= faithful
data datatable(data,rownames = FALSE)
第四章 数据分布可视化
1 解释原始数据
faithful
是R语言中自带的一个经典数据集,它记录了美国黄石国家公园老忠实间歇泉(Old Faithful geyser)的喷发数据。这个数据集经常被用于统计教学和数据分析示例。faithful
数据集包含两个变量,共有272个观测值。eruptions
: 喷发持续时间,连续数值变量,以分钟为单位,范围:1.6分钟到5.1分钟。waiting
: 两次喷发之间的等待时间,连续数值变量,以分钟为单位,范围:43分钟到96分钟。
2 单变量直方图
2.1 绘图要求
利用
geom_histogram(aes(y=..density..))
绘制eruptions
的直方图,使用预设主题:mytheme;利用
geom_rug()
为直方图添加地毯图;利用
geom_density()
为直方图添加核密度曲线;利用
annotate()
在直方图标注峰度和偏度信息;利用
geom_vline()
为直方图添加一条垂直的均值参考线;利用
geom_point()
在横轴上添加一个中位数参考点,并在点上方添加文字注释
2.2 作图代码
library(ggplot2)
library(dplyr)
# 预设主题
<- theme_bw() +
mytheme theme(
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "grey90"),
panel.grid.minor = element_blank()
)
# 计算峰度和偏度
<- function(x) {
skewness <- length(x)
n sum((x - mean(x))^3)/n)/(sum((x - mean(x))^2)/n)^(3/2)
(
}
<- function(x) {
kurtosis <- length(x)
n sum((x - mean(x))^4)/n)/(sum((x - mean(x))^2)/n)^2 - 3
(
}
<- skewness(faithful$eruptions)
skew_val <- kurtosis(faithful$eruptions)
kurt_val
# 计算均值和中位数
<- mean(faithful$eruptions)
mean_val <- median(faithful$eruptions)
median_val
# 绘制图形
ggplot(faithful, aes(x = eruptions)) +
geom_histogram(aes(y = ..density..),
bins = 30,
fill = "steelblue",
color = "white",
alpha = 0.8) +
geom_rug(sides = "b", color = "steelblue", alpha = 0.3) +
geom_density(color = "red", linewidth = 1) +
geom_vline(xintercept = mean_val,
linetype = "dashed",
color = "darkgreen",
linewidth = 1) +
geom_point(aes(x = median_val, y = 0),
shape = 17,
size = 4,
color = "purple") +
annotate("text",
x = Inf, y = Inf,
label = paste0("偏度: ", round(skew_val, 2), "\n峰度: ", round(kurt_val, 2)),
hjust = 1.1, vjust = 1.1,
size = 5,
color = "black") +
annotate("text",
x = median_val, y = 0.1,
label = "中位数",
vjust = -0.5,
color = "purple") +
labs(title = "Old Faithful 间歇泉喷发持续时间分布",
x = "喷发持续时间 (分钟)",
y = "密度") +
mytheme
2.3 图形观察和代码编写的心得体会
3 叠加直方图和镜像直方图
3.1 绘图要求
绘制
eruptions
和waiting
两个变量的叠加直方图和镜像直方图,使用预设主题:mytheme。将数据转化为长型数据再作叠加直方图,利用
scale_fill_brewer()
将叠加直方图配色方案改为set3
。镜像直方图中
eruptions
在正方向,waiting
在负方向,直方数bins=30
,并添加文字标签作标签。两种图都需要针对原始数据作图和标准标准化数据作图,可以使用
scale()
函数对变量标准化,分类标准化可以使用plyr::ddply()
函数。
3.2 叠加直方图代码
<- data |> select(eruptions,waiting) |>
df gather(eruptions,waiting,key=喷发持续时间,value=等待时间) # 融合数据
::datatable(df,rownames = FALSE) DT
<- data |>
df gather(eruptions,waiting,key=指标,value=指标值) %>% # 融合数据
ddply("指标",transform,标准化值=scale(指标值))
<-ggplot(df)+aes(x=指标值,y=..density..,fill=指标)+
p1geom_histogram(position="identity",color="gray60",alpha=0.5)+
scale_fill_brewer(palette = "set3")+
theme(legend.position=c(0.8,0.8),# 设置图例位置
legend.background=element_rect(fill="grey90",color="grey"))+
# 设置图例背景色和边框颜色
ggtitle("(a) 原始数据叠加直方图")
<-ggplot(df)+aes(x=标准化值,y=..density..,fill=指标)+
p2geom_histogram(position="identity",color="gray60",alpha=0.5)+
scale_fill_brewer(palette = "set3")+
