Load Packages
library(dplyr)
library(sandwich)
library(haven)
library(car)
library(effectsize)
library(interactions)
library(MASS)
library(AER)
library(ggeffects)
library(ggplot2)
library(interactions)
library(lme4)
library(lmtest)
library(lmerTest)
library(lavaan)
library(pscl)
library(RMediation)
library(multilevel)
library(stargazer)
options(scipen = 999)
Load Data (Pilot Study)
df_lab <- read.csv("df_lab.csv")
cat(
"Number of participants:", nrow(df_lab), "\n",
"Number of groups:", length(unique(df_lab$GroupID)), "\n",
"Average group size:", mean(df_lab$GroupSize), "\n",
"Min and max group size:", range(df_lab$GroupSize), "\n"
)
## Number of participants: 219
## Number of groups: 62
## Average group size: 4.821918
## Min and max group size: 3 6
df_lab$Ingratiation <- factor(df_lab$Ingratiation)
df_lab$Promotion <- factor(df_lab$Promotion)
df_lab$NewcomerRace <- factor(df_lab$NewcomerRace)
df_lab$NewcomerGender <- factor(df_lab$NewcomerGender)
Pilot Study: Ingratiation and Perceived Likeability
model <- lm(Liked ~ Ingratiation * NewcomerRace + Promotion + NewcomerGender, data = df_lab)
# View ANOVA table
Anova(model, type = 3)
## Anova Table (Type III tests)
##
## Response: Liked
## Sum Sq Df F value Pr(>F)
## (Intercept) 563.10 1 1074.5100 < 0.0000000000000002 ***
## Ingratiation 0.11 1 0.2127 0.64512
## NewcomerRace 0.28 1 0.5367 0.46462
## Promotion 0.33 1 0.6349 0.42645
## NewcomerGender 0.51 1 0.9747 0.32463
## Ingratiation:NewcomerRace 2.96 1 5.6514 0.01833 *
## Residuals 111.62 213
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
###### Predicted values by race and condition
predicted_data <- ggpredict(model, terms = c("Ingratiation", "NewcomerRace"))
predicted_data
## # Predicted values of Liked
##
## NewcomerRace: Black
##
## Ingratiation | Predicted | 95% CI
## -------------------------------------
## High | 6.09 | 5.73, 6.46
## Low | 6.17 | 5.94, 6.39
##
## NewcomerRace: White
##
## Ingratiation | Predicted | 95% CI
## -------------------------------------
## High | 6.22 | 5.85, 6.58
## Low | 5.80 | 5.56, 6.04
##
## Adjusted for:
## * Promotion = High
## * NewcomerGender = Female
# Simple slopes estimates
slope_results <- sim_slopes(model, pred = "Ingratiation", modx = "NewcomerRace", confint = TRUE)
print(slope_results)
## SIMPLE SLOPES ANALYSIS
##
## Slope of Ingratiation when NewcomerRace = Black:
##
## Est. S.E. 2.5% 97.5% t val. p
## ------ ------ ------- ------- -------- ------
## 0.08 0.16 -0.25 0.40 0.46 0.65
##
## Slope of Ingratiation when NewcomerRace = White:
##
## Est. S.E. 2.5% 97.5% t val. p
## ------- ------ ------- ------- -------- ------
## -0.42 0.16 -0.74 -0.10 -2.60 0.01
Pilot Study: Ingratiation and Coworker Support
videoData <- read.csv("videoData.csv")
videoData$NewcomerRace <- factor(videoData$NewcomerRace,
levels = c(0, 1),
labels = c("White", "Racial Minority"))
videoData$Promotion <- factor(videoData$Promotion,
levels = c(0, 1),
labels = c("Low Self-Promotion", "High Self-Promotion"))
videoData$Ingratiation <- factor(videoData$Ingratiation,
levels = c(0, 1),
labels = c("Low Ingratiation", " High Ingratiation"))
# Poisson Regression
poisson_model <- glm(
Support ~ Promotion + Ingratiation*NewcomerRace,
family = "poisson",
data = videoData)
coeftest(poisson_model, vcov = sandwich)
##
## z test of coefficients:
##
## Estimate Std. Error
## (Intercept) 0.22661 0.48381
## PromotionHigh Self-Promotion -0.23157 0.57538
## Ingratiation High Ingratiation 0.56185 0.79836
## NewcomerRaceRacial Minority 0.12660 0.54784
## Ingratiation High Ingratiation:NewcomerRaceRacial Minority -18.21764 0.95049
## z value
## (Intercept) 0.4684
## PromotionHigh Self-Promotion -0.4025
## Ingratiation High Ingratiation 0.7038
## NewcomerRaceRacial Minority 0.2311
## Ingratiation High Ingratiation:NewcomerRaceRacial Minority -19.1665
## Pr(>|z|)
## (Intercept) 0.6395
## PromotionHigh Self-Promotion 0.6873
## Ingratiation High Ingratiation 0.4816
## NewcomerRaceRacial Minority 0.8173
## Ingratiation High Ingratiation:NewcomerRaceRacial Minority <0.0000000000000002
##
## (Intercept)
## PromotionHigh Self-Promotion
## Ingratiation High Ingratiation
## NewcomerRaceRacial Minority
## Ingratiation High Ingratiation:NewcomerRaceRacial Minority ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Tests for Overdispersion
dispersiontest(poisson_model)
