           NKFM
1078                               
1079                               
1080                               
1081                               
1082                               
1083                               
1084                               
1085                               
1086                               
1087                               
1088                               
1089                Bib to Backpack
1090                               
1091                               
1092                               
1093                               
1094                               
1095                               
1096                               
1097                               
1098                               
1099                               
1100                               
1101                               
1102                               
1103                               
1104                               
1105                               
1106                               
1107                               
1108                               
1109                               
1110                               
1111                               
1112                               
1113                               
1114                               
1115                               
1116                Bib to Backpack
1117                               
1118                           NKFM
1119                               
1120                               
1121                               
1122                           NKFM
1123                               
1124                               
1125                               
1126                               
1127                               
1128                               
1129                               
1130                         ACCESS
1131                       Goal Met
1132                               
1133                       Goal Met
1134                               
1135                               
1136                               
1137                               
1138                               
1139                               
1140                Bib to Backpack
1141                               
1142                               
1143                               
1144                               
1145                Bib to Backpack
1146                               
1147                               
1148                               
1149                Bib to Backpack
1150                               
1151                               
1152                               
1153                               
1154                               
1155                               
1156                               
1157                Bib to Backpack
1158                               
1159                               
1160                               
1161                               
1162                               
1163                               
1164                               
1165                               
1166 CARE for Southeastern Michigan
1167                               
1168                               
1169                               
1170                               
1171                               
1172                               
1173                               
1174                               
1175                         ACCESS
1176                               
1177 CARE for Southeastern Michigan
1178                               
1179                               
1180                               
1181                               
1182                Bib to Backpack
1183                         ACCESS
1184                               
1185                               
1186                               
1187 CARE for Southeastern Michigan
1188                               
1189                               
1190                               
1191                               
1192                Bib to Backpack
1193                               
1194                               
1195                               
1196                               
1197                Bib to Backpack
1198                               
1199                               
1200                               
1201                               
1202                               
1203                               
1204                Bib to Backpack
1205                               
1206                               
1207                               
1208                Bib to Backpack
1209                               
1210                               
1211                               
1212                               
1213                               
1214                               
1215                               
1216                               
1217                               
1218                               
1219                               
1220                               
1221                               
1222                               
1223                               
1224                Bib to Backpack
1225                               
1226                               
1227                               
1228                Bib to Backpack
1229                               
1230                               
1231                Bib to Backpack
1232                               
1233                               
1234                               
1235                               
1236                Bib to Backpack
1237                               
1238                               
1239                               
1240                               
1241                               
1242        Oakland Family Services
1243                               
1244                               
1245                               
1246                               
1247        Oakland Family Services
1248                               
SPR_Immigration <- SPR_Immigration %>%
  filter(grepl("^[0-9]+$", FAMILYID))

