require("PerformanceAnalytics");require("quantmod");require("pbapply"); require("data.table")
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Loading required package: pbapply
## Loading required package: data.table
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:xts':
## 
##     first, last
e <- new.env()
tickers <- c("AMZN","BIDU","GLD","GOOGL","GS","IWM","NFLX","MMM","DIA","SPY")
getSymbols(tickers,from="2003-01-01",env=e)
##  [1] "AMZN"  "BIDU"  "GLD"   "GOOGL" "GS"    "IWM"   "NFLX"  "MMM"   "DIA"  
## [10] "SPY"
PRC <- do.call(merge,eapply(e,Ad))

if(last(index(PRC)) != Sys.Date())
{
  last <- pblapply(as.list(gsub(".Adjusted","",names(PRC))), getQuote)
  PRC <- rbind(PRC,xts(coredata(t(rbindlist(last)$Last)),order.by=Sys.Date()))
}

NOM <- colnames(PRC) <- gsub(".Adjusted","",names(PRC))

MOMO60 <- round(ROC(PRC,n=60,type="discrete"),4)

MOMO60 <- MOMO60["20030331::"]
PRC <- PRC["20030331::"]


indx <- seq(as.Date("2003-03-31"), length.out = 300, by='4 weeks')


SELECT <- MOMO60[paste(indx)];dim(SELECT)
## [1] 261  10
indx2 <- ifelse((indx %in% index(SELECT) == FALSE), paste(indx+1),paste(indx))

SELECT <- MOMO60[paste(indx2)];dim(SELECT)
## [1] 287  10
PRC2 <- PRC[paste(indx2)];dim(SELECT)
## [1] 287  10
ASSETS4 <- combn(NOM,4)


MOMO = function(x)
{
  y <- ASSETS4[,x]
  S <- SELECT[,y]
  
  SEQ <- as.numeric(apply(S,1,which.max))
  
  prc2 <- round(PRC2[,y],2)
  RETS <- CalculateReturns(prc2,"discrete")
  
 ALL <- do.call(merge,lapply(as.list(1:ncol(RETS)), function(x){
   Lag(reclass(ifelse(SEQ==x,1,0),match.to = S)*RETS[,x])
 }))
  
  colnames(ALL) <- names(prc2)
  ALL[is.na(ALL)]<-0
  
  EQT <- reclass(rowSums(ALL),match.to=ALL); EQT[is.na(EQT)]<-0
  colnames(EQT) <- paste(names(prc2), collapse = "-")
  EQT
}

STRAT <- pblapply(as.list(1:ncol(ASSETS4)), function(x) MOMO(x))

AAA <- pblapply(STRAT,colSums)

df <- STRAT[order(sapply(AAA,"[[",1))]
df <- df[(length(df)-9):length(df)]
TOP10 <- do.call(merge,df)

charts.PerformanceSummary(TOP10, cex.legend=0.45, colorset=rich10equal, geometric = TRUE, main="TOP 10")

