Program 15

Author

Kusuma B M 1NT23IS108

9.Create multiple histograms using ggplot2 ::8facet_wrap() to visualize how a variable(e.g., Sepal.length) is distributed across different groups (e.g.,species) in a built-in R data set.

Step 1: Load required libraries

library(ggplot2) 
Warning: package 'ggplot2' was built under R version 4.4.3

Step 2:Load dataset

data(iris) #load the first iris dataset 
head(iris) #view the first few rows
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Step 3: Create histogram using facet_wrap for grouped data

ggplot(iris, aes(x = Sepal.Length)) +   
  geom_histogram(binwidth = 0.4, fill = "black", color = "pink") +   facet_wrap(~ Species) + # Facet by Species   
  labs(title = "Distribution of Sepal Length by Species",
       x = "Sepal Length (cm)",        
       y = "Frequency")+    theme_minimal()

10.Develop an R function to draw a density curve representing the probability density function of a continuous variable, with separate curves for each group, using ggplot2.

Step 1: Load Required Library

library(ggplot2)

Step 2: Define the Function

plot_density_by_group <- function(data, continuous_var, group_var, fill_colors = NULL) {
  # Check if the specified columns exist
  if (!(continuous_var %in% names(data)) || !(group_var %in% names(data))) {
    stop("Invalid column names. Make sure both variables exist in the dataset.")
  }

  # Create the ggplot object
  p <- ggplot(data, aes_string(x = continuous_var, color = group_var, fill = group_var)) +
    geom_density(alpha = 0.4) +
    labs(title = paste("Density Plot of", continuous_var, "by", group_var),
         x = continuous_var,
         y = "Density") +
    theme_minimal()

  # Apply custom fill colors if provided
  if (!is.null(fill_colors)) {
    p <- p + scale_fill_manual(values = fill_colors) +
             scale_color_manual(values = fill_colors)
  }

  # Return the plot
  return(p)
}

Step 4: Example with Built-in iris Dataset

# Basic usage 
plot_density_by_group(iris, "Sepal.Length", "Species")
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.

Step 5: Example with Custom Colors

# Define custom colors
custom_colors <- c("setosa" = "steelblue",
                   "versicolor" = "forestgreen",
                   "virginica" = "darkorange")

# Plot with custom colors
plot_density_by_group(iris, "Petal.Length", "Species", fill_colors = custom_colors)

11.To generate a basic box plot using ggplot2, enhanced with notches and outliers, and grouped by a categorical variable using an in-built dataset in R.

Step 1: Load Required Package

library(ggplot2)

Step 2: Use an Inbuilt Dataset

data(iris) 
head(iris) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
str(iris)
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Step 3: Create a Notched Box Plot Grouped by Species

ggplot(iris, aes(x = Species, y = Sepal.Length)) +
  geom_boxplot(
    notch = TRUE,
    notchwidth = 0.6,
    outlier.color = "red",
    outlier.shape = 16,
    fill = "skyblue",
    alpha = 0.7
  ) +
  labs(
    title = "Sepal Length Distribution by Iris Species",
    subtitle = "Box Plot with Notches and Outlier Highlighting",
    x = "Species",
    y = "Sepal Length (cm)"
  ) +
  theme_minimal()

p=ggplot(iris, aes(x = Species, y = Sepal.Length)) 
p

p=p+ geom_boxplot(  
  ) 
p

p=p+ geom_boxplot(
  notch = TRUE,
    notchwidth = 0.6,
    outlier.color = "red",
    outlier.shape = 16,
    fill = "purple",
    alpha = 0.7
)
p

12.To create a violin plot using ggplot2 in R that displays the distribution of a continuous variable with separate violins for each group using an in-built dataset.

Step 1: Load Required Package

library(ggplot2)

Step 2: Use an Inbuilt Dataset

data(iris) 
head(iris) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
str(iris)
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Step 3: Create the Violin Plot

ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
  geom_violin(trim = FALSE, alpha = 0.6, color = "black") +
  labs(
    title = "Distribution of Petal Length by Iris Species",
    x = "Species",
    y = "Petal Length (cm)"
  ) +
  theme_minimal(base_size = 14)

13.Write an R program to create multiple dot plots or group data , comparing the distribution of variables across different categories, using ggplot2’s position_dodge function.