unique(SPR_Immigration$FAMILYID)
   [1] "495"  "506"  "508"  "509"  "510"  "515"  "519"  "520"  "521"  "523" 
  [11] "525"  "526"  "527"  "530"  "531"  "532"  "533"  "534"  "535"  "536" 
  [21] "538"  "539"  "540"  "546"  "547"  "550"  "552"  "554"  "556"  "558" 
  [31] "559"  "560"  "561"  "562"  "563"  "564"  "565"  "566"  "567"  "570" 
  [41] "572"  "573"  "574"  "575"  "579"  "580"  "581"  "582"  "583"  "584" 
  [51] "585"  "586"  "587"  "588"  "589"  "590"  "591"  "592"  "593"  "594" 
  [61] "595"  "596"  "597"  "598"  "600"  "601"  "602"  "603"  "604"  "605" 
  [71] "606"  "607"  "608"  "609"  "610"  "611"  "612"  "613"  "614"  "615" 
  [81] "616"  "617"  "618"  "619"  "621"  "622"  "623"  "624"  "625"  "626" 
  [91] "627"  "628"  "629"  "630"  "631"  "633"  "634"  "635"  "636"  "637" 
 [101] "638"  "639"  "640"  "641"  "642"  "643"  "644"  "645"  "646"  "647" 
 [111] "648"  "649"  "650"  "651"  "652"  "655"  "658"  "659"  "661"  "662" 
 [121] "663"  "664"  "666"  "668"  "669"  "674"  "675"  "677"  "678"  "681" 
 [131] "682"  "685"  "687"  "690"  "691"  "693"  "694"  "695"  "698"  "699" 
 [141] "700"  "701"  "702"  "704"  "705"  "706"  "708"  "709"  "710"  "711" 
 [151] "713"  "714"  "715"  "716"  "717"  "719"  "720"  "721"  "722"  "723" 
 [161] "724"  "725"  "727"  "728"  "729"  "730"  "732"  "734"  "736"  "737" 
 [171] "738"  "739"  "740"  "741"  "742"  "744"  "748"  "749"  "750"  "751" 
 [181] "752"  "753"  "754"  "755"  "756"  "757"  "759"  "760"  "761"  "762" 
 [191] "763"  "764"  "765"  "766"  "767"  "768"  "769"  "770"  "771"  "772" 
 [201] "773"  "774"  "776"  "777"  "778"  "779"  "780"  "781"  "782"  "783" 
 [211] "784"  "785"  "786"  "787"  "788"  "789"  "790"  "791"  "792"  "793" 
 [221] "796"  "797"  "798"  "799"  "800"  "801"  "802"  "803"  "804"  "805" 
 [231] "806"  "807"  "808"  "809"  "811"  "812"  "813"  "814"  "815"  "816" 
 [241] "817"  "818"  "830"  "833"  "837"  "838"  "845"  "846"  "847"  "848" 
 [251] "849"  "850"  "851"  "852"  "853"  "855"  "858"  "859"  "860"  "861" 
 [261] "862"  "863"  "864"  "865"  "866"  "867"  "868"  "870"  "871"  "872" 
 [271] "873"  "874"  "875"  "876"  "877"  "878"  "881"  "882"  "885"  "886" 
 [281] "888"  "889"  "890"  "891"  "892"  "893"  "894"  "895"  "896"  "897" 
 [291] "898"  "899"  "900"  "901"  "904"  "905"  "906"  "907"  "908"  "909" 
 [301] "910"  "911"  "912"  "913"  "915"  "916"  "917"  "919"  "920"  "921" 
 [311] "922"  "923"  "924"  "925"  "926"  "927"  "928"  "931"  "933"  "934" 
 [321] "937"  "938"  "939"  "940"  "941"  "942"  "943"  "945"  "946"  "947" 
 [331] "949"  "950"  "951"  "952"  "953"  "954"  "955"  "956"  "957"  "958" 
 [341] "959"  "960"  "961"  "962"  "963"  "964"  "965"  "966"  "967"  "968" 
 [351] "969"  "970"  "971"  "972"  "973"  "974"  "975"  "976"  "977"  "978" 
 [361] "982"  "983"  "984"  "985"  "986"  "987"  "988"  "989"  "990"  "991" 
 [371] "992"  "993"  "994"  "995"  "996"  "999"  "1000" "1008" "1009" "1010"
 [381] "1011" "1012" "1013" "1014" "1015" "1018" "1019" "1020" "1021" "1022"
 [391] "1023" "1024" "1025" "1026" "1027" "1028" "1031" "1032" "1034" "1035"
 [401] "1036" "1037" "1038" "1039" "1040" "1041" "1042" "1043" "1044" "1045"
 [411] "1046" "1047" "1048" "1050" "1051" "1052" "1053" "1054" "1055" "1056"
 [421] "1057" "1058" "1059" "1060" "1061" "1062" "1063" "1064" "1065" "1066"
 [431] "1067" "1068" "1069" "1070" "1071" "1073" "1075" "1076" "1077" "1086"
 [441] "1094" "1095" "1096" "1097" "1098" "1099" "1100" "1101" "1102" "1103"
 [451] "1107" "1108" "1109" "1110" "1111" "1112" "1113" "1114" "1115" "1116"
 [461] "1117" "1118" "1120" "1121" "1123" "1124" "1125" "1126" "1127" "1128"
 [471] "1129" "1130" "1131" "1132" "1133" "1134" "1135" "1136" "1137" "1138"
 [481] "1139" "1142" "1152" "1156" "1158" "1159" "1161" "1162" "1163" "1164"
 [491] "1165" "1167" "1169" "1170" "1176" "1177" "1178" "1180" "1182" "1183"
 [501] "1184" "1185" "1186" "1188" "1189" "1190" "1191" "1192" "1193" "1194"
 [511] "1195" "1196" "1197" "1198" "1205" "1206" "1207" "1208" "1209" "1215"
 [521] "1217" "1219" "1221" "1222" "1223" "1224" "1226" "1227" "1228" "1229"
 [531] "1230" "1231" "1232" "1233" "1234" "1235" "1236" "1237" "1238" "1239"
 [541] "1240" "1241" "1242" "1243" "1244" "1245" "1246" "1247" "1248" "1249"
 [551] "1250" "1251" "1252" "1253" "1254" "1255" "1256" "1257" "1258" "1259"
 [561] "1260" "1261" "1262" "1263" "1264" "1265" "1266" "1267" "1268" "1270"
 [571] "1275" "1276" "1277" "1278" "1282" "1284" "1285" "1286" "1287" "1288"
 [581] "1289" "1290" "1291" "1292" "1293" "1294" "1295" "1296" "1297" "1298"
 [591] "1300" "1301" "1302" "1304" "1305" "1306" "1307" "1308" "1309" "1310"
 [601] "1311" "1314" "1315" "1316" "1317" "1318" "1319" "1320" "1322" "1323"
 [611] "1324" "1325" "1326" "1327" "1328" "1329" "1330" "1331" "1332" "1333"
 [621] "1335" "1336" "1337" "1338" "1339" "1340" "1341" "1342" "1343" "1346"
 [631] "1347" "1348" "1349" "1350" "1351" "1352" "1353" "1354" "1357" "1358"
 [641] "1359" "1360" "1361" "1362" "1363" "1364" "1365" "1368" "1369" "1370"
 [651] "1371" "1372" "1373" "1374" "1375" "1376" "1377" "1378" "1379" "1380"
 [661] "1381" "1382" "1383" "1384" "1385" "1387" "1389" "1390" "1391" "1392"
 [671] "1393" "1394" "1395" "1396" "1397" "1399" "1400" "1401" "1402" "1403"
