data = faithful
datatable(data,rownames = FALSE)第四章 数据分布可视化
1 解释原始数据
faithful是R语言中自带的一个经典数据集,它记录了美国黄石国家公园老忠实间歇泉(Old Faithful geyser)的喷发数据。这个数据集经常被用于统计教学和数据分析示例。faithful数据集包含两个变量,共有272个观测值。eruptions: 喷发持续时间,连续数值变量,以分钟为单位,范围:1.6分钟到5.1分钟。waiting: 两次喷发之间的等待时间,连续数值变量,以分钟为单位,范围:43分钟到96分钟。
2 单变量直方图
2.1 绘图要求
利用
geom_histogram(aes(y=..density..))绘制eruptions的直方图,使用预设主题:mytheme;利用
geom_rug()为直方图添加地毯图;利用
geom_density()为直方图添加核密度曲线;利用
annotate()在直方图标注峰度和偏度信息;利用
geom_vline()为直方图添加一条垂直的均值参考线;利用
geom_point()在横轴上添加一个中位数参考点,并在点上方添加文字注释
2.2 作图代码
library(e1071) # 用于计算偏度系数和峰度系数
df <- data
# 作初始直方图,纵轴默认为频数
ggplot(data=df,aes(x=eruptions))+mytheme+ # 绘制直方图
geom_histogram(aes(y=..density..),fill="lightgreen",color="gray50")+
geom_rug(size=0.2,color="blue3")+ # 添加地毯图,须线的宽度为0.2+
geom_density(color="blue2",size=0.7)+ # 添加核密度曲线
annotate("text",x=2.5,y=0.7,label=paste0("偏度系数 = ",round(skewness(df$eruptions),4)),size=3)+ # 添加注释文本
annotate("text",x=2.5,y=0.6,label=paste0("峰度系数 = ",round(kurtosis(df$eruptions),4)),size=3)+ # 添加注释文本
geom_vline(xintercept=mean(df$eruptions),linetype="twodash",size=0.6,color="red")+ # 添加均值垂线,并设置线形、线宽和颜色
annotate("text",x=mean(df$eruptions),y=0.7,label=paste0("均值线 = ",round(mean(df$eruptions),2)),size=3)+ # 添加注释文本
geom_point(x=median(df$eruptions),y=0,shape=21,size=4,fill="yellow")# 添加中位数点2.3 图形观察和代码编写的心得体会
- 单变量直方图展示eruptions数据的分布,左偏(偏度-0.41),扁平(峰度-1.51),均值3.49,峰值在2-4之间,密度集中在左侧。
3 叠加直方图和镜像直方图
3.1 绘图要求
绘制
eruptions和waiting两个变量的叠加直方图和镜像直方图,使用预设主题:mytheme。将数据转化为长型数据再作叠加直方图,利用
scale_fill_brewer()将叠加直方图配色方案改为set3。镜像直方图中
eruptions在正方向,waiting在负方向,直方数bins=30,并添加文字标签作标签。两种图都需要针对原始数据作图和标准标准化数据作图,可以使用
scale()函数对变量标准化,分类标准化可以使用plyr::ddply()函数。
3.2 叠加直方图代码
df <- data |>
gather(eruptions,waiting,key=指标,value=指标值) %>% # 融合数据
ddply("指标",transform,标准化值=scale(指标值)) # 计算标准化值并返回数据框
p1<-ggplot(df)+aes(x=指标值,y=..density..,fill=指标)+
geom_histogram(position="identity",color="gray60",alpha=0.5)+
scale_fill_brewer(palette = "Set3")+
theme(legend.position=c(0.8,0.8),# 设置图例位置
legend.background=element_rect(fill="grey90",color="grey"))+
# 设置图例背景色和边框颜色
ggtitle("(a) 原始数据叠加直方图")
p2<-ggplot(df)+aes(x=标准化值,y=..density..,fill=指标)+
geom_histogram(position="identity",color="gray60",alpha=0.5)+
scale_fill_brewer(palette = "Set3")+
theme(legend.position=c(0.8,0.8),# 设置图例位置
legend.background=element_rect(fill="grey90",color="grey"))+
# 设置图例背景色和边框颜色
ggtitle("(b) 标准化数据叠加直方图")
grid.arrange(p1,p2,ncol=2) # 组合图形3.3 镜像直方图代码
df <- data |>
mutate(
std.eruptions=scale(eruptions),
std.waiting=scale(waiting)