##
## Overdispersion test
##
## data: poisson_model
## z = 2.1173, p-value = 0.01712
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 2.932338
# Negative Binomial Regression
zinb_model <- zeroinfl(
Support ~ Promotion + Ingratiation * NewcomerRace | Promotion + Ingratiation + NewcomerRace,
data = videoData,
dist = "negbin"
)
# Compare Fit of Poisson and NB Models
lrtest(poisson_model, zinb_model)
## Likelihood ratio test
##
## Model 1: Support ~ Promotion + Ingratiation * NewcomerRace
## Model 2: Support ~ Promotion + Ingratiation * NewcomerRace | Promotion +
## Ingratiation + NewcomerRace
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 5 -69.890
## 2 10 -52.538 5 34.705 0.000001723 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Summary of Zero-Inflated NB Model Results with Robust Standard Errors
coeftest(zinb_model, vcov = sandwich)
##
## t test of coefficients:
##
## Estimate
## count_(Intercept) 0.63595
## count_PromotionHigh Self-Promotion 0.22256
## count_Ingratiation High Ingratiation 0.92780
## count_NewcomerRaceRacial Minority -0.35172
## count_Ingratiation High Ingratiation:NewcomerRaceRacial Minority -18.21764
## zero_(Intercept) -0.97757
## zero_PromotionHigh Self-Promotion 1.45765
## zero_Ingratiation High Ingratiation 1.13562
## zero_NewcomerRaceRacial Minority -1.64505
## Std. Error
## count_(Intercept) 0.56275
## count_PromotionHigh Self-Promotion 0.73777
## count_Ingratiation High Ingratiation 0.54133
## count_NewcomerRaceRacial Minority 0.55920
## count_Ingratiation High Ingratiation:NewcomerRaceRacial Minority 0.80467
## zero_(Intercept) 2.49255
## zero_PromotionHigh Self-Promotion 1.99516
## zero_Ingratiation High Ingratiation 2.16766
## zero_NewcomerRaceRacial Minority 2.79846
## t value
## count_(Intercept) 1.1301
## count_PromotionHigh Self-Promotion 0.3017
## count_Ingratiation High Ingratiation 1.7139
## count_NewcomerRaceRacial Minority -0.6290
## count_Ingratiation High Ingratiation:NewcomerRaceRacial Minority -22.6400
## zero_(Intercept) -0.3922
## zero_PromotionHigh Self-Promotion 0.7306
## zero_Ingratiation High Ingratiation 0.5239
## zero_NewcomerRaceRacial Minority -0.5878
## Pr(>|t|)
## count_(Intercept) 0.26740
## count_PromotionHigh Self-Promotion 0.76499
## count_Ingratiation High Ingratiation 0.09686
## count_NewcomerRaceRacial Minority 0.53413
## count_Ingratiation High Ingratiation:NewcomerRaceRacial Minority < 0.0000000000000002
## zero_(Intercept) 0.69768
## zero_PromotionHigh Self-Promotion 0.47070
## zero_Ingratiation High Ingratiation 0.60420
## zero_NewcomerRaceRacial Minority 0.56104
##
## count_(Intercept)
## count_PromotionHigh Self-Promotion
## count_Ingratiation High Ingratiation .
## count_NewcomerRaceRacial Minority
## count_Ingratiation High Ingratiation:NewcomerRaceRacial Minority ***
## zero_(Intercept)
## zero_PromotionHigh Self-Promotion
## zero_Ingratiation High Ingratiation
## zero_NewcomerRaceRacial Minority
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Predicted values by race and condition
predicted_data <- ggpredict(zinb_model, terms = c("Promotion", "NewcomerRace"))
predicted_data
## # Predicted (conditional) counts of Support
##
## NewcomerRace: White
##
## Promotion | Predicted | 95% CI
## ---------------------------------------------
## Low Self-Promotion | 1.89 | 0.62, 5.79
## High Self-Promotion | 2.36 | 0.53, 10.44
##
## NewcomerRace: Racial Minority
##
## Promotion | Predicted | 95% CI
## ---------------------------------------------
## Low Self-Promotion | 1.33 | 0.45, 3.92
## High Self-Promotion | 1.66 | 0.52, 5.26
##
## Adjusted for:
## * Ingratiation = Low Ingratiation
Load Data (Main Study)
MainStudy <- read.csv("MainStudy2.csv")
names(MainStudy)
## [1] "unit" "Gender" "Minority" "BLACK" "WHITE"
## [6] "ASIAN" "LATINO" "Token" "racialRep" "G_Social"
## [11] "PosFrame" "IN_Seek" "ING" "SP" "Support"
## [16] "PJFit" "PWFit" "Mastery" "Integrated" "Role_Clarity"
Within-Group Correlations (CorrW)
for(pair in names(waba_results)) {
cat("=== WABA for", pair, "===\n")
print(waba_results[[pair]])
cat("\n")
}