 [681] "1404" "1406" "1407" "1408" "1409" "1410" "1414" "1419" "1420" "1422"
 [691] "1423" "1424" "1425" "1426" "1427" "1428" "1429" "1430" "1431" "1432"
 [701] "1433" "1434" "1435" "1436" "1437" "1438" "1439" "1440" "1441" "1442"
 [711] "1443" "1444" "1445" "1446" "1447" "1448" "1449" "1450" "1451" "1452"
 [721] "1453" "1454" "1455" "1456" "1457" "1458" "1459" "1461" "1462" "1463"
 [731] "1464" "1465" "1466" "1467" "1468" "1469" "1470" "1471" "1472" "1473"
 [741] "1474" "1475" "1476" "1477" "1478" "1479" "1480" "1481" "1482" "1483"
 [751] "1484" "1485" "1486" "1487" "1488" "1489" "1490" "1491" "1492" "1493"
 [761] "1494" "1495" "1496" "1497" "1498" "1499" "1500" "1501" "1502" "1504"
 [771] "1505" "1506" "1507" "1508" "1509" "1510" "1511" "1512" "1513" "1514"
 [781] "1515" "1516" "1517" "1518" "1519" "1520" "1521" "1522" "1523" "1524"
 [791] "1525" "1526" "1527" "1528" "1529" "1530" "1531" "1532" "1533" "1534"
 [801] "1535" "1536" "1537" "1538" "1539" "1540" "1541" "1542" "1543" "1544"
 [811] "1545" "1546" "1548" "1549" "1550" "1551" "1552" "1553" "1554" "1555"
 [821] "1556" "1557" "1558" "1559" "1560" "1561" "1562" "1563" "1564" "1565"
 [831] "1566" "1567" "1568" "1569" "1570" "1573" "1574" "1575" "1576" "1577"
 [841] "1578" "1579" "1580" "1581" "1582" "1583" "1584" "1585" "1586" "1587"
 [851] "1588" "1589" "1590" "1591" "1592" "1593" "1594" "1595" "1596" "1597"
 [861] "1598" "1599" "1600" "1601" "1602" "1603" "1604" "1605" "1606" "1607"
 [871] "1608" "1609" "1610" "1611" "1612" "1613" "1614" "1615" "1616" "1618"
 [881] "1620" "1621" "1622" "1623" "1625" "1626" "1627" "1628" "1629" "1630"
 [891] "1631" "1632" "1633" "1634" "1635" "1636" "1638" "1639" "1640" "1641"
 [901] "1642" "1643" "1644" "1645" "1646" "1647" "1648" "1649" "1650" "1651"
 [911] "1653" "1654" "1655" "1656" "1657" "1658" "1659" "1660" "1661" "1662"
 [921] "1663" "1664" "1665" "1666" "1667" "1668" "1669" "1670" "1671" "1672"
 [931] "1673" "1674" "1675" "1676" "1677" "1678" "1679" "1680" "1681" "1682"
 [941] "1683" "1684" "1685" "1686" "1687" "1688" "1689" "1690" "1691" "1692"
 [951] "1693" "1694" "1695" "1696" "1697" "1698" "1699" "1700" "1701" "1702"
 [961] "1703" "1704" "1705" "1706" "1709" "1710" "1711" "1712" "1713" "1714"
 [971] "1715" "1716" "1717" "1718" "1719" "1720" "1721" "1722" "1723" "1724"
 [981] "1725" "1726" "1728" "1729" "1730" "1731" "1732" "1733" "1734" "1735"
 [991] "1736" "1737" "1738" "1739" "1740" "1741" "1742" "1744" "1745" "1746"
[1001] "1747" "1748" "1749" "1750" "1751" "1752" "1753" "1754" "1755" "1756"
[1011] "1757" "1758" "1759" "1760" "1761" "1762" "1763" "1764" "1765" "1766"
[1021] "1767" "1768" "1769" "1770" "1771" "1772" "1773" "1774" "1775" "1776"
[1031] "1777" "1778" "1779" "1780" "1781" "1783" "1784" "1786" "1787" "1788"
[1041] "1789" "1790" "1791" "1792" "1793" "1794" "1795" "1796" "1797" "1798"
[1051] "1799" "1800" "1801" "1802" "1803" "1804" "1805" "1806" "1807" "1808"
[1061] "1809" "1810" "1811" "1812" "1813" "1814" "1815" "1816" "1817" "1818"
[1071] "1819" "1820" "1821" "1822" "1823" "1824" "1825" "1826" "1827" "1828"
[1081] "1829" "1830" "1831" "1832" "1833" "1834" "1835" "1836" "1837" "1838"
[1091] "1839" "1840" "1841" "1842" "1843" "1844" "1845" "1846" "1848" "1849"
[1101] "1850" "1851" "1852" "1853" "1854" "1855" "1856" "1857" "1858" "1859"
[1111] "1860" "1861" "1862" "1863" "1864" "1865" "1866" "1867" "1868" "1869"
[1121] "1870" "1871" "1872" "1873" "1874" "1875" "1876" "1877" "1878" "1879"
[1131] "1880" "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889"
[1141] "1890" "1891" "1893" "1894" "1895" "1896" "1897" "1898" "1899" "1900"
[1151] "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909" "1910"
[1161] "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919" "1920"
[1171] "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929" "1930"
[1181] "1931" "1932" "1933" "1934" "1935" "1936" "1938" "1939" "1940" "1941"
[1191] "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949" "1950" "1951"
[1201] "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959" "1960" "1961"
[1211] "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969" "1970" "1971"
[1221] "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979" "1980" "1981"
[1231] "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989" "1990" "1991"
[1241] "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999" "2000" "2001"
[1251] "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009" "2010" "2011"
[1261] "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019" "2020" "2021"
[1271] "2022" "2023" "2024" "2025" "2026" "2027" "2028" "2029" "2030" "2031"
[1281] "2033" "2034" "2035" "2036" "2038" "2039" "2040" "2041" "2042" "2043"
[1291] "2044" "2045" "2046" "2047" "2048" "2049" "2050" "2051" "2052" "2053"
[1301] "2054" "2055" "2056" "2057" "2058" "2059" "2060" "2061" "2062" "2063"
[1311] "2064" "2065" "2066" "2067" "2068" "2069" "2070" "2071" "2072" "2074"
[1321] "2075" "2076" "2077" "2078" "2079" "2081" "2082" "2083" "2084" "2085"
[1331] "2086" "2087" "2088" "2089" "2090" "2091" "2092" "2093" "2094" "2095"
[1341] "2096" "2097" "2098" "2099" "2100" "2101" "2102" "2103" "2104" "2105"
[1351] "2106" "2107" "2108" "2109" "2110" "2111" "2112" "2113" "2114" "2115"
[1361] "2116" "2117" "2118" "2119" "2120" "2121" "2122" "2123"
table(SPR_Immigration$FAMILYID)