Step 1: Load the required library

library(ggplot2) 
library(dplyr)
Warning: package 'dplyr' was built under R version 4.4.3

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Step 2:Load the dataset

str("ToothGrowth")
 chr "ToothGrowth"
data("ToothGrowth")
table(ToothGrowth$len)

 4.2  5.2  5.8  6.4    7  7.3  8.2  9.4  9.7   10 11.2 11.5 13.6 14.5 15.2 15.5 
   1    1    1    1    1    1    1    1    2    2    2    1    1    3    2    1 
16.5 17.3 17.6 18.5 18.8 19.7   20 21.2 21.5 22.4 22.5   23 23.3 23.6 24.5 24.8 
   3    2    1    1    1    1    1    1    2    1    1    1    2    2    1    1 
25.2 25.5 25.8 26.4 26.7 27.3 29.4 29.5 30.9 32.5 33.9 
   1    2    1    4    1    2    1    1    1    1    1 
table(ToothGrowth$dose)

0.5   1   2 
 20  20  20 

Step 3:Create a dot plot

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
  geom_dotplot(
    binaxis = 'y',
    stackdir = 'center',#direction to stack the dots
    position = position_dodge(width = 0.8),
    dotsize = 0.6,
    binwidth = 1.5 #controls spacing of dots on y-axis
  ) +
  labs(
    title = "Dot Plot of Tooth Length by Dose and Supplement Type ",
    x = "Dose (mg/day)",
    y = "Tooth Length",
    color = "Supplement Type"
  ) +
  theme_minimal()

14.Develop a R program to calculate and visualize a correlation matrix for a given dataset, with color coded cells indicating the strength and direction of correlation , using ggplot2, geom_tile function.

Step 1: Load the required library

library(ggplot2) 
library(tidyr) 
Warning: package 'tidyr' was built under R version 4.4.3
library(dplyr)

Step 2: Dataset

head(mtcars) 
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
str(mtcars) 
'data.frame':   32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
dim(mtcars)
[1] 32 11
data(mtcars)
cor_matrix <- cor(mtcars)
cor_matrix
            mpg        cyl       disp         hp        drat         wt
mpg   1.0000000 -0.8521620 -0.8475514 -0.7761684  0.68117191 -0.8676594
cyl  -0.8521620  1.0000000  0.9020329  0.8324475 -0.69993811  0.7824958
disp -0.8475514  0.9020329  1.0000000  0.7909486 -0.71021393  0.8879799
hp   -0.7761684  0.8324475  0.7909486  1.0000000 -0.44875912  0.6587479
drat  0.6811719 -0.6999381 -0.7102139 -0.4487591  1.00000000 -0.7124406
wt   -0.8676594  0.7824958  0.8879799  0.6587479 -0.71244065  1.0000000
qsec  0.4186840 -0.5912421 -0.4336979 -0.7082234  0.09120476 -0.1747159
vs    0.6640389 -0.8108118 -0.7104159 -0.7230967  0.44027846 -0.5549157
am    0.5998324 -0.5226070 -0.5912270 -0.2432043  0.71271113 -0.6924953
gear  0.4802848 -0.4926866 -0.5555692 -0.1257043  0.69961013 -0.5832870
carb -0.5509251  0.5269883  0.3949769  0.7498125 -0.09078980  0.4276059
            qsec         vs          am       gear        carb
mpg   0.41868403  0.6640389  0.59983243  0.4802848 -0.55092507
cyl  -0.59124207 -0.8108118 -0.52260705 -0.4926866  0.52698829
disp -0.43369788 -0.7104159 -0.59122704 -0.5555692  0.39497686
hp   -0.70822339 -0.7230967 -0.24320426 -0.1257043  0.74981247
drat  0.09120476  0.4402785  0.71271113  0.6996101 -0.09078980
wt   -0.17471588 -0.5549157 -0.69249526 -0.5832870  0.42760594
qsec  1.00000000  0.7445354 -0.22986086 -0.2126822 -0.65624923
vs    0.74453544  1.0000000  0.16834512  0.2060233 -0.56960714
am   -0.22986086  0.1683451  1.00000000  0.7940588  0.05753435
gear -0.21268223  0.2060233  0.79405876  1.0000000  0.27407284
carb -0.65624923 -0.5696071  0.05753435  0.2740728  1.00000000
cor_df <- as.data.frame(as.table(cor_matrix))
head(cor_df)
  Var1 Var2       Freq
1  mpg  mpg  1.0000000
2  cyl  mpg -0.8521620
3 disp  mpg -0.8475514
4   hp  mpg -0.7761684
5 drat  mpg  0.6811719
6   wt  mpg -0.8676594

Step 3:Visualize using ggplot

ggplot(cor_df, aes(x = Var1, y = Var2, fill = Freq)) +
  geom_tile(color = "white") + #Draw tile borders
  scale_fill_gradient2(
    low = "blue", mid = "white", high = "red",
    midpoint = 0, limit = c(-1, 1),
    name = "Correlation"
    ) +
  geom_text(aes(label = round(Freq,2)), size = 3) +
  theme_minimal()+
  labs(
    title = "Correlation matrix (mtcars)",
      x = "Var1",
      y = "Var2"
      
    
  ) +
  theme(axis.text.x = element_text(angle = 45, hjust =1))