## === WABA for Minority_vs_IN_Seek ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1183094 0.4899655 0.2687974 0.3863039 0.8717418 0.9631967 0.08030956
##
##
## === WABA for Minority_vs_G_Social ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1853341 0.4899655 0.3608626 0.6404253 0.8717418 0.932619 0.08868402
##
##
## === WABA for Minority_vs_PosFrame ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.02090969 0.490469 0.3968167 0.2218557 0.8714586 0.9178979 -0.02783971
##
##
## === WABA for Minority_vs_ING ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 -0.1029728 0.4876467 0.4821928 -0.4249487 0.8730411 0.8760651 -0.003988331
##
##
## === WABA for Minority_vs_SP ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.003224715 0.4876467 0.4053295 -0.2202956 0.8730411 0.9141707 0.0585983
##
##
## === WABA for Minority_vs_Support ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.003181644 0.4915178 0.3839424 0.5774331 0.8708675 0.9233571 -0.1315577
##
##
## === WABA for Minority_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.07411587 0.4915178 0.3966235 0.3279404 0.8708675 0.9179814 0.01273979
##
##
## === WABA for Minority_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.07175515 0.4943948 0.3742953 0.5909658 0.8692375 0.9273096 -0.04665065
##
##
## === WABA for IN_Seek_vs_G_Social ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.3279083 0.2687974 0.3608626 0.1607608 0.9631967 0.932619 0.3476747
##
##
## === WABA for IN_Seek_vs_PosFrame ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.2252061 0.2684313 0.39575 0.02916205 0.9632988 0.9183583 0.251068
##
##
## === WABA for IN_Seek_vs_ING ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1352324 0.2699224 0.4821928 -0.3767367 0.9628821 0.8760651 0.2184423
##
##
## === WABA for IN_Seek_vs_SP ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1631707 0.2699224 0.4053295 -0.1123651 0.9628821 0.9141707 0.1993372
##
##
## === WABA for IN_Seek_vs_Support ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.14255 0.2687974 0.3943402 0.3037811 0.9631967 0.9189645 0.1246689
##
##
## === WABA for IN_Seek_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 -0.008764775 0.2687974 0.4086265 -0.1269159 0.9631967 0.9127017 0.00588706
##
##
## === WABA for IN_Seek_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.09131582 0.2573188 0.3771952 0.0686909 0.9663266 0.9261338 0.09458511
##
##
## === WABA for G_Social_vs_PosFrame ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.0993928 0.362898 0.39575 0.2890029 0.9318289 0.9183583 0.06764467
##
##
## === WABA for G_Social_vs_ING ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1430472 0.3661649 0.4821928 -0.02999257 0.93055 0.8760651 0.1819659
##
##
## === WABA for G_Social_vs_SP ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.2704614 0.3661649 0.4053295 0.1501254 0.93055 0.9141707 0.2917427
##
##
## === WABA for G_Social_vs_Support ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1987818 0.3608626 0.3943402 0.2295173 0.932619 0.9189645 0.1938301
##
##
## === WABA for G_Social_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1077937 0.3608626 0.4086265 0.1016332 0.932619 0.9127017 0.1090305
##
##
## === WABA for G_Social_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.2018943 0.362866 0.3771952 0.4156117 0.9318414 0.9261338 0.1680271
##
##
## === WABA for PosFrame_vs_ING ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1118259 0.4024005 0.4820522 -0.1006987 0.9154637 0.8761425 0.1637739
##
##
## === WABA for PosFrame_vs_SP ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 -0.03407953 0.4024005 0.4051059 -0.397543 0.9154637 0.9142698 0.03671036
##
##
## === WABA for PosFrame_vs_Support ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1299478 0.3968167 0.3814535 0.0771435 0.9178979 0.924388 0.1393892
##
##
## === WABA for PosFrame_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1206872 0.3968167 0.3974754 -0.1520487 0.9178979 0.9176128 0.1717599
##
##
## === WABA for PosFrame_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.09573009 0.3946134 0.3750326 -0.1129854 0.9188472 0.9270116 0.1320187
##
##
## === WABA for ING_vs_SP ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.3397806 0.4821928 0.4053295 0.5171511 0.8760651 0.9141707 0.298056
##
##
## === WABA for ING_vs_Support ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.09675911 0.4821928 0.3944668 -0.4645389 0.8760651 0.9189102 0.2299538
##
##
## === WABA for ING_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.06384844 0.4821928 0.408302 0.009708617 0.8760651 0.9128469 0.07744901
##
##
## === WABA for ING_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.05058146 0.4801115 0.3751101 0.01086103 0.8772075 0.9269803 0.05979857
##
##
## === WABA for