1000 1008 1009 1010 1011 1012 1013 1014 1015 1018 1019 1020 1021 1022 1023 1024 
   2    1    2    2    2    2    3    5    5    3    2    2  216    2    3    4 
1025 1026 1027 1028 1031 1032 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 
   2    2   18    2    3    2   13    2   10    3    5    2    3    5    8    3 
1044 1045 1046 1047 1048 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 
   3   54    2    2    4    3    4    2    4    2    3    6    9    2    5    2 
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1073 1075 1076 1077 1086 
   5    5    3    3    2    6    3    3   21    3    3    2  135    3  135    1 
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1107 1108 1109 1110 1111 1112 
   3    4    3    3    2    1    4    3    6    2    7    2    6    2    6    3 
1113 1114 1115 1116 1117 1118 1120 1121 1123 1124 1125 1126 1127 1128 1129 1130 
   7    2    4    2    4    4    5    2    2    2    9    4   81    1    6    4 
1131 1132 1133 1134 1135 1136 1137 1138 1139 1142 1152 1156 1158 1159 1161 1162 
   2    4    3    3    4    2    9    2   10   14    2    2  198    1   27    5 
1163 1164 1165 1167 1169 1170 1176 1177 1178 1180 1182 1183 1184 1185 1186 1188 
  10    3    3    2    4    2    4  153    3    2    6    5    2    3    3    7 
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1205 1206 1207 1208 1209 1215 
   3    3    4    3    6    2   81    5    3   81    3    6    5    2    4    6 
1217 1219 1221 1222 1223 1224 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 
   2    4    4    5    3    3    1    2    2    7    4    3    4    5    8    2 
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 
   4    2    4    3    3    2    4    3    6    2    2    2    3    2    6    2 
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 
   2    3    2    2    3    4    2    7    3    2    2    3    3    2    2    2 
1268 1270 1275 1276 1277 1278 1282 1284 1285 1286 1287 1288 1289 1290 1291 1292 
   2    6    4    4   10    3    4    2  135    2    2    2    1    1    1    1 
1293 1294 1295 1296 1297 1298 1300 1301 1302 1304 1305 1306 1307 1308 1309 1310 
   1    1    3   90    2  108    2    3    2    2    3    3    2    2    2    1 
1311 1314 1315 1316 1317 1318 1319 1320 1322 1323 1324 1325 1326 1327 1328 1329 
   5    6    2    2    3    1    2    2    3    2    2    3    2    2    3    6 
1330 1331 1332 1333 1335 1336 1337 1338 1339 1340 1341 1342 1343 1346 1347 1348 
   5    2    2    2    2    2    2    2    9    3    2    2    4    2    2    2 
1349 1350 1351 1352 1353 1354 1357 1358 1359 1360 1361 1362 1363 1364 1365 1368 
   3    4    5    3    4    7    2  108    5   90    3    2    2    2    4    2 
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 
   2   27    4    1    2    4    3   30    4   24    6    3   54   30    2    2 
1385 1387 1389 1390 1391 1392 1393 1394 1395 1396 1397 1399 1400 1401 1402 1403 
   3    2    2    4    2    3    3    2    2   18    3   30    2    2    2    3 
1404 1406 1407 1408 1409 1410 1414 1419 1420 1422 1423 1424 1425 1426 1427 1428 
   1    1    2    3    4    3    3    4    2    1    1   20   15   20    4    3 
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 
   4    2    4    4    4    2    4    5    5    7    4    5    4    2    6    4 
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1461 
   4    9    2    1    6    1    1    1    4    2    3    2    3    4    6    2 
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 
   3    2    2    2    2    2   14    4    2    2    1    2    1    1    2    6 
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 
  12   18    3    3    3    1    2    7    2    3    2    6    2    3    2    5 
1494 1495 1496 1497 1498 1499 1500 1501 1502 1504 1505 1506 1507 1508 1509 1510 
   5    8    3    5    2    6    3   54    3    3    3    2    6    3    2    1 
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 
   3    3    3    3    2    3    2    2    2    2    3    2    2    3    6    6 
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 
   5   18    4    3    4    1    4   72    4    3    3    5    3    3    3    2 
1543 1544 1545 1546 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 
   4   11    3   16    4    3    3    3    3    6    2    5    4    2    3    2 
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1573 1574 1575 1576 1577 
   2    2    6    6    4    3    2    2    2   18    7    2    2    2    2   12 
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 
   3    2    2    2    3    4   18    2   54    3    3    2    3   15    5   20 
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 
   2   24    1    2    3    4    4    2    2    2    3    6    2    2   18    2 
1610 1611 1612 1613 1614 1615 1616 1618 1620 1621 1622 1623 1625 1626 1627 1628 
  36    3    2    3    2    2    2    2    2    8    2    4    1    2    3   27 
1629 1630 1631 1632 1633 1634 1635 1636 1638 1639 1640 1641 1642 1643 1644 1645 
   2    2    2    2    9    2    2   18    3    6    4    5    2    2    2    4 
1646 1647 1648 1649 1650 1651 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 
   3    2    2    3    2    2    2    2    2    4    4   18    4    2    2    2 
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 
   2    2    4    5    3    4    5    2   12    8    2    4    2    4    2   12 
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 
   4    2    2    2    3    2    2    2   15    7    5    2    3    2    8    4 
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1709 1710 1711 1712 
  18    3    2    3    5    9    2    8    3    2    2    3    5    2    3    3 
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1728 1729 
   3    2    2   20    4   12    4    3    3    6    2   12    1    4    2    2 
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1744 1745 1746 
   2    2    2    2    2    2    3    2    2    2    1    2    2    2   16    1 
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 
   2   12    1    2    3    2    2    2    2    2    5    2   11    2   10    2 
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 
   3    2    3    3    5    3   15    5   18    6   20    8    2    2    3    2 
1779 1780 1781 1783 1784 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 
  12    6    4   10    2   12    2    4    2    2    2    2    2    4    3    4 
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 
   2    5    2    3    6    3    7    4    5    5    6    8    5    2    4   12 
