library(foreign)
#install.packages("likert") # required to calculate Cronbach's alpha
library(ltm)
## Loading required package: MASS
## Loading required package: msm
## Loading required package: polycor
library(likert)     # create basic Likert tables and plots
## Loading required package: ggplot2
## Loading required package: xtable
library(kableExtra)


# for datasets, see release guide pp 22ff
# read data and assign to data frame

setwd("/Users/annarendez/Desktop/Master/1.Semester/Quantitavie Forschung/R Data")
df = read.spss("ESS11.sav", to.data.frame = T)
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25,
## 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 45, 46, 48, 50, 52, 55, 59,
## 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 80, 82, 83, 85, 87,
## 88, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 105, 107, 108, 110, 115,
## 119, 120, 121, 122, 123, 125, 128, 129, 130, 131, 132, 133, 135, 139, 140, 145,
## 149, 150, 154, 155, 158, 160, 161, 165, 170, 175, 179, 180, 181, 182, 183, 185,
## 187, 188, 189, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 238, 240, 241,
## 243, 244, 250, 255, 260, 265, 270, 276, 277, 280, 285, 290, 300, 301, 305, 306,
## 310, 315, 320, 330, 350, 359, 360, 361, 366, 368, 370, 385, 390, 420, 435, 450,
## 480, 481, 484, 490, 493, 495, 505, 510, 515, 523, 528, 529, 530, 531, 533, 535,
## 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 553, 555,
## 556, 558, 559, 560, 561, 563, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576,
## 578, 579, 580, 581, 582, 584, 585, 586, 589, 590, 592, 593, 594, 595, 596, 597,
## 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613,
## 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630,
## 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 647, 649, 650, 653,
## 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670,
## 672, 674, 675, 676, 680, 681, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694,
## 695, 696, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 713, 715,
## 716, 717, 719, 720, 722, 724, 725, 727, 728, 729, 730, 731, 732, 733, 734, 735,
## 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753,
## 754, 756, 757, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 772, 773,
## 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 789, 790, 791,
## 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 809,
## 810, 811, 812, 813, 815, 816, 818, 819, 820, 821, 824, 825, 826, 827, 828, 829,
## 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846,
## 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 864, 865,
## 866, 867, 868, 869, 870, 871, 872, 873, 875, 876, 877, 878, 879, 880, 881, 882,
## 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899,
## 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916,
## 917, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 930, 931, 932, 933, 934,
## 935, 937, 938, 939, 940, 941, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953,
## 954, 955, 956, 957, 959, 960, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971,
## 972, 973, 974, 975, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989,
## 990, 992, 994, 995, 996, 997, 1000, 1002, 1003, 1004, 1005, 1006, 1007, 1008,
## 1010, 1011, 1014, 1015, 1016, 1017, 1018, 1020, 1021, 1022, 1023, 1024, 1025,
## 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038,
## 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1048, 1049, 1050, 1052, 1054, 1055,
## 1056, 1058, 1059, 1060, 1061, 1063, 1064, 1065, 1068, 1069, 1070, 1073, 1075,
## 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1084, 1085, 1086, 1090, 1092, 1093,
## 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1103, 1104, 1105, 1106, 1107, 1108,
## 1109, 1110, 1112, 1113, 1114, 1115, 1116, 1117, 1119, 1120, 1122, 1124, 1125,
## 1126, 1127, 1128, 1130, 1135, 1137, 1138, 1140, 1142, 1143, 1144, 1145, 1147,
## 1148, 1150, 1153, 1154, 1157, 1160, 1162, 1163, 1165, 1168, 1170, 1172, 1176,
## 1179, 1185, 1189, 1190, 1196, 1200, 1420, 1439 added in variable: nwspol
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 7, 10, 14, 15, 20, 25, 30, 34, 35, 38, 39, 40, 42, 44, 45, 50, 55,
## 59, 60, 61, 62, 63, 65, 67, 68, 70, 74, 75, 79, 80, 85, 88, 90, 91, 95, 100,
## 102, 105, 108, 110, 115, 117, 119, 120, 121, 122, 123, 124, 125, 127, 128, 130,
## 134, 135, 136, 138, 140, 141, 145, 149, 150, 153, 154, 155, 158, 160, 165, 168,
## 170, 174, 175, 177, 179, 180, 181, 182, 183, 184, 185, 188, 190, 193, 195, 197,
## 198, 200, 205, 208, 209, 210, 211, 212, 213, 220, 225, 230, 238, 240, 241, 242,
## 243, 244, 245, 248, 250, 251, 255, 257, 260, 265, 270, 278, 280, 285, 290, 292,
## 295, 298, 299, 300, 301, 302, 303, 305, 306, 308, 310, 315, 320, 325, 326, 330,
## 340, 345, 350, 360, 361, 362, 365, 366, 368, 369, 370, 375, 380, 385, 390, 395,
## 398, 400, 405, 410, 415, 420, 422, 425, 428, 430, 435, 440, 450, 454, 457, 459,
## 460, 465, 470, 474, 480, 481, 482, 485, 488, 489, 490, 495, 496, 500, 505, 507,
## 510, 518, 520, 525, 530, 535, 540, 541, 543, 550, 555, 560, 565, 570, 578, 585,
## 590, 595, 599, 600, 601, 602, 605, 606, 607, 610, 615, 620, 630, 639, 640, 650,
## 655, 659, 660, 661, 662, 668, 670, 690, 694, 695, 705, 710, 716, 720, 721, 730,
## 733, 735, 750, 765, 770, 778, 780, 785, 788, 801, 810, 840, 868, 870, 873, 900,
## 915, 930, 955, 960, 962, 965, 970, 990, 1020, 1080, 1109, 1200, 1215, 1230,
## 1260, 1320, 1322, 1380, 1439, 1440 added in variable: netustm
## Warning in read.spss("ESS11.sav", to.data.frame = T): Duplicated levels in
## factor prtvtbrs: Ivica Dačić — Premijer Srbije, Dr Vojislav Šešelj - Srpska
## radikalna stranka, Other, Invalid ballot
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1934,