SP_vs_Support ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 -0.002119489 0.4053295 0.3944668 -0.09281414 0.9141707 0.9189102 0.01514269
##
##
## === WABA for SP_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1739955 0.4053295 0.408302 0.2066537 0.9141707 0.9128469 0.1675198
##
##
## === WABA for SP_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.153602 0.3985719 0.3751101 0.4484205 0.9171371 0.9269803 0.1018144
##
##
## === WABA for Support_vs_PJFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.1855998 0.3839424 0.3966235 0.4654507 0.9233571 0.9179814 0.1353437
##
##
## === WABA for Support_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.4368345 0.3825286 0.3742953 0.5919943 0.9239436 0.9273096 0.4109255
##
##
## === WABA for PJFit_vs_PWFit ===
## $Cov.Theorem
## RawCorr EtaBx EtaBy CorrB EtaWx EtaWy CorrW
## 1 0.4497998 0.4208094 0.3742953 0.5178491 0.9071491 0.9273096 0.4377454
Group-Mean Center Impression Management Variables
# Create group means
MainStudy <- MainStudy %>%
group_by(unit) %>%
mutate(
ING.G = mean(ING, na.rm = TRUE),
SP.G = mean(SP, na.rm = TRUE)
) %>%
ungroup()
# Center variables
MainStudy <- MainStudy %>%
group_by(unit) %>%
mutate(
ING_c = ING - ING.G,
SP_c = SP - SP.G
) %>%
ungroup()
# Create interaction variables
MainStudy <- MainStudy %>%
mutate(
Minority_ING = Minority * ING_c,
Minority_SP = Minority * SP_c
)
Null Model: ICC(1)
null_model <- '
level: 1
PWFit ~ 1
PJFit ~ 1
Support ~ 1
level: 2
PWFit ~~ PJFit + Support
PJFit ~~ Support
'
results <- sem(null_model, data = MainStudy, cluster = "unit")
# Compute ICC(1)
lavInspect(results, "icc")
## PWFit PJFit Support
## 0.048 0.079 0.062
model <- '
level: 1
PWFit ~ a*Minority + a1*ING_c + a2*SP_c + a3*Minority_ING + a4*Minority_SP
PJFit ~ b*Minority + b1*ING_c + b2*SP_c + b3*Minority_ING + b4*Minority_SP
level: 2
PWFit ~~ PWFit
PJFit ~~ PJFit
PWFit ~~ PJFit
# Define Moderator Values
White := 0
NonWhite := 1
LOW_ING := -.69
HIGH_ING := .69
# Conditional Effects for Ingratiation: PWFit
SS_White_ING := a1 + a3*White
SS_NonWhite_ING := a1 + a3*NonWhite
# Conditional Effects for Ingratiation: PJFit
SS_White_SP := b1 + b3*White
SS_NonWhite_SP := b1 + b3*NonWhite
'
results <- sem(model, data = MainStudy, cluster = "unit", bootstrap = 5000, fixed.x = FALSE)
estimates <- parameterEstimates(results)[ parameterEstimates(results)[,'op'] == '~', c(1:3, 7:12)]
stargazer(estimates, summary=FALSE, type='text', rownames=FALSE, initial.zero=FALSE, digits=3, title='Model 2',out = "model2_table.html")
##
## Model 2
## ================================================================
## lhs op rhs est se z pvalue ci.lower ci.upper
## ----------------------------------------------------------------
## PWFit ~ Minority .034 .224 .153 .878 -.405 .474
## PWFit ~ ING_c .355 .207 1.716 .086 -.050 .760
## PWFit ~ SP_c .137 .152 .901 .368 -.161 .435
## PWFit ~ Minority_ING -.595 .300 -1.981 .048 -1.183 -.006
## PWFit ~ Minority_SP -.002 .250 -.008 .994 -.493 .489
## PJFit ~ Minority .021 .188 .112 .911 -.347 .390
## PJFit ~ ING_c .113 .173 .656 .512 -.225 .452
## PJFit ~ SP_c .211 .127 1.670 .095 -.037 .460
## PJFit ~ Minority_ING -.146 .252 -.580 .562 -.641 .348
## PJFit ~ Minority_SP -.042 .209 -.199 .842 -.451 .368
## ----------------------------------------------------------------
Model 1: Main Effects and Mediation
model.1 <- '
level: 1
PWFit ~ IN_Seek + G_Social + PosFrame + Minority + ING_c + SP_c + b2*Support
PJFit ~ IN_Seek + G_Social + PosFrame + Minority + ING_c + SP_c + b1*Support
Support ~ IN_Seek + G_Social + PosFrame + Minority + a1*ING_c + a2*SP_c
level: 2
PWFit ~~ PWFit
PJFit ~~ PJFit
PWFit ~~ PJFit
'
results.1 <- sem(model.1, data = MainStudy, cluster = "unit", bootstrap = 5000, fixed.x = FALSE)
estimates <- parameterEstimates(results.1)[ parameterEstimates(results.1)[,'op'] == '~', c(1:3, 7:12)]
stargazer(estimates, summary=FALSE, type='text', rownames=FALSE, initial.zero=FALSE, digits=3, title='Model 1',out = "model1_table.html")