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 
   4    2    3    2    4    5    2    2    4    3   14    2    6    6    2    4 
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 
   3    2    3    3    2    6    2    3    4    5    2    2    2    2    2    2 
1845 1846 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 
   5    3    3    2    3    9    2   13    3    9    3    3    2    2    2    2 
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 
   3    2    2    2    2    2    2    2    2    2    2    2    2    2    2    3 
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1893 1894 
   2    2    2    2    2    2    2    2    2    2    2    2    2    2    3    2 
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 
   4    1    2    2    2    2    2    2    2    2    2    2    2    2    4    2 
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 
   2    2    2    2    2    2    5    2    3    2    3    3    2    2    2    2 
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1938 1939 1940 1941 1942 1943 
   5    2    4    2    2    3    8    4    2    2    3    2    9    2    2    2 
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 
   2    5    5    3   10    2    3    2    3    2    2    2    2    2    2    4 
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 
   3    5    4    4    7    6    2    5    6    2    7    2    4    2    2    2 
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 
  16    3    2    5    3    2    7    4    2    2    2    2    2    2    2    2 
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
   2    2    4    4    3    2    2    2    2    2    2    2    2    2    2    2 
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 
   2    2    2    2    2    2    2    2    1    3    6    2    2    3    2    3 
2024 2025 2026 2027 2028 2029 2030 2031 2033 2034 2035 2036 2038 2039 2040 2041 
   2    2    1    2    2    2    2    2    3    2    5    4   16    2    2    2 
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 
   2    2    2    4    3    5    5    2    2    2    2    2    2    2    2    2 
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2074 
   2    2    3    4    2    2    3    4    4    2    2    2    2    2    3    3 
2075 2076 2077 2078 2079 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 
   2    3    4    4    3    3    4    2    2    2    2    2    2    2    3    3 
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 
   5    2    3    2    3    2    2    2    2    2    2    2    3    4    2    2 
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 
   2    3    3    3    2    2    2    2    5    2    4    3    2    1    1    1 
 495  506  508  509  510  515  519  520  521  523  525  526  527  530  531  532 
   2    8    3  258  298  345    7   15    8   36   32  171   17  243  240   33 
 533  534  535  536  538  539  540  546  547  550  552  554  556  558  559  560 
  18   13   11   66   20   72    6    1    8    1    7    3    2    2   12    8 
 561  562  563  564  565  566  567  570  572  573  574  575  579  580  581  582 
   2   36    2    2    2    4    2    2    2    2  162    9    4    5    5    3 
 583  584  585  586  587  588  589  590  591  592  593  594  595  596  597  598 
  20   20    7   18   18    6    2   49    2    3    6    2  162    6    2    3 
 600  601  602  603  604  605  606  607  608  609  610  611  612  613  614  615 
   4    6    4    9    2   28    2   27    3    4    4    7    2    5    3    4 
 616  617  618  619  621  622  623  624  625  626  627  628  629  630  631  633 
  11    7    2    5    3    3    6    2    3    3    3   40    4    2    6    4 
 634  635  636  637  638  639  640  641  642  643  644  645  646  647  648  649 
   6    6    4    4   35    2    3    4    2   40    5    4    2    3    2    8 
 650  651  652  655  658  659  661  662  663  664  666  668  669  674  675  677 
   8    4    8   16   12    6    3   17    6    3    3  135    2    2    3    6 
 678  681  682  685  687  690  691  693  694  695  698  699  700  701  702  704 
   5   18    2    2    7    2    4    2   72    2    2    2    5    3    8    6 
 705  706  708  709  710  711  713  714  715  716  717  719  720  721  722  723 
   3    2    2   36    6    4    2    2   72    4   72   19    3  189    4    2 
 724  725  727  728  729  730  732  734  736  737  738  739  740  741  742  744 
   4    5    4    2    2    2    2    3    3   54    4    4    4   36    2    4 
 748  749  750  751  752  753  754  755  756  757  759  760  761  762  763  764 
  36    2    2    7    2    2    2    4    2    4    2  126    2    3    3    3 
 765  766  767  768  769  770  771  772  773  774  776  777  778  779  780  781 
   4  180  192    2   23    2    2    3    3    3    5   27    4   10  108    4 
 782  783  784  785  786  787  788  789  790  791  792  793  796  797  798  799 
   2    2   90    2    2    2    4    3    2    9    2    5    2    3    2    5 
 800  801  802  803  804  805  806  807  808  809  811  812  813  814  815  816 
   3    4    3  108    2    2    2    2    2    2    2   18    2    3    3    2 
 817  818  830  833  837  838  845  846  847  848  849  850  851  852  853  855 
   2    3    7    2    3  108    3    2    5    2    2    2    2    2    2    6 
 858  859  860  861  862  863  864  865  866  867  868  870  871  872  873  874 
 108    3    5    1    6   10    3    3    4    2    2   18    2    2    2   18 
 875  876  877  878  881  882  885  886  888  889  890  891  892  893  894  895 
   2    8    2    7    1    1    2    1    9    1   12    3   27    2    1  162 
 896  897  898  899  900  901  904  905  906  907  908  909  910  911  912  913 
   1   17    1    2    1    2    4    2    6    3    2    3    4    3    7    2 
 915  916  917  919  920  921  922  923  924  925  926  927  928  931  933  934 
   3    9    2    6    4    2   12    2    2    2    2    5    2   18    1    6 
 937  938  939  940  941  942  943  945  946  947  949  950  951  952  953  954 
   2  108    2    2    3    5    2    5    2    2    2   10    3    2    3    2 
 955  956  957  958  959  960  961  962  963  964  965  966  967  968  969  970 
   2    3    2    5    4    3    4    7    3   11    3    1  120    2  135    2 
 971  972  973  974  975  976  977  978  982  983  984  985  986  987  988  989 
 168    2    2    2    6    4    2    3  135    2    2    6    3    3    2   40 
 990  991  992  993  994  995  996  999 
   3    2   24    5   48    1    2    2 
SPR_Immigration <- SPR_Immigration %>%
  mutate(FAMILYID = as.integer(FAMILYID))