## 1936, 1938, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950,
## 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963,
## 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976,
## 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989,
## 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
## 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015,
## 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023 added in variable: livecnta
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 666
## added in variable: lnghom2
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 52000
## added in variable: fbrncntc
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 52000
## added in variable: mbrncntc
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7 added in variable: dosprt
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 4, 4.30000019073486, 5, 6, 7, 7.19999980926514, 8, 8.60000038146973, 9,
## 9.60000038146973, 10, 10.6000003814697, 11, 11.5, 12, 13, 13.1999998092651, 14,
## 14.3000001907349, 15, 15.6000003814697, 16, 16.7999992370605, 17, 18, 19,
## 19.2000007629395, 19.6000003814697, 19.7000007629395, 19.8999996185303, 20,
## 20.3999996185303, 21, 22, 22.7999992370605, 23, 23.2000007629395, 24, 25,
## 25.2000007629395, 25.6000003814697, 26, 26.3999996185303, 27, 27.2000007629395,
## 28, 28.7999992370605, 29, 29.2000007629395, 29.2999992370605, 29.6000003814697,
## 30, 31, 31.2000007629395, 32, 32.4000015258789, 32.7999992370605, 33, 34,
## 34.4000015258789, 35, 35.7999992370605, 36, 36.7000007629395, 36.7999992370605,
## 37, 37.4000015258789, 38, 38.4000015258789, 38.9000015258789, 39,
## 39.2000007629395, 39.4000015258789, 39.5999984741211, 40, 41, 42,
## 42.7999992370605, 43, 44, 44.4000015258789, 45, 45.2000007629395,
## 45.5999984741211, 46, 46.0999984741211, 47, 47.2000007629395, 48,
## 48.7999992370605, 49, 49.2000007629395, 49.5999984741211, 50, 51, 52,
## 52.2999992370605, 52.4000015258789, 52.7999992370605, 53, 54, 55, 56,
## 56.4000015258789, 56.5999984741211, 57, 57.5999984741211, 58, 58.4000015258789,
## 59, 59.2000007629395, 60, 61, 61.2000007629395, 62, 63, 64, 65,
## 65.5999984741211, 66, 67, 67.1999969482422, 68, 68.4000015258789,
## 68.8000030517578, 69, 69.1999969482422, 69.5999984741211, 70, 70.8000030517578,
## 71, 72, 73, 73.9000015258789, 74, 75, 76, 76.8000030517578, 77,
## 77.5999984741211, 78, 78.4000015258789, 78.8000030517578, 79, 79.5999984741211,
## 80, 81, 81.1999969482422, 81.8000030517578, 82, 82.0999984741211, 83, 84, 85,
## 86, 86.4000015258789, 87, 87.5999984741211, 87.8000030517578, 88, 89, 90, 91,
## 91.1999969482422, 92, 93, 94, 95, 96, 97, 97.1999969482422, 98, 98.5, 99,
## 99.5999984741211, 100, 101, 102, 103, 103.199996948242, 104, 105, 106, 107,
## 108, 109, 109.599998474121, 110, 111, 112, 112.800003051758, 113,
## 113.199996948242, 114, 115, 116, 117, 118, 118.400001525879, 119, 120, 120.5,
## 121, 122, 122.400001525879, 123, 124, 125, 126, 127, 128, 129, 130, 131,
## 131.199996948242, 132, 133, 134, 134.399993896484, 135, 136, 137,
## 137.300003051758, 138, 139, 140, 140.399993896484, 141, 142, 143, 144, 145,
## 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 156.800003051758, 157,
## 158, 159, 159.600006103516, 160, 161, 163, 164, 165, 166, 167, 168, 169, 170,
## 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 182.699996948242,
## 183, 184, 185, 186, 188, 189, 190, 192, 193, 194, 195, 198, 200, 201, 202, 203,
## 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220,
## 221, 222, 223, 224, 225, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240,
## 244, 245, 246, 248, 249, 250, 251, 252, 255, 256, 257, 258, 260, 261, 262, 263,
## 266, 267, 268, 272, 274, 276, 279, 280, 281, 282, 283, 284, 285, 288, 289, 293,
## 299, 304, 306, 307, 308, 310, 311, 312, 316, 320, 322, 324, 326, 330, 333, 334,
## 340, 345, 350, 351, 358, 359, 360, 362, 365, 366, 380, 382, 386, 388, 390, 392,
## 394, 400, 402, 403, 407, 409, 410, 414, 418, 419, 420, 432, 436, 448, 450, 452,
## 463, 472, 480, 482, 497, 502, 504, 509, 528, 542, 550, 560, 568, 590, 600, 623,
## 630, 632, 640, 675, 680, 685, 742, 750, 780, 806, 866, 1000, 1024, 1079, 1797
## added in variable: alcwkdy
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 4,
