zoo <- read_csv("mangrove_fishpond_zooplankton_edit.csv")
## Rows: 28 Columns: 49
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): Site, Date, Location, Fishpond, Mangrove
## dbl (44): Latitude, Longitude, polychaete, barnacle, copepod, monstrillidae,...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(enviro)
## tibble [28 × 13] (S3: tbl_df/tbl/data.frame)
## $ mangrove.shoreline : num [1:28] 289 289 749 749 478 ...
## $ non.mangrove.shoreline : num [1:28] 711 711 402 402 551 ...
## $ percent.mangrove.shoreline: num [1:28] 0.289 0.289 0.65 0.65 0.464 ...
## $ pond.area : num [1:28] 78422 78422 127773 127773 99417 ...
## $ d13C : num [1:28] -26.5 -26.5 -29.9 -29.9 -28.5 ...
## $ C : num [1:28] 1366 1366 1332 1332 1318 ...
## $ d15N : num [1:28] 1.02 1.02 2.9 2.9 3.08 ...
## $ N : num [1:28] 28.8 28.8 29.3 29.3 36.3 ...
## $ relief : num [1:28] 2230 2230 437 437 2270 2270 1580 1580 689 689 ...
## $ percent.trees : num [1:28] 16 16 4 4 3 3 6 6 2 2 ...
## $ precip : num [1:28] 55.1 55.1 19.2 19.2 30.9 30.9 40.5 40.5 40.8 40.8 ...
## $ percent.impervious : num [1:28] 1.11 1.11 7.25 7.25 0.67 ...
## $ percent.developed : num [1:28] 5.49 5.49 36.6 36.6 4.67 ...
dbrda = dbrda(community ~ mangrove.shoreline + non.mangrove.shoreline+ percent.mangrove.shoreline + pond.area+ d13C + C + d15N + N + relief + percent.trees + precip + percent.impervious + percent.developed, data= enviro, dist = "bray", add = TRUE)
##
## Some constraints or conditions were aliased because they were redundant. This
## can happen if terms are linearly dependent (collinear): 'percent.trees',
## 'precip', 'percent.impervious', 'percent.developed'
plot(dbrda)
summary(dbrda)
##
## Call:
## dbrda(formula = community ~ mangrove.shoreline + non.mangrove.shoreline + percent.mangrove.shoreline + pond.area + d13C + C + d15N + N + relief + percent.trees + precip + percent.impervious + percent.developed, data = enviro, distance = "bray", add = TRUE)
##
## Partitioning of Lingoes adjusted squared Bray distance:
## Inertia Proportion
## Total 11.349 1.0000
## Constrained 4.772 0.4205
## Unconstrained 6.577 0.5795
##
## Eigenvalues, and their contribution to the Lingoes adjusted squared Bray distance
##
## Importance of components:
## dbRDA1 dbRDA2 dbRDA3 dbRDA4 dbRDA5 dbRDA6 dbRDA7
## Eigenvalue 1.5111 1.2914 0.68982 0.35917 0.29814 0.23740 0.16768
## Proportion Explained 0.1332 0.1138 0.06078 0.03165 0.02627 0.02092 0.01477
## Cumulative Proportion 0.1332 0.2469 0.30773 0.33937 0.36564 0.38656 0.40134
## dbRDA8 dbRDA9 MDS1 MDS2 MDS3 MDS4 MDS5
## Eigenvalue 0.13871 0.07887 1.7542 1.01386 0.75745 0.63976 0.44302
## Proportion Explained 0.01222 0.00695 0.1546 0.08934 0.06674 0.05637 0.03904
## Cumulative Proportion 0.41356 0.42051 0.5751 0.66442 0.73116 0.78753 0.82657
## MDS6 MDS7 MDS8 MDS9 MDS10 MDS11 MDS12
## Eigenvalue 0.31284 0.30991 0.23777 0.20666 0.1385 0.13074 0.106575
## Proportion Explained 0.02757 0.02731 0.02095 0.01821 0.0122 0.01152 0.009391
## Cumulative Proportion 0.85413 0.88144 0.90239 0.92060 0.9328 0.94432 0.953710
## MDS13 MDS14 MDS15 MDS16 MDS17 MDS18
## Eigenvalue 0.098673 0.097053 0.094495 0.092006 0.081334 0.061782
## Proportion Explained 0.008694 0.008552 0.008326 0.008107 0.007167 0.005444
## Cumulative Proportion 0.962405 0.970956 0.979283 0.987390 0.994556 1.000000
##
## Accumulated constrained eigenvalues
## Importance of components:
## dbRDA1 dbRDA2 dbRDA3 dbRDA4 dbRDA5 dbRDA6 dbRDA7
## Eigenvalue 1.5111 1.2914 0.6898 0.35917 0.29814 0.23740 0.16768
## Proportion Explained 0.3166 0.2706 0.1445 0.07526 0.06247 0.04974 0.03514
## Cumulative Proportion 0.3166 0.5872 0.7318 0.80705 0.86953 0.91927 0.95441
## dbRDA8 dbRDA9
## Eigenvalue 0.13871 0.07887
## Proportion Explained 0.02907 0.01653
## Cumulative Proportion 0.98347 1.00000
### Environmental variation explains 42% of the variation. The first axis explains 13% of the variation and the second axis explains 11% of the variation. The first axis shows that species compostion differs based on if shoreline is not mangrove, the carbon content, and pond area. the second axis shows that percent mangrove shoreline, d15N, d13C, and relief are drivers of species compostion differences.