##
## Model 1
## ==============================================================
## lhs op rhs est se z pvalue ci.lower ci.upper
## --------------------------------------------------------------
## PWFit ~ IN_Seek -.015 .059 -.260 .795 -.132 .101
## PWFit ~ G_Social .074 .072 1.025 .305 -.068 .216
## PWFit ~ PosFrame .154 .144 1.066 .286 -.129 .436
## PWFit ~ Minority .034 .195 .175 .861 -.348 .417
## PWFit ~ ING_c -.172 .136 -1.267 .205 -.439 .094
## PWFit ~ SP_c .141 .111 1.275 .202 -.076 .358
## PWFit ~ Support .408 .063 6.504 0 .285 .531
## PJFit ~ IN_Seek -.085 .054 -1.588 .112 -.191 .020
## PJFit ~ G_Social .031 .066 .471 .638 -.098 .160
## PJFit ~ PosFrame .279 .133 2.094 .036 .018 .540
## PJFit ~ Minority .055 .179 .306 .760 -.296 .406
## PJFit ~ ING_c -.048 .122 -.391 .696 -.287 .192
## PJFit ~ SP_c .220 .099 2.214 .027 .025 .415
## PJFit ~ Support .149 .058 2.568 .010 .035 .263
## Support ~ IN_Seek .047 .076 .617 .537 -.101 .195
## Support ~ G_Social .185 .089 2.079 .038 .011 .360
## Support ~ PosFrame .173 .179 .968 .333 -.177 .523
## Support ~ Minority -.046 .242 -.191 .849 -.520 .427
## Support ~ ING_c .413 .172 2.398 .016 .076 .751
## Support ~ SP_c -.184 .142 -1.294 .196 -.462 .094
## --------------------------------------------------------------
lavInspect(results.1, "r2")
## $within
## PWFit PJFit Support
## 0.257 0.112 0.091
##
## $unit
## numeric(0)
Interaction Plot: Impression Management and Coworker Support by
Race
estimates <- parameterEstimates(results.2, ci = TRUE, boot.ci.type = "bca.simple")
White <- 0
NonWhite <- 1
LOW <- -0.69
HIGH <- 0.69
# Coefficients for Ingratiation
a1 <- estimates$est[estimates$label == "a1"]
a3 <- estimates$est[estimates$label == "a3"]
a <- estimates$est[estimates$label == "a"]
# Coefficients for Self-Promotion
a2 <- estimates$est[estimates$label == "a2"]
a4 <- estimates$est[estimates$label == "a4"]
# Predicted Support for Ingratiation
WHITE_LOW_ING <- (a1 + a3*White)*LOW + (3.344 + a*White)
WHITE_HIGH_ING <- (a1 + a3*White)*HIGH + (3.344 + a*White)
NONWHITE_LOW_ING <- (a1 + a3*NonWhite)*LOW + (3.344 + a*NonWhite)
NONWHITE_HIGH_ING <- (a1 + a3*NonWhite)*HIGH + (3.344 + a*NonWhite)
# Predicted Support for Self-Promotion
WHITE_LOW_SP <- (a2 + a4*White)*LOW + (3.344 + a*White)
WHITE_HIGH_SP <- (a2 + a4*White)*HIGH + (3.344 + a*White)
NONWHITE_LOW_SP <- (a2 + a4*NonWhite)*LOW + (3.344 + a*NonWhite)
NONWHITE_HIGH_SP <- (a2 + a4*NonWhite)*HIGH + (3.344 + a*NonWhite)
# Dataframe for Plotting Interaction
plot_data <- data.frame(
Race = rep(c("White", "NonWhite"), each = 4),
IM = rep(c("Ingratiation", "Ingratiation", "Self-Promotion", "Self-Promotion"), times = 2),
Level = rep(c("Low", "High"), times = 4),
Predicted_Support = c(
WHITE_LOW_ING, WHITE_HIGH_ING, WHITE_LOW_SP, WHITE_HIGH_SP,
NONWHITE_LOW_ING, NONWHITE_HIGH_ING, NONWHITE_LOW_SP, NONWHITE_HIGH_SP
)
)
plot_data$Level <- factor(plot_data$Level, levels = c("Low", "High"))
# Plot Interaction
ggplot(plot_data, aes(x = Level, y = Predicted_Support, group = Race, color = Race)) +
geom_line(aes(linetype = IM), size = 1.2) +
geom_point(size = 3) +
facet_wrap(~ IM) +
labs(x = "Impression Management", y = "Coworker Support", color = "Newcomer Race") +
theme_minimal(base_size = 14) +
theme(legend.position = "bottom") +
guides(linetype = "none") # <<<< THIS hides the IM legend

Supplemental Analysis: Token Status
MainStudy$Token_Minority <- MainStudy$Token * MainStudy$Minority
MainStudy$Token_ING_c <- MainStudy$Token * MainStudy$ING_c
MainStudy$Minority_ING_c <- MainStudy$Minority * MainStudy$ING_c
MainStudy$Token_Minority_ING_c <- MainStudy$Token * MainStudy$Minority * MainStudy$ING_c
#MainStudy[is.na(MainStudy)] <- 999
#write.table(MainStudy, file = "MainStudy_Mplus.csv", sep = ",", row.names = FALSE, col.names = FALSE)
model <- '
level: 1
# Regressions
PWFit ~ IN_Seek + G_Social + PosFrame + Minority + ING_c + SP_c + b2*Support
PJFit ~ IN_Seek + G_Social + PosFrame + Minority + cdash*ING_c + SP_c + b1*Support
Support ~ IN_Seek + G_Social + PosFrame + a2*Minority + a1*ING_c + SP_c +
a3*Minority_ING_c + a5*Token + a6*Token_ING_c + a7*Token_Minority + a8*Token_Minority_ING_c
level: 2
PWFit ~~ PWFit
PJFit ~~ PJFit
PWFit ~~ PJFit
# Define Moderator Values
White := 0
NonWhite := 1
nonToken := 0
Token := 1
LOW_ING := -0.69
HIGH_ING := 0.69
# Conditional Effects on Support
SS_White_nonToken := a1 + a3*White + a6*nonToken + a8*White*nonToken
SS_NonWhite_nonToken := a1 + a3*NonWhite + a6*nonToken + a8*NonWhite*nonToken
SS_White_Token := a1 + a3*White + a6*Token + a8*White*Token
SS_NonWhite_Token := a1 + a3*NonWhite + a6*Token + a8*NonWhite*Token
# Conditional Indirect Effects on PJFit
IND_White_nonToken_PJ := SS_White_nonToken * b1
IND_NonWhite_nonToken_PJ := SS_NonWhite_nonToken * b1
IND_White_Token_PJ := SS_White_Token * b1