SPR_Immigration.1 <- SPR_Immigration %>%
  distinct(FAMILYID, .keep_all = TRUE)




names(ASQ_Personal_Social)
 [1] "FAMILYID"      "DATE_TAKE"     "PARTTYPE2"     "WAVE"         
 [5] "AGERANGE"      "DATETAKEN_201" "PS2"           "PS4"          
 [9] "PS6"           "PS8"           "PS9"           "PS10"         
[13] "PS12"          "PS14"          "PS16"          "PS18"         
[17] "PS20"          "PS22"          "PS24"          "PS27"         
[21] "PS30"          "PS33"          "PS36"          "PS42"         
[25] "PS48"          "PS54"          "PS60"          "PS_Score"     
SPR_ASQ_P_S <-ASQ_Personal_Social[,c(1,4,28)]
names(SPR_ASQ_P_S)
[1] "FAMILYID" "WAVE"     "PS_Score"
str(SPR_ASQ_P_S)
'data.frame':   2118 obs. of  3 variables:
 $ FAMILYID: int  572 572 574 574 579 579 580 580 580 581 ...
 $ WAVE    : Factor w/ 3 levels "Baseline","6 Months",..: 2 1 2 1 2 1 3 2 1 3 ...
 $ PS_Score: num  55 60 45 60 50 50 50 50 50 60 ...
names(IBQ)
[1] "FAMILYID"           "PARTICIPANTID"      "PARTTYPE2"         
[4] "PROGRAMNAME"        "WAVE"               "DATE"              
[7] "IBQ_NEGATIVESCORE"  "IBQ_EFFORTFULSCORE"
SPR_IBQ <-IBQ[,c(1,2,5,7,8)]
names(SPR_IBQ)
[1] "FAMILYID"           "PARTICIPANTID"      "WAVE"              
[4] "IBQ_NEGATIVESCORE"  "IBQ_EFFORTFULSCORE"
names(ECBQ)
[1] "FAMILYID"            "PARTICIPANTID"       "PARTTYPE2"          
[4] "PROGRAMNAME"         "WAVE"                "DATE"               
[7] "ECBQ_NEGATIVESCORE"  "ECBQ_EFFORTFULSCORE"
SPR_ECBQ<-ECBQ[,c(1,2,5,7,8)]
names(SPR_ECBQ)
[1] "FAMILYID"            "PARTICIPANTID"       "WAVE"               
[4] "ECBQ_NEGATIVESCORE"  "ECBQ_EFFORTFULSCORE"
names(CBQ)
[1] "FAMILYID"           "PARTICIPANTID"      "PARTTYPE2"         
[4] "PROGRAMNAME"        "WAVE"               "DATE"              
[7] "CBQ_NEGATIVESCORE"  "CBQ_EFFORTFULSCORE"
SPR_CBQ <-CBQ[,c(1,2,5,7,8)]
names(SPR_CBQ)
[1] "FAMILYID"           "PARTICIPANTID"      "WAVE"              
[4] "CBQ_NEGATIVESCORE"  "CBQ_EFFORTFULSCORE"