theme(legend.position=c(0.8,0.8),# 设置图例位置
legend.background=element_rect(fill="grey90",color="grey"))+
# 设置图例背景色和边框颜色
ggtitle("(b) 标准化数据叠加直方图")
grid.arrange(p1,p2,ncol=2) # 组合图形
3.3 镜像直方图代码
<- data |>
df mutate(
std.eruptions=scale(eruptions),
std.waiting=scale(waiting)
)
<-ggplot(df)+aes(x=x)+
p1geom_histogram(aes(x=eruptions,y=..density..),bins=30,color="grey50",fill="red",alpha=0.3)+ # 绘制AQI的直方图(上图)
geom_label(aes(x=30,y=0.2),label="eruptions",color="red")+ # 添加标签
geom_histogram(aes(x=waiting,y=-..density..),bins=30,color="grey50",fill="blue",alpha=0.3)+ # 绘制PM2.5的直方图(下图)
geom_label(aes(x=60,y=-0.1),label="waiting",color="blue")+ # 添加标签
xlab("指标值")+ggtitle("(a) 原始数据镜像直方图")
<-ggplot(df)+aes(x=x)+
p2geom_histogram(aes(x=std.eruptions,y=..density..),bins=30,color="grey50",fill="red",alpha=0.3)+ # 绘制AQI的直方图(上图)
geom_label(aes(x=-0.5,y=0.3),label="eruptions",color="red")+ # 添加标签
geom_histogram(aes(x=std.waiting,y=-..density..),bins=30,color="grey50",fill="blue",alpha=0.3)+ # 绘制PM2.5的直方图(下图)
geom_label(aes(x=-0.5,y=-0.3),label="waiting",color="blue")+ # 添加标签
xlab("指标值")+ggtitle("(b) 标准化数据镜像直方图")
grid.arrange(p1,p2,ncol=2) # 组合图形
3.4 图形观察和代码编写的心得体会
4 核密度图
4.1 绘图要求
绘制eruptions和 waiting两个变量的分组核密度图、分面核密度图和镜像核密度图。
分组核密度图,采用
geom_density(position="identity")
。分面核密度图,采用
geom_density()+facet_wrap(~xx,scale="free")
。镜像核密度图中
eruptions
在正方向,waiting
在负方向,直方数bins=30
,并添加文字标签作标签。分组核密度图和镜像核密度图需要针对原始数据作图和标准标准化数据作图。
4.2 分组核密度图
library(ggplot2)
library(tidyr)
library(dplyr)
library(plyr)
# 预设主题
<- theme_bw() +
mytheme theme(plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "grey90"),
panel.grid.minor = element_blank())
# 将数据转为长格式
<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "variable",
values_to = "value")
# 标准化数据(按变量分类标准化)
<- ddply(faithful_long, .(variable), transform,
faithful_std value_std = scale(value)[,1])
# 原始数据分组核密度图
<- ggplot(faithful_long, aes(x = value, fill = variable, color = variable)) +
p1 geom_density(position = "identity", alpha = 0.5) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Set2") +
labs(title = "分组核密度图(原始数据)",
x = "值", y = "密度") +
mytheme
# 标准化数据分组核密度图
<- ggplot(faithful_std, aes(x = value_std, fill = variable, color = variable)) +
p2geom_density(position = "identity", alpha = 0.5) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Set2") +
labs(title = "分组核密度图(标准化数据)",
x = "标准化值", y = "密度") +
mytheme
# 合并图形
library(patchwork)
+ p2 p1
4.3 分面核密度图
# 预设主题
<- theme_bw() +
mytheme theme(plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "grey90"),
panel.grid.minor = element_blank())
# 将数据转为长格式
<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "variable",
values_to = "value")
# 标准化数据(按变量分类标准化)
<- ddply(faithful_long, .(variable), transform,
faithful_std value_std = scale(value)[,1])
# 原始数据分面核密度图
<- ggplot(faithful_long, aes(x = value)) +
