library(ggplot2)
ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(binwidth = 0.3, fill = "skyblue", color = "black") +
facet_wrap(~ Species) + # creates a histogram for each species
labs(
title = "Distribution of Sepal Length by Species",
x = "Sepal Length",
y = "Count"
+
) theme_minimal()
program15
1.Create multiple histograms using ggplot2 :: factor_wrap() to visuaalize how a variable (e.g Sepal.Length) is distributed across different groups ( e.g. Species in a built-in R data set)
variable is distributed across different groups in a built R dataset.
2.Develop an R function to draw a density curve representing the probability function of a continuous variable, with separate curves for each group, using ggplot2.
probability density function of a continuous variable, with separate curves for each group, using ggplot2
# Load required libraries
library(ggplot2)
# Use iris dataset: Continuous variable = Sepal.Length, Grouping variable = Species
<- iris
data # Plot density curves
ggplot(data, aes(x = Sepal.Length, color = Species, fill = Species)) +
geom_density(alpha = 0.4, linewidth = 1) +
labs(title = "Density Plot of Sepal Length by Species",
x = "Sepal Length",
y = "Density") +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
3.To generate a basic box plot using ggplot2, enhanced with notches and outliers, and grouped by a categorical variable using an in-built dataset in R.
library(ggplot2)
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
ggplot(iris, aes(x = Species, y = Sepal.Length)) +
geom_boxplot(
notch = TRUE,
notchwidth = 0.5,
outlier.colour = "red",
outlier.shape = 16,
fill = "skyblue"
+
) labs(
title = "Basic Box Plot",
x = "Species",
y = "Sepal Length"
+
) theme_minimal()
4.Develop a script in R to create a violin plot displaying the distribution poof a continuous variable with separate violins for each group using ggplot2.
library(ggplot2)
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
$cyl <- as.factor(mtcars$cyl)
mtcarsggplot(mtcars, aes(x=cyl, y=mpg, fill = cyl)) +
geom_violin(trim = FALSE) +
labs (
title = "Distribution of MPG by Number of Cylinders",
x= "Number of Cylinders",
y = "Miles Per Gallon (MPG)"
+
)theme_minimal()
5.Write an R program to create multiple dot plots for grouped data , comparing the distribution of variable across different using ggplot2’s position dodge function.
comparing the distribution of variable across different using ggplot2’s position dodge function .
library(ggplot2)
$dose<-as.factor(ToothGrowth$dose)
ToothGrowthggplot(ToothGrowth,aes(x=dose,y=len,color=supp))+
geom_dotplot(
binaxis = 'y', #The axis to bin ,x means group verticaly ,y means group horizontally
stackdir ='center', #which direction to stack the dots
position = position_dodge(width=0.8),
dotsize = 0.6, #The diameter of the dots relative to binwidth
binwidth = 1.5 #controls spacing of dots on y-axis
+
)labs (
title = "dot plot of tooth length by dose and supplement type",
x= "Dose(mg/day)",
y = "Tooth length",
color="Supplement Type"
+
)theme_minimal()
6.Develop a R program to calculate and visualize a correlation matrix for a given dataset, with color coded cells indicating the strength and direction of correlation , using ggplot2 geom_time function .
library(ggplot2)
library(tidyr)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
#dim(mtcars)
str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
#use built-in mtcars dataset
data(mtcars)
# compute correlation matrix
<- cor(mtcars)
cor_matrix <- as.data.frame(as.table(cor_matrix))
cor_df head(cor_df)
Var1 Var2 Freq
1 mpg mpg 1.0000000
2 cyl mpg -0.8521620
3 disp mpg -0.8475514
4 hp mpg -0.7761684
5 drat mpg 0.6811719
6 wt mpg -0.8676594
ggplot(cor_df, aes(x = Var1, y = Var2, fill = Freq)) +
geom_tile(color = "white") +
scale_fill_gradient2(
low = "blue",
high = "red",
mid = "white",
midpoint = 0,
limit = c(-1, 1),
name = "Correlation"
+
) geom_text(aes(label = round(Freq, 2)), size = 3) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
labs(title = "Correlation Matrix (mtcars)",
x = "",
y = "")