)
p1<-ggplot(df)+aes(x=x)+
geom_histogram(aes(x=eruptions,y=..density..),bins=30,color="grey50",fill="red",alpha=0.3)+ # 绘制AQI的直方图(上图)
geom_label(aes(x=30,y=0.2),label="eruptions",color="red")+ # 添加标签
geom_histogram(aes(x=waiting,y=-..density..),bins=30,color="grey50",fill="blue",alpha=0.3)+ # 绘制PM2.5的直方图(下图)
geom_label(aes(x=60,y=-0.1),label="waiting",color="blue")+ # 添加标签
xlab("指标值")+ggtitle("(a) 原始数据镜像直方图")
p2<-ggplot(df)+aes(x=x)+
geom_histogram(aes(x=std.eruptions,y=..density..),bins=30,color="grey50",fill="red",alpha=0.3)+ # 绘制AQI的直方图(上图)
geom_label(aes(x=-0.5,y=0.3),label="eruptions",color="red")+ # 添加标签
geom_histogram(aes(x=std.waiting,y=-..density..),bins=30,color="grey50",fill="blue",alpha=0.3)+ # 绘制PM2.5的直方图(下图)
geom_label(aes(x=-0.5,y=-0.3),label="waiting",color="blue")+ # 添加标签
xlab("指标值")+ggtitle("(a) 标准化数据镜像直方图")
grid.arrange(p1,p2,ncol=2) # 组合图形3.4 图形观察和代码编写的心得体会
叠加直方图对比eruptions和waiting的分布,原始数据右偏且范围不同(0-5 vs 0-100),标准化后(b图)显示两者形态差异更清晰,便于直接比较。
镜像核密度图对称展示eruptions和waiting的分布对比,直观呈现双变量密度差异,便于观察变量间的分布形态和集中趋势。
4 核密度图
4.1 绘图要求
绘制eruptions和 waiting两个变量的分组核密度图、分面核密度图和镜像核密度图。
分组核密度图,采用
geom_density(position="identity")。分面核密度图,采用
geom_density()+facet_wrap(~xx,scale="free")。镜像核密度图中
eruptions在正方向,waiting在负方向,直方数bins=30,并添加文字标签作标签。分组核密度图和镜像核密度图需要针对原始数据作图和标准标准化数据作图。
4.2 分组核密度图
df <- data |>
gather(eruptions,waiting,key=指标,value=指标值) %>% # 融合数据
ddply("指标",transform,标准化值=scale(指标值)) # 计算标准化值并返回数据框
p1<-ggplot(df)+aes(x=指标值,y=..density..,fill=指标)+
geom_density(position="identity",color="gray60",alpha=0.5)+
scale_fill_brewer(palette = "Set3")+
theme(legend.position=c(0.8,0.8),# 设置图例位置
legend.background=element_rect(fill="grey90",color="grey"))+
# 设置图例背景色和边框颜色
ggtitle("(a) 原始数据叠加直方图")
p2<-ggplot(df)+aes(x=标准化值,y=..density..,fill=指标)+
geom_density(position="identity",color="gray60",alpha=0.5)+
scale_fill_brewer(palette = "Set3")+
theme(legend.position=c(0.8,0.8),# 设置图例位置
legend.background=element_rect(fill="grey90",color="grey"))+
# 设置图例背景色和边框颜色
ggtitle("(b) 标准化数据叠加直方图")
grid.arrange(p1,p2,ncol=2) # 组合图形4.3 分面核密度图
ggplot(df)+aes(x=指标值,fill=指标)+
geom_density(color="gray50")+
scale_fill_brewer(palette = "Set3")+
guides(fill="none")+
facet_wrap(~指标,ncol = 2,scale = "free")4.4 镜像核密度图
df <- data |>
mutate(
std.eruptions=scale(eruptions),
std.waiting=scale(waiting)
)
p1<-ggplot(df)+aes(x=x)+
geom_density(aes(x=eruptions,y=..density..),bins=30,color="grey50",fill="red",alpha=0.3)+ # 绘制AQI的直方图(上图)
geom_label(aes(x=30,y=0.2),label="eruptions",color="red")+ # 添加标签