p1 geom_density(fill = "steelblue", alpha = 0.5) +
facet_wrap(~variable, scales = "free") +
labs(title = "分面核密度图(原始数据)",
x = "值", y = "密度") +
mytheme
# 标准化数据分面核密度图
<- ggplot(faithful_std, aes(x = value_std)) +
p2 geom_density(fill = "salmon", alpha = 0.5) +
facet_wrap(~variable, scales = "free") +
labs(title = "分面核密度图(标准化数据)",
x = "标准化值", y = "密度") +
mytheme
# 合并图形
library(patchwork)
+ p2 p1
4.4 镜像核密度图
<- theme_bw() +
mytheme theme(plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "grey90"),
panel.grid.minor = element_blank())
# 将数据转为长格式
<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "variable",
values_to = "value")
# 标准化数据(按变量分类标准化)
<- ddply(faithful_long, .(variable), transform,
faithful_std value_std = scale(value)[,1])
# 原始数据镜像核密度图
<- ggplot() +
p1 # eruptions (正方向)
geom_density(data = subset(faithful_long, variable == "eruptions"),
aes(x = value, y = ..density..),
fill = "#66C2A5", alpha = 0.7) +
# waiting (负方向)
geom_density(data = subset(faithful_long, variable == "waiting"),
aes(x = value, y = -..density..),
fill = "#FC8D62", alpha = 0.7) +
# 添加标签
annotate("text", x = c(2, 80), y = c(0.5, -0.02),
label = c("eruptions", "waiting"),
color = c("#66C2A5", "#FC8D62"), size = 5) +
labs(title = "镜像核密度图(原始数据)",
x = "值", y = "密度") +
mytheme
# 标准化数据镜像核密度图
<- ggplot() +
p2 # eruptions (正方向)
geom_density(data = subset(faithful_std, variable == "eruptions"),
aes(x = value_std, y = ..density..),
fill = "#66C2A5", alpha = 0.7) +
# waiting (负方向)
geom_density(data = subset(faithful_std, variable == "waiting"),
aes(x = value_std, y = -..density..),
fill = "#FC8D62", alpha = 0.7) +
# 添加标签
annotate("text", x = c(1.5, 1.5), y = c(0.4, -0.4),
label = c("eruptions", "waiting"),
color = c("#66C2A5", "#FC8D62"), size = 5) +
labs(title = "镜像核密度图(标准化数据)",
x = "标准化值", y = "密度") +
mytheme
# 合并图形
library(patchwork)
+ p2 p1
4.5 图形观察和代码编写的心得体会
5 箱线图和小提琴图
5.1 绘图要求
根据实际数据和标准化后的数据绘制
eruptions
和waiting
两个变量的箱线图geom_boxplot
和小提琴图geom_violin
。采用
stat_summary(fun="mean",geom="point")
在箱线图和均值图中要添加均值点。小提琴图中要加入点图和箱线图
采用调色板前两种颜色,
brewer.pal(6,"Set2")[1:2]
,作为箱体填充颜色。
"#66C2A5" "#FC8D62" "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F"
5.2 箱线图代码
library(tidyr)
library(dplyr)
library(forcats)
library(RColorBrewer)
<-theme(plot.title=element_text(size="11"),
mythemeaxis.title=element_text(size=10),
axis.text=element_text(size=9),
legend.text=element_text(size="8"))
<-data %>%
dfselect(everything()) %>%
gather(key = "variable", value = "value", eruptions, waiting) %>%
mutate(variable = fct_inorder(variable))
<-RColorBrewer::brewer.pal(2,"Set2")
paletteggplot(df,aes(x = variable, y = value, fill = variable))+
geom_boxplot() +
stat_summary(fun="mean",geom="point",shape=21,size=2.5,fill="white")+
mytheme
5.3 小提琴图代码
- 通过
d3r::d3_nest
将数据框转化为层次数据“d3.js”作为绘图输入
# 先确保数据处理正确
<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "variable",