IND_NonWhite_Token_PJ := SS_NonWhite_Token * b1
# Conditional Indirect Effects on PWFit
IND_White_nonToken_PW := SS_White_nonToken * b2
IND_NonWhite_nonToken_PW := SS_NonWhite_nonToken * b2
IND_White_Token_PW := SS_White_Token * b2
IND_NonWhite_Token_PW := SS_NonWhite_Token * b2
# Index of Moderated Mediation
IMM_PJ := a8 * b1
IMM_PW := a8 * b2
# Compute predicted values for plotting
WHITE_nonToken_LOW := ((a1 * LOW_ING) + (a2 * White) + (a5 * nonToken) +
(a3 * White * LOW_ING) + (a6 * nonToken * LOW_ING) +
(a7 * nonToken * White) + (a8 * nonToken * White * LOW_ING)) + 3.329
WHITE_nonToken_HIGH := ((a1 * HIGH_ING) + (a2 * White) + (a5 * nonToken) +
(a3 * White * HIGH_ING) + (a6 * nonToken * HIGH_ING) +
(a7 * nonToken * White) + (a8 * nonToken * White * HIGH_ING)) + 3.329
WHITE_Token_LOW := ((a1 * LOW_ING) + (a2 * White) + (a5 * Token) +
(a3 * White * LOW_ING) + (a6 * Token * LOW_ING) +
(a7 * Token * White) + (a8 * Token * White * LOW_ING)) + 3.329
WHITE_Token_HIGH := ((a1 * HIGH_ING) + (a2 * White) + (a5 * Token) +
(a3 * White * HIGH_ING) + (a6 * Token * HIGH_ING) +
(a7 * Token * White) + (a8 * Token * White * HIGH_ING)) + 3.329
NONWHITE_nonToken_LOW := ((a1 * LOW_ING) + (a2 * NonWhite) + (a5 * nonToken) +
(a3 * NonWhite * LOW_ING) + (a6 * nonToken * LOW_ING) +
(a7 * nonToken * NonWhite) + (a8 * nonToken * NonWhite * LOW_ING)) + 3.329
NONWHITE_nonToken_HIGH := ((a1 * HIGH_ING) + (a2 * NonWhite) + (a5 * nonToken) +
(a3 * NonWhite * HIGH_ING) + (a6 * nonToken * HIGH_ING) +
(a7 * nonToken * NonWhite) + (a8 * nonToken * NonWhite * HIGH_ING)) + 3.329
NONWHITE_Token_LOW := ((a1 * LOW_ING) + (a2 * NonWhite) + (a5 * Token) +
(a3 * NonWhite * LOW_ING) + (a6 * Token * LOW_ING) +
(a7 * Token * NonWhite) + (a8 * Token * NonWhite * LOW_ING)) + 3.329
NONWHITE_Token_HIGH := ((a1 * HIGH_ING) + (a2 * NonWhite) + (a5 * Token) +
(a3 * NonWhite * HIGH_ING) + (a6 * Token * HIGH_ING) +
(a7 * Token * NonWhite) + (a8 * Token * NonWhite * HIGH_ING)) + 3.329
'
results <- sem(model, data = MainStudy, cluster = "unit", bootstrap = 5000, fixed.x = FALSE)
summary(results, ci = TRUE)
## lavaan 0.6-19 ended normally after 215 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 112
##
## Used Total
## Number of observations 160 164
## Number of clusters [unit] 19
##
## Model Test User Model:
##
## Test statistic 15.268
## Degrees of freedom 10
## P-value (Chi-square) 0.123
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## PWFit ~
## IN_Seek -0.015 0.059 -0.260 0.795 -0.132 0.101
## G_Socil 0.074 0.072 1.025 0.305 -0.068 0.216
## PosFram 0.154 0.144 1.066 0.286 -0.129 0.436
## Minorty 0.034 0.195 0.175 0.861 -0.348 0.417
## ING_c -0.172 0.136 -1.267 0.205 -0.439 0.094
## SP_c 0.141 0.111 1.275 0.202 -0.076 0.358
## Support (b2) 0.408 0.063 6.504 0.000 0.285 0.531
## PJFit ~
## IN_Seek -0.085 0.054 -1.588 0.112 -0.191 0.020
## G_Socil 0.031 0.066 0.471 0.638 -0.098 0.160
## PosFram 0.279 0.133 2.094 0.036 0.018 0.540
## Minorty 0.055 0.179 0.306 0.760 -0.296 0.406
## ING_c (cdsh) -0.048 0.122 -0.391 0.696 -0.287 0.192
## SP_c 0.220 0.099 2.214 0.027 0.025 0.415
## Support (b1) 0.149 0.058 2.568 0.010 0.035 0.263
## Support ~
## IN_Seek 0.069 0.075 0.922 0.357 -0.077 0.215
## G_Socil 0.156 0.087 1.796 0.072 -0.014 0.326
## PosFram 0.148 0.174 0.847 0.397 -0.194 0.490
## Minorty (a2) 0.437 0.334 1.309 0.191 -0.217 1.092
## ING_c (a1) 0.656 0.240 2.733 0.006 0.185 1.126
## SP_c -0.231 0.140 -1.653 0.098 -0.505 0.043
## Mn_ING_ (a3) -0.402 0.386 -1.041 0.298 -1.159 0.355
## Token (a5) 0.087 0.486 0.178 0.859 -0.866 1.040
## Tk_ING_ (a6) 1.119 0.771 1.451 0.147 -0.392 2.630
## Tkn_Mnr (a7) -0.984 0.631 -1.559 0.119 -2.220 0.253
## T_M_ING (a8) -1.615 0.886 -1.823 0.068 -3.352 0.121
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .PWFit ~~