Define data structure for all 7 SPR datasets

list(
  str(SPR_Demographics),
  str(SPR_Immigration.1),
  str(SPR_ASSM),
  str(SPR_ASQ_P_S),
  str(SPR_IBQ),
  str(SPR_ECBQ),
  str(SPR_CBQ)
  
)
'data.frame':   992 obs. of  20 variables:
 $ FAMILYID      : int  572 573 574 579 580 581 582 583 584 585 ...
 $ PARTICIPANTID : int  105899 105901 105903 106524 106529 106551 106555 106573 106577 106580 ...
 $ PARTTYPE2     : Ord.factor w/ 2 levels "Control"<"Intervention": 2 2 2 1 2 2 1 2 2 1 ...
 $ PROGRAMNAME   : Factor w/ 5 levels "ACCESS","CARE",..: 5 5 5 1 1 1 1 1 1 1 ...
 $ CG_AGE_Intake : num  29.7 28.4 47.7 32.4 28.8 ...
 $ FEMALE        : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 2 2 2 2 2 ...
 $ AGEFOCUSINTAKE: num  3.41 1.68 4.76 4.7 3.52 ...
 $ FOCUSFEMALE   : Factor w/ 2 levels "Male","Female": 1 2 1 1 1 2 1 2 2 2 ...
 $ AMINDR        : Factor w/ 2 levels "No","Yes": 1 1 1 1 2 1 1 1 1 1 ...
 $ ASIANR        : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
 $ BLACKR        : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 2 1 1 1 ...
 $ HISPR         : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 1 1 1 1 ...
 $ EASTR         : Factor w/ 2 levels "No","Yes": 1 1 1 2 1 1 1 2 1 1 ...
 $ HAWAIIR       : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
 $ WHITER        : Factor w/ 2 levels "No","Yes": 1 2 2 1 2 1 1 1 2 2 ...
 $ OTHERR        : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 2 ...
 $ PRIMEENG      : Factor w/ 2 levels "No","Yes": 2 2 2 1 1 1 1 1 1 1 ...
 $ PRIMESPAN     : Factor w/ 2 levels "No","Yes": 1 1 1 1 2 2 1 1 1 1 ...
 $ PRIMEARAB     : Factor w/ 2 levels "No","Yes": 1 1 1 2 1 1 2 2 2 2 ...
 $ PRIMEOTH      : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
'data.frame':   1368 obs. of  3 variables:
 $ FAMILYID            : int  495 506 508 509 510 515 519 520 521 523 ...
 $ Immigrant_Status    : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
 $ HowLongInUSIfNotBorn: num  NA NA NA NA NA NA NA NA NA NA ...
'data.frame':   2311 obs. of  25 variables:
 $ FAMILYID            : int  572 572 573 574 574 574 579 579 579 580 ...
 $ PARTICIPANTID       : int  105899 105899 105901 105903 105903 105903 106524 106524 106524 106529 ...
 $ WAVE                : Factor w/ 3 levels "Baseline","6 Months",..: 2 1 1 3 2 1 3 2 1 3 ...
 $ BASENEEDS2          : num  4.12 3.67 4 2.5 2.12 ...
 $ ASSM_HOUSING        : num  4 3 3 2 3 2 5 5 5 4 ...
 $ ASSM_INCOME         : num  3 2 3 2 2 2 4 5 5 3 ...
 $ ASSM_FOOD           : num  1 2 1 3 1 1 1 5 5 1 ...
 $ ASSM_ADULTED        : num  5 5 5 3 3 3 3 5 5 2 ...
 $ ASSM_EMPLOYMENT     : num  NA 1 NA NA NA NA NA NA NA NA ...
 $ ASSM_TRANSPORTATION : num  5 5 5 3 1 1 4 4 4 4 ...
 $ ASSM_HEALTHCARE     : num  5 5 5 5 5 5 5 5 5 5 ...
 $ ASSM_SAFETY         : num  5 5 5 1 1 1 5 5 1 5 ...
 $ ASSM_LIFESKILLS     : num  5 5 5 1 1 NA 5 5 5 5 ...
 $ ASSM_PARENTS2       : num  5 5 5 2.33 3 ...
 $ ASSM_CHILDCARE      : num  NA NA NA 1 NA 1 NA 5 5 NA ...
 $ ASSM_PARENTINGSKILLS: num  5 5 5 1 1 4 5 3 3 5 ...
 $ ASSM_EDUCATE        : num  5 5 5 5 5 NA 5 5 5 5 ...
 $ ASSM_SOCIAL2        : num  4.5 3.5 3.5 1 1.5 2 4.5 5 5 4.5 ...
 $ ASSM_SOCIAL         : num  5 5 5 1 2 2 5 5 5 5 ...
 $ ASSM_COMMUNINVOLV   : num  4 2 2 1 1 2 4 5 5 4 ...
 $ ASSM_BEHAVE2        : num  5 4 5 3.5 4 3 5 5 5 5 ...
 $ ASSM_MENTAL         : num  5 5 5 3 3 1 5 5 5 5 ...
 $ ASSM_SUBABUSE       : num  5 5 5 5 5 5 5 5 5 5 ...
 $ ASSM_DISABILITIES   : num  5 5 5 5 3 5 5 5 5 5 ...
 $ ASSM_LEGAL          : num  5 1 5 1 5 1 5 5 5 5 ...
'data.frame':   2118 obs. of  3 variables:
 $ FAMILYID: int  572 572 574 574 579 579 580 580 580 581 ...
 $ WAVE    : Factor w/ 3 levels "Baseline","6 Months",..: 2 1 2 1 2 1 3 2 1 3 ...
 $ PS_Score: num  55 60 45 60 50 50 50 50 50 60 ...
'data.frame':   398 obs. of  5 variables:
 $ FAMILYID          : int  585 585 586 586 592 592 594 595 601 610 ...
 $ PARTICIPANTID     : int  111516 111516 106590 106590 106666 106665 106674 106783 107035 107281 ...
 $ WAVE              : Factor w/ 3 levels "Baseline","6 Months",..: 3 2 2 1 2 1 1 1 1 1 ...
 $ IBQ_NEGATIVESCORE : num  4.58 3.56 2.83 2.58 2.08 ...
 $ IBQ_EFFORTFULSCORE: num  6.08 6.08 4.17 4.91 6.17 ...
'data.frame':   918 obs. of  5 variables:
 $ FAMILYID           : int  582 582 583 584 586 587 587 587 589 589 ...
 $ PARTICIPANTID      : int  106556 106556 106574 106578 106590 106634 106634 106634 106659 106659 ...
 $ WAVE               : Factor w/ 3 levels "Baseline","6 Months",..: 2 1 1 1 3 3 2 1 3 2 ...
 $ ECBQ_NEGATIVESCORE : num  2.1 3 4.17 3.17 4.08 ...
 $ ECBQ_EFFORTFULSCORE: num  4 4.5 5.33 5.33 5.58 ...
'data.frame':   863 obs. of  5 variables:
 $ FAMILYID          : int  572 572 574 574 574 579 579 579 580 580 ...
 $ PARTICIPANTID     : int  105900 105900 105904 105904 105904 106525 106525 106525 106530 106530 ...
 $ WAVE              : Factor w/ 3 levels "Baseline","6 Months",..: 2 1 3 2 1 3 2 1 3 2 ...
 $ CBQ_NEGATIVESCORE : num  1.67 4 4.33 3.42 3.08 ...
 $ CBQ_EFFORTFULSCORE: num  7 6.42 2.92 3.17 2.67 ...
[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
NULL