## 4.30000019073486, 5, 6, 7, 7.19999980926514, 8, 8.60000038146973, 9,
## 9.60000038146973, 10, 10.6000003814697, 11, 11.5, 12, 12.8999996185303, 13,
## 13.1999998092651, 13.8999996185303, 14, 14.3000001907349, 14.3999996185303,
## 14.8999996185303, 15, 15.6000003814697, 16, 16.7999992370605, 17,
## 17.2000007629395, 18, 18.2000007629395, 19, 19.2000007629395, 19.6000003814697,
## 19.7000007629395, 20, 20.2000007629395, 20.3999996185303, 21, 21.6000003814697,
## 22, 22.7999992370605, 23, 23.2000007629395, 23.5, 24, 25, 25.2000007629395, 26,
## 26.2000007629395, 26.3999996185303, 27, 27.2000007629395, 28, 28.7999992370605,
## 29, 29.2000007629395, 29.2999992370605, 29.6000003814697, 30, 31,
## 31.2000007629395, 32, 32.4000015258789, 33, 33.5999984741211, 34,
## 34.7999992370605, 35, 35.2999992370605, 35.5999984741211, 36, 36.5, 37, 38,
## 38.4000015258789, 38.7999992370605, 38.9000015258789, 39, 39.2000007629395,
## 39.4000015258789, 39.5999984741211, 40, 41, 42, 42.4000015258789,
## 42.7999992370605, 43, 43.2000007629395, 44, 44.4000015258789, 44.7999992370605,
## 45, 45.2000007629395, 46, 47, 48, 48.5, 48.7999992370605, 49, 49.2000007629395,
## 49.5999984741211, 50, 50.4000015258789, 50.7999992370605, 51, 52,
## 52.5999984741211, 52.7999992370605, 53, 53.2000007629395, 54, 55,
## 55.2000007629395, 56, 56.5999984741211, 56.7000007629395, 57, 57.5999984741211,
## 58, 58.4000015258789, 58.7999992370605, 59, 59.0999984741211, 59.2000007629395,
## 60, 60.5999984741211, 61, 62, 62.4000015258789, 63, 63.5999984741211, 64,
## 64.8000030517578, 65, 65.5999984741211, 66, 66.1999969482422, 67,
## 67.1999969482422, 67.6999969482422, 68, 68.1999969482422, 68.8000030517578, 69,
## 69.5999984741211, 70, 71, 71.5999984741211, 72, 73, 74, 74.4000015258789, 75,
## 75.5999984741211, 76, 76.8000030517578, 77, 77.8000030517578, 78,
## 78.3000030517578, 78.8000030517578, 79, 79.1999969482422, 80, 80.6999969482422,
## 81, 82, 82.0999984741211, 83, 84, 85, 86, 86.4000015258789, 87,
## 87.4000015258789, 87.5999984741211, 88, 88.8000030517578, 89, 89.5999984741211,
## 90, 91, 92, 93, 94, 95, 96, 97, 98, 98.4000015258789, 98.8000030517578, 99,
## 99.0999984741211, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
## 111.599998474121, 112, 113, 114, 114.400001525879, 115, 115.199996948242, 116,
## 116.800003051758, 116.900001525879, 117, 118, 119, 120, 121, 122, 123, 124,
## 125, 126, 127, 128, 129, 130, 131, 132, 133, 133.199996948242, 134,
## 134.399993896484, 135, 136, 136.800003051758, 137, 138, 139, 140, 141,
## 141.199996948242, 142, 143, 144, 145, 146, 146.399993896484, 147, 148, 149,
## 150, 151, 152, 152.399993896484, 153, 153.600006103516, 154, 155, 156,
## 156.800003051758, 157, 158, 159, 160, 161, 162, 163, 164, 164.800003051758,
## 165, 165.600006103516, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177,
## 177.600006103516, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
## 190, 191, 191.199996948242, 192, 193, 194, 195, 196, 197, 198,
## 198.399993896484, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
## 208.800003051758, 209, 210, 211, 212, 213, 214, 214.399993896484, 215, 216,
## 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
## 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250,
## 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 268,
## 269.600006103516, 270, 271, 272, 274, 275, 276, 277, 279, 280, 283, 284, 285,
## 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 297.200012207031,
## 298, 300, 301, 303, 304, 305, 306, 307, 308, 310, 311, 312, 315, 316, 317, 319,
## 320, 322, 324, 326, 328, 329, 330, 332, 338, 340, 342, 345, 346, 347, 348, 349,
## 350, 355, 359, 360, 361, 362, 364, 365, 368, 371, 380, 381, 384, 385, 386, 390,
## 396, 398, 400, 404, 407, 408, 412, 413, 416, 417, 420, 424, 426, 427, 430, 432,
## 433, 434, 438, 439, 440, 441, 448, 456, 457, 460, 462, 466, 469,
## 473.600006103516, 474, 480, 481, 482, 491, 500, 503, 505, 508, 526, 528, 530,
## 534, 540, 552, 577, 580, 581, 595, 596, 600, 604, 624, 634, 635, 640, 641, 643,
## 660, 667, 676, 694, 695, 720, 722, 725, 730, 732, 733, 780, 800, 834, 842, 849,
## 851, 893, 948, 998, 1010, 1050, 1274, 1282, 1640, 1663, 2208, 2244 added in
## variable: alcwknd
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 106,
## 108, 120, 122, 130, 135, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148,
## 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
## 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
## 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
## 197, 198, 199, 200, 201, 202, 203, 204, 205, 207 added in variable: height
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 30,
## 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
## 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
## 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
## 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
## 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
## 129, 130, 132, 133, 134, 135, 136, 138, 139, 140, 143, 145, 148 added in
## variable: weighta
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 added in variable: hhmmb
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946,