table.Stats(TOP10)
##                 GOOGL.NFLX.DIA.BIDU GS.GOOGL.NFLX.BIDU GOOGL.NFLX.BIDU.MMM
## Observations               287.0000           287.0000            287.0000
## NAs                          0.0000             0.0000              0.0000
## Minimum                     -0.2156            -0.2156             -0.2156
## Quartile 1                   0.0000             0.0000              0.0023
## Median                       0.0555             0.0648              0.0585
## Arithmetic Mean              0.0807             0.0819              0.0827
## Geometric Mean               0.0737             0.0747              0.0757
## Quartile 3                   0.1343             0.1376              0.1347
## Maximum                      1.0086             1.0086              1.0086
## SE Mean                      0.0076             0.0078              0.0077
## LCL Mean (0.95)              0.0657             0.0666              0.0676
## UCL Mean (0.95)              0.0957             0.0972              0.0978
## Variance                     0.0168             0.0173              0.0168
## Stdev                        0.1295             0.1314              0.1298
## Skewness                     1.9316             1.7816              1.8658
## Kurtosis                     8.9881             8.3251              8.7902
##                 GS.NFLX.AMZN.BIDU IWM.NFLX.AMZN.BIDU NFLX.AMZN.BIDU.MMM
## Observations             287.0000           287.0000           287.0000
## NAs                        0.0000             0.0000             0.0000
## Minimum                   -0.2605            -0.2156            -0.2605
## Quartile 1                 0.0000             0.0000             0.0048
## Median                     0.0673             0.0648             0.0635
## Arithmetic Mean            0.0832             0.0839             0.0843
## Geometric Mean             0.0751             0.0762             0.0764
## Quartile 3                 0.1443             0.1438             0.1433
## Maximum                    1.0086             1.0086             1.0086
## SE Mean                    0.0081             0.0080             0.0081
## LCL Mean (0.95)            0.0671             0.0681             0.0684
## UCL Mean (0.95)            0.0992             0.0996             0.1002
## Variance                   0.0190             0.0184             0.0187
## Stdev                      0.1380             0.1358             0.1368
## Skewness                   1.5464             1.6751             1.5653
## Kurtosis                   6.8450             7.2874             7.1458
##                 NFLX.AMZN.BIDU.SPY GOOGL.NFLX.AMZN.BIDU NFLX.AMZN.DIA.BIDU
## Observations              287.0000             287.0000           287.0000
## NAs                         0.0000               0.0000             0.0000
## Minimum                    -0.2156              -0.2605            -0.2156
## Quartile 1                  0.0014               0.0008             0.0004
## Median                      0.0631               0.0659             0.0631
## Arithmetic Mean             0.0845               0.0846             0.0849
## Geometric Mean              0.0769               0.0766             0.0774
## Quartile 3                  0.1438               0.1433             0.1438
## Maximum                     1.0086               1.0086             1.0086
## SE Mean                     0.0079               0.0081             0.0079
## LCL Mean (0.95)             0.0688               0.0686             0.0693
## UCL Mean (0.95)             0.1001               0.1005             0.1005
## Variance                    0.0181               0.0188             0.0180
## Stdev                       0.1346               0.1371             0.1342
## Skewness                    1.7391               1.5609             1.7533
## Kurtosis                    7.5639               7.0367             7.6408
##                 GLD.NFLX.AMZN.BIDU
## Observations              287.0000
## NAs                         0.0000
## Minimum                    -0.1739
## Quartile 1                  0.0040
## Median                      0.0659
## Arithmetic Mean             0.0860
## Geometric Mean              0.0787
## Quartile 3                  0.1402
## Maximum                     1.0086
## SE Mean                     0.0078
## LCL Mean (0.95)             0.0706
## UCL Mean (0.95)             0.1013
## Variance                    0.0174
## Stdev                       0.1318
## Skewness                    1.8295
## Kurtosis                    8.3242
chart.RiskReturnScatter(TOP10, add.sharpe = c(1), Rf=(0.03/sqrt(252)),
                        colorset = rich10equal, xlim = c(0.45,0.55), ylim = c(1.4,1.75))
## Warning in rug(side = 2, returns, col = element.color): some values will be
## clipped

AAA <- lapply(df,colSums)
AAA[[which.max(AAA)]]
## GLD-NFLX-AMZN-BIDU 
##           24.66992
EQT <- df[[which.max(AAA)]]

charts.PerformanceSummary(EQT,geometric = TRUE)

table.Stats(EQT)
##                 GLD-NFLX-AMZN-BIDU
## Observations              287.0000
## NAs                         0.0000
## Minimum                    -0.1739
## Quartile 1                  0.0040
## Median                      0.0659
## Arithmetic Mean             0.0860
## Geometric Mean              0.0787
## Quartile 3                  0.1402
## Maximum                     1.0086
## SE Mean                     0.0078
## LCL Mean (0.95)             0.0706
## UCL Mean (0.95)             0.1013
## Variance                    0.0174
## Stdev                       0.1318
## Skewness                    1.8295
## Kurtosis                    8.3242
table.Drawdowns(EQT)
##         From     Trough         To   Depth Length To Trough Recovery
## 1 2008-10-06 2008-12-01 2009-03-23 -0.3173      7         3        4
## 2 2004-08-16 2004-12-06 2005-05-23 -0.2490     11         5        6
## 3 2016-01-19 2016-02-16 2016-06-06 -0.1997      6         2        4
## 4 2021-04-05 2021-05-03 2021-08-23 -0.1963      6         2        4
## 5 2011-10-31 2012-01-23 2012-02-21 -0.1906      5         4        1
getMOMO = function(x)
{
  y <- as.character(strsplit(x,"-")[[1]])
  S <- SELECT[,y]
  
  SEQ <- as.numeric(apply(S,1,which.max))
  
  prc2 <- round(PRC2[,y],2)
  RETS <- CalculateReturns(prc2,"discrete")
  
  ALL <- do.call(merge,lapply(as.list(1:ncol(RETS)), function(x){
    Lag(reclass(ifelse(SEQ==x,1,0),match.to = S)*RETS[,x])
  }))
  
  colnames(ALL) <- names(prc2)
  ALL[is.na(ALL)]<-0
  
  EQT <- reclass(rowSums(ALL),match.to=ALL); EQT[is.na(EQT)]<-0
  colnames(EQT) <- "MoMoRet"
  cbind(prc2,SEQ,round(EQT,4))
}