[[6]]
NULL

[[7]]
NULL

Merge Across all 7 data sets

wave_levels <- c("Baseline", "6 Months", "12 Months")
wave_labels <- c("Baseline", "6 Months", "12 Months")


format_wave <- function(df) {
  df %>%
    mutate(WAVE = as.factor(WAVE)) %>%
    mutate(WAVE = fct_relevel(WAVE, wave_levels))
}

SPR_ASSM <- format_wave(SPR_ASSM)
SPR_ASQ_P_S <- format_wave(SPR_ASQ_P_S)
SPR_IBQ <- SPR_IBQ %>%
  mutate(WAVE = factor(WAVE, levels = wave_levels))

SPR_ECBQ <- format_wave(SPR_ECBQ)
SPR_CBQ <- SPR_CBQ %>%
  mutate(WAVE = factor(WAVE, levels = wave_levels))

SPR_Demographics_full <- SPR_Demographics %>%
  left_join(SPR_Immigration.1, by = "FAMILYID")


stopifnot(nrow(SPR_Demographics_full) <= 992)


SPR_Long <- SPR_ASSM %>%
  left_join(SPR_ASQ_P_S, by = c("FAMILYID", "WAVE")) %>%
  left_join(SPR_IBQ, by = c("FAMILYID", "PARTICIPANTID", "WAVE")) %>%
  left_join(SPR_ECBQ, by = c("FAMILYID", "PARTICIPANTID", "WAVE")) %>%
  left_join(SPR_CBQ, by = c("FAMILYID", "PARTICIPANTID", "WAVE")) %>%
  left_join(SPR_Demographics_full, by = c("FAMILYID", "PARTICIPANTID"))

num_ids <- SPR_Long %>%
  distinct(FAMILYID, PARTICIPANTID) %>%
  nrow()

total_rows <- nrow(SPR_Long)

stopifnot(num_ids <= 992)
stopifnot(total_rows <= 2976)


SPR_Long <- SPR_Long %>%
  mutate(WAVE = factor(WAVE, levels = wave_levels, labels = wave_labels, ordered = TRUE))


cat("Unique IDs:", num_ids, "\n")
Unique IDs: 969 
cat("Total rows:", total_rows, "\n")
Total rows: 2311 
write_sav(SPR_Long,"SPR_Long.sav")