## 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959,
## 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972,
## 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985,
## 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
## 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 added in
## variable: yrbrn
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 15,
## 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
## 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
## 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
## 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 added in variable:
## agea
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946,
## 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959,
## 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972,
## 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985,
## 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
## 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
## 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
## added in variable: yrbrn2
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946,
## 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959,
## 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972,
## 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985,
## 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
## 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
## 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
## added in variable: yrbrn3
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1934, 1935, 1936, 1937, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947,
## 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960,
## 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973,
## 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986,
## 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
## 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
## 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024 added in
## variable: yrbrn4
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1934, 1936, 1937, 1938, 1939, 1940, 1943, 1944, 1945, 1946, 1947, 1948, 1949,
## 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1959, 1961, 1962, 1963, 1964,
## 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977,
## 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990,
## 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
## 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
## 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024 added in variable: yrbrn5
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1934, 1940, 1943, 1945, 1946, 1947, 1949, 1951, 1956, 1957, 1958, 1959, 1961,
## 1962, 1963, 1965, 1966, 1968, 1969, 1971, 1972, 1974, 1975, 1976, 1977, 1978,
## 1979, 1980, 1981, 1983, 1984, 1985, 1986, 1987, 1989, 1990, 1991, 1992, 1993,
## 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
## 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019,
## 2020, 2021, 2022, 2023, 2024 added in variable: yrbrn6
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1941, 1945, 1946, 1950, 1952, 1961, 1964, 1968, 1972, 1975, 1976, 1977, 1978,
## 1982, 1985, 1986, 1989, 1990, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
## 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015,
## 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023 added in variable: yrbrn7
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1939,
## 1947, 1953, 1965, 1981, 1991, 1992, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
## 2005, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017, 2018, 2019,
## 2020, 2021, 2022, 2023 added in variable: yrbrn8
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1947,
## 1951, 1995, 1997, 1998, 2000, 2005, 2006, 2009, 2010, 2012, 2013, 2014, 2015,
## 2016, 2018, 2019, 2020, 2021, 2023 added in variable: yrbrn9
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1953,
## 1998, 2002, 2012, 2016, 2019, 2020, 2021, 2022, 2023 added in variable: yrbrn10
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 2016,
## 2019, 2020, 2021 added in variable: yrbrn11
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 2011,
## 2015 added in variable: yrbrn12
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 10,
## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
## 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 54, 69 added in variable:
## edagegb
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
## 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 42, 44, 45, 47, 50,
## 67, 69 added in variable: eduyrs
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 1933,
## 1944, 1949, 1951, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962,
## 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975,
## 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988,
## 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
## 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
## 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024 added in variable:
## pdjobyr
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
