library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Create multiple histogram using ggplot2::facet_wrap() to visualize how a varible(e.g, Sepal.length) is distributed across different groups in a built in R dataset
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(binwidth = 0.3, color = "black", fill = "skyblue", alpha = 0.7) +
facet_wrap(~ Species) +
labs(title = "Distribution of Sepal Length by Species",
x = "Sepal Length",
y = "Frequency") +
theme_minimal()
library(ggplot2)
<- function(data, numeric_var, group_var, fill = TRUE) {
plot_density_by_group ggplot(data, aes_string(x = numeric_var, color = group_var, fill = group_var)) +
geom_density(alpha = if (fill) 0.4 else 0) +
labs(
title = paste("Density Plot of", numeric_var, "by", group_var),
x = numeric_var,
y = "Density"
+
) theme_minimal()
}
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
plot_density_by_group(iris, "Sepal.Length", "Species")
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.
library(ggplot2)
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
ggplot(iris, aes(x = Species, y = Sepal.Length))+
geom_boxplot(
notch = TRUE,
notchwidth = 0.5,
outlier.colour = "black",
fill = "pink" ) +
labs(title = "basic box plot",
x = "Species",
y = "Sepal.Length")+
theme_minimal()
Develop a script in R to create a violin plot displaying distribution of a continuous varible, with separate violins for each group using ggplot2
Step 1:Load Required library
library(ggplot2)
Step 2:Load dataset
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Step 3:Creating violin using ggplot2
ggplot(iris, aes(x = Species , y = Sepal.Length , fill = Species))+
geom_violin(trim = FALSE, alpha=0.6, color= "black")+
labs(title = "Distributions of petal length by iris Species",
x = "Species",
y = "Petal.Length")+
theme_minimal(base_size = 14)
Write an R program to create multiple dot plot for grouped data, comparing the distribution of variable across different categories using ggplot2
Step 1:Load Required library
library(ggplot2)
Step 2:Load dataset
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Step 3:Creating dotplot
ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_dotplot(
binaxis = "y",
stackdir = "center",
dotsize = 0.7,
alpha = 0.6,
color = "black"
+
) labs(
title = "Distribution of Sepal Length by Iris Species",
x = "Species",
y = "Sepal Length"
+
) theme_minimal(base_size = 14)
Bin width defaults to 1/30 of the range of the data. Pick better value with
`binwidth`.
ggplot2
package and the geom_tile()
function.library(ggplot2)
library(tidyr)
library(dplyr)
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
<- cor(mtcars)
cor_matrix <- as.data.frame(as.table(cor_matrix))
cor_df head(cor_df)
Var1 Var2 Freq
1 mpg mpg 1.0000000
2 cyl mpg -0.8521620
3 disp mpg -0.8475514
4 hp mpg -0.7761684
5 drat mpg 0.6811719
6 wt mpg -0.8676594
<- mtcars
data
# Step 1: Calculate the correlation matrix
<- cor(data)
cor_matrix
# Step 2: Convert the matrix to a long format data frame
<- melt(cor_matrix) cor_df
ggplot(cor_df, aes(x = Var1, y = Var2, fill = value)) +
geom_tile(color = "white") +
geom_text(aes(label = round(value, 2)), color = "black", size = 3.5) +
scale_fill_gradient2(
low = "green",
high = "pink",
mid = "white",
midpoint = 0,
limit = c(-1, 1),
name = "Correlation"
+
) theme_minimal() +
coord_fixed() +
labs(
title = "Correlation Matrix Heatmap with Values",
x = "",
y = ""
+
) theme(
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)