values_to = "value")
<- ddply(faithful_long, .(variable), transform,
faithful_std value_std = scale(value)[,1])
# 绘图部分
<-ggplot(faithful_long,aes(x=variable,y=value,fill=variable))+ # 使用正确的数据框faithful_long
p1geom_violin(scale="width",trim=FALSE)+
geom_point(color="black",size=0.8)+
geom_boxplot(outlier.size=0.7,outlier.color="white",size=0.3,
width=0.2,fill="white")+
scale_fill_brewer(palette="Set2")+
stat_summary(fun="mean",geom="point",shape=21,size=2)+
guides(fill="none")+
ggtitle("(a) 原始数据小提琴图")
<-ggplot(faithful_std,aes(x=variable,y=value_std,fill=variable))+ # 对应使用faithful_std数据框,并映射正确变量
p2geom_violin(scale="width")+
geom_point(color="black",size=1)+
geom_boxplot(outlier.size=0.7,outlier.color="black",size=0.3,
width=0.2,fill="white")+
scale_fill_brewer(palette="Set2")+
guides(fill="none")+
ggtitle("(b) 标准化后小提琴图")
grid.arrange(p1,p2,ncol=2)
5.4 图形观察和代码编写的心得体会
6 威尔金森点图、蜂群图和云雨图
6.1 绘图要求
绘制
eruptions
和waiting
两个变量的威尔金森点图、蜂群图和云雨图。三种图形均采用标准化数据作图
威尔金森点图采用
geom_dotplot(binaxis="y",bins=30,dotsize = 0.3)
,要求作出居中堆叠和向上堆叠两种情况的图。蜂群图采用
geom_beeswarm(cex=0.8,shape=21,size=0.8)
,要求作出不带箱线图和带有箱线图两种情况的图。云雨图采用
geom_violindot(dots_size=0.7,binwidth=0.07)
,要求作出横向和纵向图两种情况的图。
6.2 威尔金森点图代码
分别作矩形热图和极坐标热图
<-theme_bw()+theme(legend.position="none")
mytheme<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "variable",
values_to = "value")
<-ggplot(faithful_long,aes(x=variable,y=value,fill=variable))
p<-p+geom_dotplot(binaxis="y",binwidth=3,stackdir="center")+ # 绘制点图
p1+ggtitle("(a) 居中堆叠")
mytheme
<-p+geom_dotplot(binaxis="y",binwidth=3)+ # 绘制点图
p2+ggtitle("(b) 向上堆叠")
mythemegrid.arrange(p1,p2,ncol=2) # 按2列组
6.3 蜂群图代码
<-theme_bw()+theme(legend.position="none")
mytheme<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "variable",
values_to = "value")
# 图(a)5项指标的蜂群图
<-theme_bw()+theme(legend.position="none")
mytheme<-ggplot(faithful_long,aes(x=variable,y=value))
p<-p+geom_beeswarm(cex=0.8,shape=21,fill="black",size=0.7,aes(color=variable))+# 设置蜂群的宽度、点的形状、大小和填充颜色
p1+ggtitle("(a) 蜂群图")
mytheme
# 图(b)箱线图+蜂群图
<-p+geom_boxplot(size=0.5,outlier.size=0.8,aes(color=variable))+
p2geom_beeswarm(shape=21,cex=0.8,size=0.8,aes(color=variable))+
+ggtitle("(b) 箱线图+蜂群图")
mythemegrid.arrange(p1,p2,ncol=2)
6.4 云雨图代码
library(see) # 提供主题函数theme_modern
<-theme_modern()+
mythemetheme(legend.position="none",
plot.title=element_text(size=14,hjust=0.5)) # 调整标题位置
<- faithful %>%
faithful_long pivot_longer(cols = c(eruptions, waiting),
names_to = "指标",
values_to = "指标值")
<-ggplot(faithful_long,aes(x=指标,y=指标值,fill=指标))+
p1geom_violindot(dots_size=55,binwidth=0.07)+ # 绘制云雨图并设置点的大小和箱宽
+ggtitle("(a) 垂直排列(默认)")
mytheme
<-ggplot(faithful_long,aes(x=指标,y=指标值,fill=指标))+
p2geom_violindot(dots_size=60,binwidth=0.06)+
coord_flip()+mytheme+ggtitle("(b) 水平排列")
grid.arrange(p1,p2,ncol=2) # 按2列组合图形p1和p2