## 24, 25, 26, 27, 28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 45, 50, 52, 60, 70,
## 75, 80, 100, 110, 124, 150, 178, 180, 200, 300, 400 added in variable: emplno
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
## 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
## 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 68, 70,
## 72, 73, 75, 76, 77, 78, 80, 82, 84, 85, 87, 88, 89, 90, 92, 95, 97, 98, 99,
## 100, 103, 104, 106, 107, 108, 109, 110, 116, 120, 121, 124, 127, 130, 135, 140,
## 150, 157, 159, 160, 170, 180, 190, 200, 219, 220, 230, 240, 250, 300, 320, 350,
## 375, 400, 450, 480, 500 added in variable: njbspv
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
## 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
## 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 63, 64, 65, 66, 68,
## 70, 72, 75, 76, 77, 78, 80, 82, 84, 85, 86, 89, 90, 91, 96, 97, 98, 100, 105,
## 108, 110, 112, 114, 116, 120, 123, 126, 130, 140, 144, 150, 151, 154, 156, 160,
## 164, 165, 167, 168 added in variable: wkhct
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
## 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
## 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64,
## 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88,
## 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 105, 108, 110, 112, 114, 120, 126,
## 130, 132, 140, 144, 150, 151, 156, 158, 160, 162, 164, 165, 168 added in
## variable: wkhtot
## Warning in read.spss("ESS11.sav", to.data.frame = T): Duplicated levels in
## factor isco08: Commissioned armed forces officers, Non-commissioned armed
## forces officers, Armed forces occupations, other ranks, Police inspectors and
## detectives, Other clerical support workers, Protective services workers,
## Assemblers, Agricultural, forestry and fishery labourers, Food preparation
## assistants
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 11,
## 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32,
## 33, 35, 38, 40, 44, 45, 48, 60 added in variable: edagepgb
## Warning in read.spss("ESS11.sav", to.data.frame = T): Duplicated levels in
## factor isco08p: Commissioned armed forces officers, Non-commissioned armed
## forces officers, Armed forces occupations, other ranks, Police inspectors and
## detectives, Other clerical support workers, Protective services workers,
## Assemblers, Agricultural, forestry and fishery labourers, Food preparation
## assistants
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 0, 1,
## 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
## 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
## 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65,
## 66, 68, 69, 70, 72, 75, 77, 78, 80, 84, 85, 88, 90, 95, 96, 98, 100, 105, 111,
## 120, 133, 140, 150, 152, 160, 164, 168 added in variable: wkhtotp
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 10,
## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
## 32, 33, 34, 35, 38, 40, 45, 50 added in variable: edagefgb
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) 10,
## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
## 32, 33, 35, 36, 37, 40, 45, 48, 50, 51, 52 added in variable: edagemgb
## Warning in read.spss("ESS11.sav", to.data.frame = T): Undeclared level(s) IS01,
## IS02 added in variable: region
## Warning in read.spss("ESS11.sav", to.data.frame = T): Duplicated levels in
## factor region: Wien, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS
## 3, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Extra-Regio NUTS
## 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Zürich, Ticino, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Κύπρος, Κύπρος, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Extra-Regio NUTS 1, Extra-Regio NUTS 2,
## Extra-Regio NUTS 3, Berlin, Berlin, Brandenburg, Bremen, Hamburg, Hamburg,
## Mecklenburg-Vorpommern, Saarland, Leipzig, Sachsen-Anhalt, Schleswig-Holstein,
## Thüringen, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3,
## Nordjylland, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Eesti,
## Kesk-Eesti, Kirde-Eesti, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio
## NUTS 3, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Cantabria,
## La Rioja, Comunidad de Madrid, Canarias, Extra-Regio NUTS 1, Extra-Regio NUTS
## 2, Extra-Regio NUTS 3, Helsinki-Uusimaa, Varsinais-Suomi, Kanta-Häme,
## Päijät-Häme, Kymenlaakso, Etelä-Karjala, Etelä-Savo, Pohjois-Savo,
## Pohjois-Karjala, Kainuu, Keski-Pohjanmaa, Pohjois-Pohjanmaa, Lappi, Kainuu,
## Pohjois-Pohjanmaa, Åland, Åland, Extra-Regio NUTS 1, Extra-Regio NUTS 2,
## Extra-Regio NUTS 3, Ile-de-France, Centre — Val de Loire, Bourgogne,
## Franche-Comté, Jura, Picardie, Alsace, Champagne-Ardenne, Lorraine, Pays de la
## Loire, Pays de la Loire, Bretagne, Bretagne, Aquitaine, Limousin,
## Poitou-Charentes, Languedoc-Roussillon, Midi-Pyrénées, Auvergne, Rhône-Alpes,
## Provence-Alpes-Côte d’Azur, Corse, Guadeloupe, Martinique , Guyane, Extra-Regio
## NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Georgia, Extra-region,
