Load Packages

Load Data (Pilot Study)

df_lab <- read.csv("pilot_df.csv")

cat(
  "Number of participants:", nrow(df_lab), "\n",
  "Number of groups:", length(unique(df_lab$GroupID)), "\n",
  "Average group size:", mean(df_lab$GroupSize), "\n",
  "Min and max group size:", range(df_lab$GroupSize), "\n"
)
## Number of participants: 219 
##  Number of groups: 62 
##  Average group size: 4.821918 
##  Min and max group size: 3 6
df_lab$Ingratiation <- factor(df_lab$Ingratiation)
df_lab$Promotion <- factor(df_lab$Promotion)


df_lab$NewcomerRace <- factor(df_lab$NewcomerRace)
df_lab$NewcomerGender <- factor(df_lab$NewcomerGender)

Pilot Study: Ingratiation and Perceived Likeability

model <- lm(Liked ~ Ingratiation * NewcomerRace + Promotion + NewcomerGender, data = df_lab)
ancova <- Anova(model, type = 3)
Type III ANOVA Table
Effect Sum Sq Df F value Pr(>F)
Intercept 563.098 1 1074.510 0.000
Ingratiation 0.111 1 0.213 0.645
Newcomer Race 0.281 1 0.537 0.465
Self-Promotion 0.333 1 0.635 0.426
Newcomer Gender 0.511 1 0.975 0.325
Ingratiation × Race 2.962 1 5.651 0.018
Residuals 111.623 213 NA NA
###### Predicted values by race and condition
predicted_data <- ggpredict(model, terms = c("Ingratiation", "NewcomerRace"))
predicted_data
## # Predicted values of Liked
## 
## NewcomerRace: Black
## 
## Ingratiation | Predicted |     95% CI
## -------------------------------------
## High         |      6.09 | 5.73, 6.46
## Low          |      6.17 | 5.94, 6.39
## 
## NewcomerRace: White
## 
## Ingratiation | Predicted |     95% CI
## -------------------------------------
## High         |      6.22 | 5.85, 6.58
## Low          |      5.80 | 5.56, 6.04
## 
## Adjusted for:
## *      Promotion =   High
## * NewcomerGender = Female
predicted_data$x <- factor(predicted_data$x, levels = c("Low", "High"))
ggplot(predicted_data, aes(x = x, y = predicted, fill = group)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.6) +
  coord_cartesian(ylim = c(5, 7)) +
  labs(
    y = "Perceived Likeability",
    x = "Ingratiation",
    fill = "Newcomer Race"
  ) +
  theme_minimal(base_size = 14)

# Simple slopes estimates
slope_results <- sim_slopes(model, pred = "Ingratiation", modx = "NewcomerRace", confint = TRUE)
print(slope_results)
## SIMPLE SLOPES ANALYSIS
## 
## Slope of Ingratiation when NewcomerRace = Black: 
## 
##   Est.   S.E.    2.5%   97.5%   t val.      p
## ------ ------ ------- ------- -------- ------
##   0.08   0.16   -0.25    0.40     0.46   0.65
## 
## Slope of Ingratiation when NewcomerRace = White: 
## 
##    Est.   S.E.    2.5%   97.5%   t val.      p
## ------- ------ ------- ------- -------- ------
##   -0.42   0.16   -0.74   -0.10    -2.60   0.01