## .PJFit 0.316 0.093 3.418 0.001 0.135 0.498
## IN_Seek ~~
## G_Social 0.718 0.184 3.910 0.000 0.358 1.077
## PosFrame 0.230 0.084 2.746 0.006 0.066 0.395
## Minority 0.083 0.060 1.386 0.166 -0.034 0.201
## ING_c 0.234 0.090 2.599 0.009 0.057 0.410
## SP_c 0.270 0.110 2.456 0.014 0.055 0.486
## Minority_ING_c 0.084 0.063 1.339 0.180 -0.039 0.208
## Token 0.042 0.055 0.762 0.446 -0.066 0.149
## Token_ING_c 0.014 0.047 0.294 0.769 -0.078 0.106
## Token_Minority 0.088 0.050 1.749 0.080 -0.011 0.186
## Tkn_Mnrty_ING_ 0.008 0.043 0.192 0.847 -0.076 0.093
## G_Social ~~
## PosFrame 0.088 0.070 1.253 0.210 -0.049 0.224
## Minority 0.115 0.052 2.236 0.025 0.014 0.216
## ING_c 0.160 0.076 2.107 0.035 0.011 0.308
## SP_c 0.318 0.095 3.338 0.001 0.131 0.504
## Minority_ING_c 0.046 0.053 0.860 0.390 -0.059 0.150
## Token 0.005 0.046 0.111 0.912 -0.086 0.096
## Token_ING_c 0.044 0.040 1.101 0.271 -0.034 0.123
## Token_Minority 0.027 0.042 0.628 0.530 -0.056 0.109
## Tkn_Mnrty_ING_ 0.026 0.037 0.724 0.469 -0.045 0.098
## PosFrame ~~
## Minority 0.006 0.024 0.237 0.813 -0.041 0.052
## ING_c 0.066 0.035 1.869 0.062 -0.003 0.136
## SP_c 0.020 0.043 0.461 0.645 -0.065 0.104
## Minority_ING_c 0.030 0.025 1.182 0.237 -0.019 0.079
## Token -0.025 0.022 -1.163 0.245 -0.068 0.017
## Token_ING_c 0.035 0.019 1.850 0.064 -0.002 0.072
## Token_Minority -0.003 0.020 -0.131 0.895 -0.041 0.036
## Tkn_Mnrty_ING_ 0.023 0.017 1.353 0.176 -0.010 0.057
## Minority ~~
## ING_c -0.002 0.026 -0.066 0.948 -0.052 0.048
## SP_c 0.023 0.031 0.736 0.461 -0.038 0.085
## Minority_ING_c -0.001 0.018 -0.073 0.942 -0.037 0.034
## Token 0.108 0.018 5.997 0.000 0.073 0.144
## Token_ING_c -0.016 0.014 -1.162 0.245 -0.043 0.011
## Token_Minority 0.127 0.018 7.200 0.000 0.092 0.161
## Tkn_Mnrty_ING_ -0.018 0.013 -1.456 0.145 -0.043 0.006
## ING_c ~~
## SP_c 0.175 0.048 3.628 0.000 0.081 0.270
## Minority_ING_c 0.241 0.033 7.333 0.000 0.177 0.305
## Token -0.034 0.024 -1.453 0.146 -0.080 0.012
## Token_ING_c 0.137 0.023 5.996 0.000 0.092 0.182
## Token_Minority -0.027 0.021 -1.260 0.208 -0.069 0.015
## Tkn_Mnrty_ING_ 0.114 0.021 5.583 0.000 0.074 0.155
## SP_c ~~
## Minority_ING_c 0.101 0.034 2.985 0.003 0.035 0.167
## Token -0.052 0.029 -1.798 0.072 -0.109 0.005
## Token_ING_c 0.042 0.025 1.672 0.095 -0.007 0.090
## Token_Minority -0.041 0.026 -1.573 0.116 -0.093 0.010
## Tkn_Mnrty_ING_ 0.036 0.023 1.574 0.116 -0.009 0.080
## Minority_ING_c ~~
## Token -0.027 0.017 -1.586 0.113 -0.060 0.006
## Token_ING_c 0.114 0.017 6.765 0.000 0.081 0.148
## Token_Minority -0.027 0.015 -1.749 0.080 -0.057 0.003
## Tkn_Mnrty_ING_ 0.114 0.016 7.192 0.000 0.083 0.146
## Token ~~
## Token_ING_c -0.026 0.013 -2.058 0.040 -0.051 -0.001
## Token_Minority 0.142 0.017 8.171 0.000 0.108 0.176
## Tkn_Mnrty_ING_ -0.021 0.012 -1.774 0.076 -0.043 0.002
## Token_ING_c ~~
## Token_Minority -0.021 0.011 -1.799 0.072 -0.043 0.002
## Tkn_Mnrty_ING_ 0.114 0.013 8.535 0.000 0.088 0.140
## Token_Minority ~~
## Tkn_Mnrty_ING_ -0.022 0.011 -2.088 0.037 -0.043 -0.001
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .Support 3.329 0.851 3.911 0.000 1.661 4.998
## IN_Seek 5.181 0.127 40.645 0.000 4.931 5.431
## G_Social 3.825 0.108 35.334 0.000 3.613 4.037
## PosFrame 4.592 0.051 90.439 0.000 4.492 4.691
## Minority 0.325 0.037 8.777 0.000 0.252 0.398
## ING_c -0.001 0.055 -0.016 0.987 -0.108 0.106
## SP_c 0.003 0.067 0.051 0.960 -0.128 0.135
## Minority_ING_c -0.002 0.039 -0.051 0.960 -0.078 0.074
## Token 0.244 0.034 7.181 0.000 0.177 0.310
## Token_ING_c -0.034 0.029 -1.184 0.236 -0.092 0.023
## Token_Minority 0.187 0.031 6.076 0.000 0.127 0.248
## Tkn_Mnrty_ING_ -0.027 0.027 -1.017 0.309 -0.079 0.025
##
## Variances:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .PWFit 1.184 0.137 8.645 0.000 0.915 1.452
## .PJFit 0.951 0.116 8.203 0.000 0.724 1.178
## .Support 1.825 0.204 8.944 0.000 1.425 2.225
## IN_Seek 2.600 0.291 8.944 0.000 2.030 3.170
## G_Social 1.875 0.210 8.944 0.000 1.464 2.286
## PosFrame 0.412 0.046 8.944 0.000 0.322 0.503
## Minority 0.219 0.025 8.944 0.000 0.171 0.267
## ING_c 0.476 0.053 8.944 0.000 0.372 0.581
## SP_c 0.718 0.080 8.944 0.000 0.561 0.876
## Minority_ING_c 0.241 0.027 8.944 0.000 0.188 0.294
## Token 0.184 0.021 8.944 0.000 0.144 0.225
## Token_ING_c 0.136 0.015 8.944 0.000 0.106 0.165
## Token_Minority 0.152 0.017 8.944 0.000 0.119 0.186
## Tkn_Mnrty_ING_ 0.114 0.013 8.944 0.000 0.089 0.139
##
##
## Level 2 [unit]:
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .PWFit ~~
## .PJFit 0.058 0.075 0.773 0.439 -0.089 0.204
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .PWFit 2.732 0.719 3.798 0.000 1.322 4.142
## .PJFit 4.363 0.666 6.551 0.000 3.058 5.669
##
## Variances:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .PWFit 0.046 0.064 0.722 0.470 -0.079 0.172
## .PJFit 0.136 0.125 1.086 0.278 -0.110 0.382
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## White 0.000 0.000 0.000