geom_density(aes(x=waiting,y=-..density..),bins=30,color="grey50",fill="blue",alpha=0.3)+ # 绘制PM2.5的直方图(下图)
geom_label(aes(x=60,y=-0.1),label="waiting",color="blue")+ # 添加标签
xlab("指标值")+ggtitle("(a) 原始数据镜像核密度图")
p2<-ggplot(df)+aes(x=x)+
geom_density(aes(x=std.eruptions,y=..density..),bins=30,color="grey50",fill="red",alpha=0.3)+ # 绘制AQI的直方图(上图)
geom_label(aes(x=-0.5,y=0.3),label="eruptions",color="red")+ # 添加标签
geom_density(aes(x=std.waiting,y=-..density..),bins=30,color="grey50",fill="blue",alpha=0.3)+ # 绘制PM2.5的直方图(下图)
geom_label(aes(x=-0.5,y=-0.3),label="waiting",color="blue")+ # 添加标签
xlab("指标值")+ggtitle("(a) 标准化数据镜像核密度图")
grid.arrange(p1,p2,ncol=2) # 组合图形4.5 图形观察和代码编写的心得体会
分组核密度图通过平滑曲线展示不同组别的数据分布,便于比较形态差异。图中eruptions和waiting的密度曲线重叠对比,直观反映两者分布特征及集中趋势。
分面核密度图将eruptions和waiting的分布分开展示,通过独立子图清晰呈现各自密度曲线,便于单独分析每个变量的分布形态和集中趋势。
镜像核密度图对称展示eruptions和waiting的分布对比,(a)图显示原始数据右偏,(b)图标准化后更易比较两者形态差异,突出分布特征。
5 箱线图和小提琴图
5.1 绘图要求
根据实际数据和标准化后的数据绘制
eruptions和waiting两个变量的箱线图geom_boxplot和小提琴图geom_violin。采用
stat_summary(fun="mean",geom="point")在箱线图和均值图中要添加均值点。小提琴图中要加入点图和箱线图
采用调色板前两种颜色,
brewer.pal(6,"Set2")[1:2],作为箱体填充颜色。
"#66C2A5" "#FC8D62" "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F"5.2 箱线图代码
# 数据处理
df<-data |>
gather(everything(),key=指标,value=指标值) |> # 融合数据
mutate(指标=fct_inorder(指标)) |>
ddply("指标",transform,标准化值=scale(指标值)) # 计算标准化值
# 设置图形主题
mytheme<-theme(plot.title=element_text(size="11"), # 设置主标题字体大小
axis.title=element_text(size=10), # 设置坐标轴标签字体大小
axis.text=element_text(size=9), # 设置坐标轴刻度字体大小
legend.text=element_text(size="8")) # 设置图例字体大小
# 绘制箱线图
p1<-ggplot(df)+aes(x=指标,y=指标值,fill=指标)+
geom_boxplot(outlier.size=1)+
stat_summary(fun = "mean", geom = "point", color = "white", size = 2) + # 添加均值点
scale_fill_manual(values = brewer.pal(6, "Set2")[1:2])+
mytheme+ggtitle("(a) 原始数据")
p2<-ggplot(df)+aes(x=指标,y=标准化值,fill=指标)+
geom_boxplot(outlier.size=1)+
stat_summary(fun = "mean", geom = "point", color = "white", size = 2) + # 添加均值点
scale_fill_manual(values = brewer.pal(6, "Set2")[1:2])+
mytheme+ggtitle("(b) 标准化数据")
gridExtra::grid.arrange(p1,p2,ncol=2) # 组合图形p1和p25.3 小提琴图代码
- 通过
d3r::d3_nest将数据框转化为层次数据“d3.js”作为绘图输入
# 图(a)原始数据小提琴图
p1<-ggplot(df,aes(x=指标,y=指标值,fill=指标))+
geom_violin(scale="width",trim=FALSE)+
geom_point(color="black",size=0.8)+ # 添加点
geom_boxplot(outlier.size=0.7,outlier.color="white",size=0.3,
width=0.2,fill="white")+ # 添加并设置箱线图和离群点参数
scale_fill_manual(values = brewer.pal(6, "Set2")[1:2])+
stat_summary(fun=mean,geom="point",shape=21,size=2)+# 添加均值点