Pilot Study: Self-Promotion and Perceived Competence

model <- lm(Respected ~ Promotion * NewcomerRace + Ingratiation + NewcomerGender, data = df_lab)
ancova <- Anova(model, type = 3)
Type III ANOVA Table
Effect Sum Sq Df F value Pr(>F)
Intercept 686.858 1 2187.358 0.000
Self-Promotion 1.877 1 5.977 0.015
Newcomer Race 1.419 1 4.517 0.035
Ingratiation 0.089 1 0.284 0.595
Newcomer Gender 0.095 1 0.303 0.583
Self-Promotion × Race 0.901 1 2.871 0.092
Residuals 66.571 212 NA NA
# Predicted values by race and condition
predicted_data <- ggpredict(model, terms = c("Promotion", "NewcomerRace"))
predicted_data
## # Predicted values of Respected
## 
## NewcomerRace: Black
## 
## Promotion | Predicted |     95% CI
## ----------------------------------
## High      |      6.51 | 6.23, 6.78
## Low       |      6.22 | 6.03, 6.40
## 
## NewcomerRace: White
## 
## Promotion | Predicted |     95% CI
## ----------------------------------
## High      |      6.24 | 5.95, 6.53
## Low       |      6.22 | 6.03, 6.40
## 
## Adjusted for:
## *   Ingratiation =   High
## * NewcomerGender = Female
predicted_data$x <- factor(predicted_data$x, levels = c("Low", "High"))
ggplot(predicted_data, aes(x = x, y = predicted, fill = group)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.6) +
  coord_cartesian(ylim = c(5, 7)) +
  labs(
    y = "Perceived Likeability",
    x = "Ingratiation",
    fill = "Newcomer Race"
  ) +
  theme_minimal(base_size = 14)

# Simple slopes estimates
slope_results <- sim_slopes(model, pred = "Promotion", modx = "NewcomerRace", confint = TRUE)
print(slope_results)
## SIMPLE SLOPES ANALYSIS
## 
## Slope of Promotion when NewcomerRace = Black: 
## 
##    Est.   S.E.    2.5%   97.5%   t val.      p
## ------- ------ ------- ------- -------- ------
##   -0.29   0.12   -0.53   -0.06    -2.44   0.02
## 
## Slope of Promotion when NewcomerRace = White: 
## 
##    Est.   S.E.    2.5%   97.5%   t val.      p
## ------- ------ ------- ------- -------- ------
##   -0.03   0.13   -0.27    0.22    -0.21   0.84

Pilot Study: Ingratiation and Coworker Support

videoData <- read.csv("pilot_df_video.csv")

videoData$NewcomerRace <- factor(videoData$NewcomerRace,
                                  levels = c(0, 1),
                                  labels = c("White", "Racial Minority"))
videoData$Promotion <- factor(videoData$Promotion,
                                 levels = c(0, 1),
                                 labels = c("Low Self-Promotion", "High Self-Promotion"))  
videoData$Ingratiation <- factor(videoData$Ingratiation,
                                 levels = c(0, 1),
                                 labels = c("Low Ingratiation", " High Ingratiation"))  

#####
# Zero-Inflated Negative Binomial Regression
zinb_model <- zeroinfl(
  Support ~ Promotion + Ingratiation* NewcomerRace | NewcomerRace + Promotion + Ingratiation,
  data = videoData,
  dist = "negbin")
ZINB Count Model Coefficients (Robust SEs)
Variable Estimate Robust SE t value p value
Intercept 0.6359 0.5628 1.1301 0.2674
Self-Promotion 0.2226 0.7378 0.3017 0.7650
Ingratiation 0.9278 0.5413 1.7139 0.0969
Racial Minority -0.3517 0.5592 -0.6290 0.5341
Ingratiation × Race -18.2176 0.8047 -22.6400 0.0000

Pilot Study: Self-Promotion and Coworker Support

# Zero-Inflated Negative Binomial Regression
zinb_model <- zeroinfl(
  Support ~ Ingratiation + Promotion * NewcomerRace | NewcomerRace + Promotion + Ingratiation,
  data = videoData,
  dist = "negbin")
ZINB Count Model Coefficients (Robust SEs)
Variable Estimate Robust SE t value p value
Intercept 0.4855 0.4204 1.1547 0.2573
Ingratiation 0.9399 0.6175 1.5220 0.1385
Self-Promotion -1.0451 0.8117 -1.2875 0.2078
Racial Minority -0.4855 0.6494 -0.7476 0.4605
Self-Promotion × Race 1.6358 1.2944 1.2637 0.2161