## NonWhite 1.000 1.000 1.000
## nonToken 0.000 0.000 0.000
## Token 1.000 1.000 1.000
## LOW_ING -0.690 -0.690 -0.690
## HIGH_ING 0.690 0.690 0.690
## SS_White_nnTkn 0.656 0.240 2.733 0.006 0.185 1.126
## SS_NnWht_nnTkn 0.254 0.314 0.807 0.419 -0.362 0.870
## SS_White_Token 1.775 0.737 2.410 0.016 0.331 3.218
## SS_NonWhit_Tkn -0.243 0.325 -0.746 0.456 -0.881 0.395
## IND_Wht_nnT_PJ 0.098 0.052 1.871 0.061 -0.005 0.200
## IND_NnWht_T_PJ 0.038 0.049 0.770 0.441 -0.058 0.134
## IND_Wht_Tkn_PJ 0.264 0.150 1.757 0.079 -0.031 0.559
## IND_NnWht_T_PJ -0.036 0.050 -0.716 0.474 -0.135 0.063
## IND_Wht_nnT_PW 0.268 0.106 2.519 0.012 0.059 0.476
## IND_NnWht_T_PW 0.104 0.129 0.801 0.423 -0.150 0.357
## IND_Wht_Tkn_PW 0.724 0.321 2.259 0.024 0.096 1.353
## IND_NnWht_T_PW -0.099 0.134 -0.741 0.459 -0.361 0.163
## IMM_PJ -0.241 0.162 -1.487 0.137 -0.558 0.077
## IMM_PW -0.659 0.376 -1.755 0.079 -1.395 0.077
## WHITE_nnTk_LOW 2.876 0.166 17.366 0.000 2.552 3.201
## WHITE_nnT_HIGH 3.782 0.166 22.832 0.000 3.457 4.106
## WHITE_Tokn_LOW 2.191 0.635 3.449 0.001 0.946 3.436
## WHITE_Tkn_HIGH 4.640 0.765 6.063 0.000 3.140 6.140
## NONWHITE_T_LOW 3.591 0.424 8.461 0.000 2.759 4.423
## NONWHITE_T_HIG 3.941 0.370 10.647 0.000 3.216 4.667
## NONWHITE_T_LOW 3.037 0.339 8.954 0.000 2.372 3.701
## NONWHITE_T_HIG 2.702 0.393 6.871 0.000 1.931 3.472
estimates <- parameterEstimates(results.2)[ parameterEstimates(results.2)[,'op'] == '~', c(1:3, 7:12)]
stargazer(estimates, summary=FALSE, type='text', rownames=FALSE, initial.zero=FALSE, digits=3, title='Model 2',out = "model2_table.html")
##
## Model 2
## ==================================================================
## lhs op rhs est se z pvalue ci.lower ci.upper
## ------------------------------------------------------------------
## PWFit ~ IN_Seek -.015 .059 -.260 .795 -.132 .101
## PWFit ~ G_Social .074 .072 1.025 .305 -.068 .216
## PWFit ~ PosFrame .154 .144 1.066 .286 -.129 .436
## PWFit ~ Minority .034 .195 .176 .861 -.348 .417
## PWFit ~ ING_c -.172 .136 -1.267 .205 -.439 .094
## PWFit ~ SP_c .141 .111 1.275 .202 -.076 .358
## PWFit ~ Support .408 .063 6.504 0 .285 .531
## PJFit ~ IN_Seek -.085 .054 -1.588 .112 -.191 .020
## PJFit ~ G_Social .031 .066 .471 .638 -.098 .160
## PJFit ~ PosFrame .279 .133 2.094 .036 .018 .540
## PJFit ~ Minority .055 .179 .306 .760 -.296 .406
## PJFit ~ ING_c -.048 .122 -.391 .696 -.287 .192
## PJFit ~ SP_c .220 .099 2.214 .027 .025 .415
## PJFit ~ Support .149 .058 2.568 .010 .035 .263
## Support ~ IN_Seek .040 .074 .539 .590 -.106 .186
## Support ~ G_Social .181 .088 2.050 .040 .008 .354
## Support ~ PosFrame .163 .176 .929 .353 -.181 .507
## Support ~ Minority -.056 .238 -.236 .813 -.522 .410
## Support ~ ING_c .782 .236 3.311 .001 .319 1.245
## Support ~ SP_c -.290 .177 -1.641 .101 -.636 .056
## Support ~ Minority_ING -.776 .335 -2.317 .020 -1.433 -.120
## Support ~ Minority_SP .327 .281 1.164 .244 -.224 .879
## ------------------------------------------------------------------
lavInspect(results.2, "r2")
## $within
## PWFit PJFit Support
## 0.257 0.112 0.121
##
## $unit
## numeric(0)
Supplemental Analysis: Newcomer Adjustment
model <- '
level: 1
PWFit ~ b2*Integrated + Support
PJFit ~ b1*Role_Clarity + Support
Role_Clarity ~ a1*Support
Integrated ~ a2*Support
level: 2
PWFit ~~ PWFit
PJFit ~~ PJFit
PWFit ~~ PJFit
'
results <- sem(model, data = MainStudy, cluster = "unit", bootstrap = 5000, fixed.x = FALSE)
est <- parameterEstimates(results)
estimates <- est[est$op == "~", c("lhs", "op", "rhs", "est", "se", "z", "pvalue", "ci.lower", "ci.upper")]
stargazer(estimates, summary=FALSE, type='text', rownames=FALSE, initial.zero=FALSE, digits=3, title='Supplemental Model',out = "supmodel_table.html")
##
## Supplemental Model
## ======================================================================
## lhs op rhs est se z pvalue ci.lower ci.upper
## ----------------------------------------------------------------------
## PWFit ~ Integrated .236 .070 3.367 .001 .099 .374
## PWFit ~ Support .298 .063 4.745 0.00000 .175 .421
## PJFit ~ Role_Clarity .223 .067 3.324 .001 .091 .355
## PJFit ~ Support .097 .057 1.680 .093 -.016 .209
## Role_Clarity ~ Support .264 .061 4.325 .00002 .145 .384
## Integrated ~ Support .305 .064 4.753 0.00000 .179 .431
## ----------------------------------------------------------------------
lavInspect(results, "r2")
## $within
## PWFit PJFit Role_Clarity Integrated
## 0.256 0.113 0.108 0.127
##
## $unit
## numeric(0)