guides(fill="none")+
ggtitle("(a) 原始数据小提琴图")
# 图(b)数据标准化后的小提琴图
p2<-ggplot(df,aes(x=指标,y=标准化值,fill=指标))+
geom_violin(scale="width")+
geom_point(color="black",size=1)+
geom_boxplot(,outlier.size=0.7,outlier.color="black",size=0.3,
width=0.2,fill="white")+
scale_fill_manual(values = brewer.pal(6, "Set2")[1:2])+
stat_summary(fun=mean,geom="point",shape=21,size=2)+# 添加均值点
guides(fill="none")+
ggtitle("(b) 标准化小提琴图")
gridExtra::grid.arrange(p1,p2,ncol=2) # 组合图形p1和p25.4 图形观察和代码编写的心得体会
箱线图通过五数概括(最小值、Q1、中位数、Q3、最大值)展示数据分布,图中显示eruptions和waiting的离散程度和离群值差异,(b)图标准化后更便于比较。
小提琴图结合箱线图和核密度估计,通过宽度展示数据分布密度。图中(a)显示原始数据右偏,(b)标准化后更直观比较eruptions和waiting的分布形态与离散程度。
6 威尔金森点图、蜂群图和云雨图
6.1 绘图要求
绘制
eruptions和waiting两个变量的威尔金森点图、蜂群图和云雨图。三种图形均采用标准化数据作图
威尔金森点图采用
geom_dotplot(binaxis="y",bins=30,dotsize = 0.3),要求作出居中堆叠和向上堆叠两种情况的图。蜂群图采用
geom_beeswarm(cex=0.8,shape=21,size=0.8),要求作出不带箱线图和带有箱线图两种情况的图。云雨图采用
geom_violindot(dots_size=0.7,binwidth=0.07),要求作出横向和纵向图两种情况的图。
6.2 威尔金森点图代码
分别作矩形热图和极坐标热图
mytheme<-theme_bw()+theme(legend.position="none")
# 绘制图形
p<-ggplot(df,aes(x=指标,y=标准化值,fill=指标))
p1<-p+geom_dotplot(binaxis="y",bins=30,dotsize = 0.3,stackdir="center")+ # 绘制点图
mytheme+ggtitle("(a) 居中堆叠")
p2<-p+geom_dotplot(binaxis="y",bins=30,dotsize = 0.3)+ # 绘制点图
mytheme+ggtitle("(b) 向上堆叠")
gridExtra::grid.arrange(p1,p2,ncol=2) # 组合图形p1和p26.3 蜂群图代码
mytheme<-theme_bw()+theme(legend.position="none")
library(ggbeeswarm)
# 图(a)蜂群图
p<-ggplot(df,aes(x=指标,y=标准化值))
p1<-p+geom_beeswarm(cex=0.8,shape=21,fill="black",size=0.8,aes(color=指标))+# 设置蜂群的宽度、点的形状、大小和填充颜色
mytheme+ggtitle("(a) 蜂群图")
# 图(b)箱线图+蜂群图
p2<-p+geom_boxplot(size=0.5,outlier.size=0.8,aes(color=指标))+
geom_beeswarm(shape=21,cex=0.8,size=0.8,aes(color=指标))+
mytheme+ggtitle("(b) 箱线图+蜂群图")
gridExtra::grid.arrange(p1,p2,ncol=2) # 组合图形p1和p26.4 云雨图代码
library(see) # 提供主题函数theme_modern
# 绘制云雨图
mytheme<-theme_modern()+
theme(legend.position="none",
plot.title=element_text(size=14,hjust=0.5)) # 调整标题位置
p1<-ggplot(df,aes(x=指标,y=标准化值,fill=指标))+
geom_violindot(dots_size=0.7,binwidth=0.07)+ # 绘制云雨图并设置点的大小和箱宽
mytheme+ggtitle("(a) 垂直排列(默认)")
p2<-ggplot(df,aes(x=指标,y=标准化值,fill=指标))+
geom_violindot(dots_size=0.7,binwidth=0.07)+
coord_flip()+mytheme+ggtitle("(b) 水平排列")
gridExtra::grid.arrange(p1,p2,ncol=2) # 按2列组合图形p1和p26.5 图形观察和代码编写的心得体会
威尔金森点图通过点阵分布展示数据密度,居中堆叠(a)显示数据对称性,向上堆叠(b)突出分布尾部特征,有效比较eruptions和waiting的数值聚集情况。
蜂群图通过密集点阵展示数据分布,避免重叠的同时保留原始数据点位置。图中显示eruptions和waiting的数值聚集情况,配合箱线图(b)更完整呈现分布特征和离散程度。
云雨图结合箱线图和核密度估计,上方显示数据分布密度(“云”),下方用箱线图展示五数概括(“雨”),全面呈现eruptions和waiting的分布特征与离散程度。