## Extra-region, Bjelovarsko-bilogorska županija, Virovitičko-podravska županija,
## Požeško-slavonska županija, Brodsko-posavska županija, Osječko-baranjska
## županija, Vukovarsko-srijemska županija, Karlovačka županija,
## Sisačko-moslavačka županija, Grad Zagreb, Grad Zagreb, Međimurska županija,
## Varaždinska županija, Koprivničko-križevačka županija, Krapinsko-zagorska
## županija, Zagrebačka županija, Extra-Regio NUTS 1, Extra-Regio NUTS 2,
## Extra-Regio NUTS 3, Budapest, Budapest, Pest, Pest, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Ireland, Border, West, Dublin,
## Mid-East, Midland, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3,
## Ísland, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Valle
## d’Aosta/Vallée d’Aoste, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio
## NUTS 3, Liechtenstein, Liechtenstein, Liechtenstein, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Vilniaus apskritis, Alytaus apskritis,
## Kauno apskritis, Utenos apskritis, Extra-Regio NUTS 1, Extra-Regio NUTS 2,
## Extra-Regio NUTS 3, Luxembourg, Luxembourg, Luxembourg, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Latvija, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Црна Гора, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Северна Македонија, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Malta, Malta, Malta, Extra-Regio NUTS
## 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Flevoland, Utrecht, Extra-Regio NUTS
## 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Innlandet, Trøndelag, Extra-Regio
## NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Lubelskie, Podkarpackie,
## Podlaskie, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Algarve,
## Área Metropolitana de Lisboa, Região Autónoma dos Açores, Região Autónoma dos
## Açores, Região Autónoma da Madeira, Região Autónoma da Madeira, Extra-Regio
## NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Nord-Est, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Extra-Regio NUTS 1, Extra-Regio NUTS 2,
## Extra-Regio NUTS 3, Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3,
## Pomurska, Podravska, Koroška, Savinjska, Zasavska, Jugovzhodna Slovenija,
## Osrednjeslovenska, Gorenjska, Goriška, Obalno-kraška, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, Bratislavský kraj, Extra-Regio NUTS 1,
## Extra-Regio NUTS 2, Extra-Regio NUTS 3, İstanbul, İstanbul, İzmir, Ankara,
## Extra-Regio NUTS 1, Extra-Regio NUTS 2, Extra-Regio NUTS 3, Lincolnshire,
## Cornwall and Isles of Scilly, Northern Ireland, Extra-Regio NUTS 1, Extra-Regio
## NUTS 2, Extra-Regio NUTS 3, Kosovo, Kosovo
names(df)
##   [1] "name"      "essround"  "edition"   "proddate"  "idno"      "cntry"    
##   [7] "dweight"   "pspwght"   "pweight"   "anweight"  "nwspol"    "netusoft" 
##  [13] "netustm"   "ppltrst"   "pplfair"   "pplhlp"    "polintr"   "psppsgva" 
##  [19] "actrolga"  "psppipla"  "cptppola"  "trstprl"   "trstlgl"   "trstplc"  
##  [25] "trstplt"   "trstprt"   "trstep"    "trstun"    "vote"      "prtvtdat" 
##  [31] "prtvtebe"  "prtvtchr"  "prtvtccy"  "prtvtffi"  "prtvtffr"  "prtvgde1" 
##  [37] "prtvgde2"  "prtvtegr"  "prtvthhu"  "prtvteis"  "prtvteie"  "prtvteit" 
##  [43] "prtvclt1"  "prtvclt2"  "prtvclt3"  "prtvtinl"  "prtvtcno"  "prtvtfpl" 
##  [49] "prtvtept"  "prtvtbrs"  "prtvtesk"  "prtvtgsi"  "prtvtges"  "prtvtdse" 
##  [55] "prtvthch"  "prtvtdgb"  "contplt"   "donprty"   "badge"     "sgnptit"  
##  [61] "pbldmna"   "bctprd"    "pstplonl"  "volunfp"   "clsprty"   "prtcleat" 
##  [67] "prtclebe"  "prtclbhr"  "prtclccy"  "prtclgfi"  "prtclgfr"  "prtclgde" 
##  [73] "prtclegr"  "prtclihu"  "prtcleis"  "prtclfie"  "prtclfit"  "prtclclt" 
##  [79] "prtclhnl"  "prtclcno"  "prtcljpl"  "prtclgpt"  "prtclbrs"  "prtclesk" 
##  [85] "prtclgsi"  "prtclhes"  "prtcldse"  "prtclhch"  "prtcldgb"  "prtdgcl"  
##  [91] "lrscale"   "stflife"   "stfeco"    "stfgov"    "stfdem"    "stfedu"   
##  [97] "stfhlth"   "gincdif"   "freehms"   "hmsfmlsh"  "hmsacld"   "euftf"    
## [103] "lrnobed"   "loylead"   "imsmetn"   "imdfetn"   "impcntr"   "imbgeco"  
## [109] "imueclt"   "imwbcnt"   "happy"     "sclmeet"   "inprdsc"   "sclact"   
## [115] "crmvct"    "aesfdrk"   "health"    "hlthhmp"   "atchctr"   "atcherp"  
## [121] "rlgblg"    "rlgdnm"    "rlgdnbat"  "rlgdnacy"  "rlgdnafi"  "rlgdnade" 
## [127] "rlgdnagr"  "rlgdnhu"   "rlgdnais"  "rlgdnie"   "rlgdnlt"   "rlgdnanl" 
## [133] "rlgdnno"   "rlgdnapl"  "rlgdnapt"  "rlgdnrs"   "rlgdnask"  "rlgdnase" 
## [139] "rlgdnach"  "rlgdngb"   "rlgblge"   "rlgdnme"   "rlgdebat"  "rlgdeacy" 
## [145] "rlgdeafi"  "rlgdeade"  "rlgdeagr"  "rlgdehu"   "rlgdeais"  "rlgdeie"  
## [151] "rlgdelt"   "rlgdeanl"  "rlgdeno"   "rlgdeapl"  "rlgdeapt"  "rlgders"  
## [157] "rlgdeask"  "rlgdease"  "rlgdeach"  "rlgdegb"   "rlgdgr"    "rlgatnd"  
## [163] "pray"      "dscrgrp"   "dscrrce"   "dscrntn"   "dscrrlg"   "dscrlng"  
## [169] "dscretn"   "dscrage"   "dscrgnd"   "dscrsex"   "dscrdsb"   "dscroth"  
## [175] "dscrdk"    "dscrref"   "dscrnap"   "dscrna"    "ctzcntr"   "brncntr"  
## [181] "cntbrthd"  "livecnta"  "lnghom1"   "lnghom2"   "feethngr"  "facntr"   
## [187] "fbrncntc"  "mocntr"    "mbrncntc"  "ccnthum"   "ccrdprs"   "wrclmch"  
## [193] "admrclc"   "testjc34"  "testjc35"  "testjc36"  "testjc37"  "testjc38" 
## [199] "testjc39"  "testjc40"  "testjc41"  "testjc42"  "vteurmmb"  "vteubcmb" 
## [205] "ctrlife"   "etfruit"   "eatveg"    "dosprt"    "cgtsmok"   "alcfreq"  
## [211] "alcwkdy"   "alcwknd"   "icgndra"   "alcbnge"   "height"    "weighta"  
## [217] "dshltgp"   "dshltms"   "dshltnt"   "dshltref"  "dshltdk"   "dshltna"  
## [223] "medtrun"   "medtrnp"   "medtrnt"   "medtroc"   "medtrnl"   "medtrwl"  
## [229] "medtrnaa"  "medtroth"  "medtrnap"  "medtrref"  "medtrdk"   "medtrna"  
## [235] "medtrnu"   "hlpfmly"   "hlpfmhr"   "trhltacu"  "trhltacp"  "trhltcm"  
## [241] "trhltch"   "trhltos"   "trhltho"   "trhltht"   "trhlthy"   "trhltmt"  
## [247] "trhltpt"   "trhltre"   "trhltsh"   "trhltnt"   "trhltref"  "trhltdk"  
## [253] "trhltna"   "fltdpr"    "flteeff"   "slprl"     "wrhpp"     "fltlnl"   
## [259] "enjlf"     "fltsd"     "cldgng"    "hltprhc"   "hltprhb"   "hltprbp"  
## [265] "hltpral"   "hltprbn"   "hltprpa"   "hltprpf"   "hltprsd"   "hltprsc"  
## [271] "hltprsh"   "hltprdi"   "hltprnt"   "hltprref"  "hltprdk"   "hltprna"  
## [277] "hltphhc"   "hltphhb"   "hltphbp"   "hltphal"   "hltphbn"   "hltphpa"  
## [283] "hltphpf"   "hltphsd"   "hltphsc"   "hltphsh"   "hltphdi"   "hltphnt"  
## [289] "hltphnap"  "hltphref"  "hltphdk"   "hltphna"   "hltprca"   "cancfre"  
## [295] "cnfpplh"   "fnsdfml"   "jbexpvi"   "jbexpti"   "jbexpml"   "jbexpmc"  
## [301] "jbexpnt"   "jbexpnap"  "jbexpref"  "jbexpdk"   "jbexpna"   "jbexevl"  
## [307] "jbexevh"   "jbexevc"   "jbexera"   "jbexecp"   "jbexebs"   "jbexent"  
## [313] "jbexenap"  "jbexeref"  "jbexedk"   "jbexena"   "nobingnd"  "likrisk"  
## [319] "liklead"   "sothnds"   "actcomp"   "mascfel"   "femifel"   "impbemw"  
## [325] "trmedmw"   "trwrkmw"   "trplcmw"   "trmdcnt"   "trwkcnt"   "trplcnt"  
## [331] "eqwrkbg"   "eqpolbg"   "eqmgmbg"   "eqpaybg"   "eqparep"   "eqparlv"  
## [337] "freinsw"   "fineqpy"   "wsekpwr"   "weasoff"   "wlespdm"   "wexashr"  
## [343] "wprtbym"   "wbrgwrm"   "hhmmb"     "gndr"      "gndr2"     "gndr3"    
## [349] "gndr4"     "gndr5"     "gndr6"     "gndr7"     "gndr8"     "gndr9"    
## [355] "gndr10"    "gndr11"    "gndr12"    "yrbrn"     "agea"      "yrbrn2"   
## [361] "yrbrn3"    "yrbrn4"    "yrbrn5"    "yrbrn6"    "yrbrn7"    "yrbrn8"   
## [367] "yrbrn9"    "yrbrn10"   "yrbrn11"   "yrbrn12"   "rshipa2"   "rshipa3"  
## [373] "rshipa4"   "rshipa5"   "rshipa6"   "rshipa7"   "rshipa8"   "rshipa9"  
## [379] "rshipa10"  "rshipa11"  "rshipa12"  "rshpsts"   "rshpsgb"   "lvgptnea" 
## [385] "dvrcdeva"  "marsts"    "marstgb"   "maritalb"  "chldhhe"   "domicil"  
## [391] "paccmoro"  "paccdwlr"  "pacclift"  "paccnbsh"  "paccocrw"  "paccxhoc" 
## [397] "paccnois"  "paccinro"  "paccnt"    "paccref"   "paccdk"    "paccna"   
## [403] "edulvlb"   "eisced"    "edlveat"   "edlvebe"   "edlvehr"   "edlvgcy"  
## [409] "edlvdfi"   "edlvdfr"   "edudde1"   "educde2"   "edlvegr"   "edlvdahu" 
## [415] "edlvdis"   "edlvdie"   "edlvfit"   "edlvdlt"   "edlvenl"   "edlveno"  
## [421] "edlvipl"   "edlvept"   "edlvdrs"   "edlvdsk"   "edlvesi"   "edlvies"  
## [427] "edlvdse"   "edlvdch"   "educgb1"   "edubgb2"   "edagegb"   "eduyrs"   
## [433] "pdwrk"     "edctn"     "uempla"    "uempli"    "dsbld"     "rtrd"     
## [439] "cmsrv"     "hswrk"     "dngoth"    "dngref"    "dngdk"     "dngna"    
## [445] "mainact"   "mnactic"   "crpdwk"    "pdjobev"   "pdjobyr"   "emplrel"  
## [451] "emplno"    "wrkctra"   "estsz"     "jbspv"     "njbspv"    "wkdcorga" 
## [457] "iorgact"   "wkhct"     "wkhtot"    "nacer2"    "tporgwk"   "isco08"   
## [463] "wrkac6m"   "uemp3m"    "uemp12m"   "uemp5yr"   "mbtru"     "hincsrca" 
## [469] "hinctnta"  "hincfel"   "edulvlpb"  "eiscedp"   "edlvpfat"  "edlvpebe" 
## [475] "edlvpehr"  "edlvpgcy"  "edlvpdfi"  "edlvpdfr"  "edupdde1"  "edupcde2" 
## [481] "edlvpegr"  "edlvpdahu" "edlvpdis"  "edlvpdie"  "edlvpfit"  "edlvpdlt" 
## [487] "edlvpenl"  "edlvpeno"  "edlvphpl"  "edlvpept"  "edlvpdrs"  "edlvpdsk" 
## [493] "edlvpesi"  "edlvphes"  "edlvpdse"  "edlvpdch"  "edupcgb1"  "edupbgb2" 
## [499] "edagepgb"  "pdwrkp"    "edctnp"    "uemplap"   "uemplip"   "dsbldp"   
## [505] "rtrdp"     "cmsrvp"    "hswrkp"    "dngothp"   "dngdkp"    "dngnapp"  
## [511] "dngrefp"   "dngnap"    "mnactp"    "crpdwkp"   "isco08p"   "emprelp"  
## [517] "wkhtotp"   "edulvlfb"  "eiscedf"   "edlvfeat"  "edlvfebe"  "edlvfehr" 
## [523] "edlvfgcy"  "edlvfdfi"  "edlvfdfr"  "edufcde1"  "edufbde2"  "edlvfegr" 
## [529] "edlvfdahu" "edlvfdis"  "edlvfdie"  "edlvffit"  "edlvfdlt"  "edlvfenl" 
## [535] "edlvfeno"  "edlvfgpl"  "edlvfept"  "edlvfdrs"  "edlvfdsk"  "edlvfesi" 
## [541] "edlvfges"  "edlvfdse"  "edlvfdch"  "edufcgb1"  "edufbgb2"  "edagefgb" 
## [547] "emprf14"   "occf14b"   "edulvlmb"  "eiscedm"   "edlvmeat"  "edlvmebe" 
## [553] "edlvmehr"  "edlvmgcy"  "edlvmdfi"  "edlvmdfr"  "edumcde1"  "edumbde2" 
## [559] "edlvmegr"  "edlvmdahu" "edlvmdis"  "edlvmdie"  "edlvmfit"  "edlvmdlt" 
## [565] "edlvmenl"  "edlvmeno"  "edlvmgpl"  "edlvmept"  "edlvmdrs"  "edlvmdsk" 
## [571] "edlvmesi"  "edlvmges"  "edlvmdse"  "edlvmdch"  "edumcgb1"  "edumbgb2" 
## [577] "edagemgb"  "emprm14"   "occm14b"   "atncrse"   "anctrya1"  "anctrya2" 
## [583] "regunit"   "region"    "ipcrtiva"  "impricha"  "ipeqopta"  "ipshabta" 
## [589] "impsafea"  "impdiffa"  "ipfrulea"  "ipudrsta"  "ipmodsta"  "ipgdtima" 
## [595] "impfreea"  "iphlppla"  "ipsucesa"  "ipstrgva"  "ipadvnta"  "ipbhprpa" 
## [601] "iprspota"  "iplylfra"  "impenva"   "imptrada"  "impfuna"   "testji1"  
## [607] "testji2"   "testji3"   "testji4"   "testji5"   "testji6"   "testji7"  
## [613] "testji8"   "testji9"   "respc19a"  "symtc19"   "symtnc19"  "vacc19"   
## [619] "recon"     "inwds"     "ainws"     "ainwe"     "binwe"     "cinwe"    
## [625] "dinwe"     "einwe"     "finwe"     "hinwe"     "iinwe"     "kinwe"    
## [631] "rinwe"     "inwde"     "jinws"     "jinwe"     "inwtm"     "mode"     
## [637] "domain"    "prob"      "stratum"   "psu"
vnames = c("fltdpr", "flteeff", "slprl", "wrhpp", "fltlnl", "enjlf", "fltsd", "cldgng")
likert_df = df[,vnames]

#Nur UK Daten

#df_uk = df[df$cntry == "United Kingdom", ]
# check

#df_uk$depression = rowSums(df_uk[, c("d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27")]) / 8

#Likert Scale

likert_table = likert(likert_df)$results 
likert_numeric_df = as.data.frame(lapply((df[,vnames]), as.numeric))
likert_table$Mean = unlist(lapply((likert_numeric_df[,vnames]), mean, na.rm=T)) 
# ... and append new columns to the data frame
likert_table$Count = unlist(lapply((likert_numeric_df[,vnames]), function (x) sum(!is.na(x))))
likert_table$Item = c(
  d20="how much of the time during the past week you felt depressed?",
  d21="…you felt that everything you did was an effort?",
  d22="…your sleep was restless?",
  d23="…you were happy?",
  d24="…you felt lonely?",
  d25="…you enjoyed life?",
  d26="…you felt sad?",
  d27="…you could not get going?")
likert_table
##                                                            Item
## 1 how much of the time during the past week you felt depressed?
## 2              …you felt that everything you did was an effort?
## 3                                     …your sleep was restless?
## 4                                              …you were happy?
## 5                                             …you felt lonely?
## 6                                            …you enjoyed life?
## 7                                                …you felt sad?
## 8                                     …you could not get going?
##   None or almost none of the time Some of the time Most of the time
## 1                       64.915835         29.06631         4.557165
## 2                       48.395568         38.42383         9.814171
## 3                       43.873854         39.87056        11.625059
## 4                        4.003510         23.53973        48.886939
## 5                       68.136458         24.27532         5.302253
## 6                        5.338783         24.82572        44.804153
## 7                       52.489933         41.07451         4.859808
## 8                       55.673484         36.10353         6.217928
##   All or almost all of the time     Mean Count
## 1                      1.460694 1.425627 39981
## 2                      3.366431 1.681515 39983
## 3                      4.630532 1.770123 40017
## 4                     23.569817 2.920231 39890
## 5                      2.285972 1.417377 39983
## 6                     25.031346 2.895281 39878
## 7                      1.575748 1.555214 39981
## 8                      2.005056 1.545546 39949
# round all percentage values to 1 decimal digit
likert_table[,2:6] = round(likert_table[,2:6],1)
# round means to 3 decimal digits
likert_table[,7] = round(likert_table[,7],3)

# create formatted table
kable_styling(kable(likert_table,
                    format="html",
                    caption = "Distribution of answers regarding same sex partnerships (ESS round 11, all countries)"
                    )
              )
Distribution of answers regarding same sex partnerships (ESS round 11, all countries)
Item None or almost none of the time Some of the time Most of the time All or almost all of the time Mean Count
how much of the time during the past week you felt depressed? 64.9 29.1 4.6 1.5 1.4 39981
…you felt that everything you did was an effort? 48.4 38.4 9.8 3.4 1.7 39983
…your sleep was restless? 43.9 39.9 11.6 4.6 1.8 40017
…you were happy? 4.0 23.5 48.9 23.6 2.9 39890
…you felt lonely? 68.1 24.3 5.3 2.3 1.4 39983
…you enjoyed life? 5.3 24.8 44.8 25.0 2.9 39878
…you felt sad? 52.5 41.1 4.9 1.6 1.6 39981
…you could not get going? 55.7 36.1 6.2 2.0 1.5 39949
# create basic plot (code also valid)
plot(likert(summary=likert_table[,1:6])) # limit to columns 1:6 to skip mean and count

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.