pr-15

Author

K Atharsh

Program-9

Create multiple histograms using ggplot2::facet_wrap() to visualize how a variable (e.g., Sepal.Length) is distributed across different groups (e.g., Species) in a built-in R dataset.

Step 1: Load the library

library(ggplot2)

Step 2: Load and Explore the Dataset

data(iris)
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Step 3: Create Grouped Histograms Using facet_wrap

ggplot(iris, aes(x = Sepal.Length)) +
  geom_histogram(binwidth = 0.3, fill = "skyblue", color = "black") +
  facet_wrap(~ Species) +
  labs(title = "Distribution of Sepal Length by Species",
       x = "Sepal Length (cm)",
       y = "Frequency") +
  theme_minimal()

Program-10

Develop an R function to draw a density curve representing the probability density function of a continuous variable, with separate curves for each group, using ggplot2.

Step 1: Load Required Library

library(ggplot2)

Step 2: Define the Function

plot_density_by_group <- function(data, continuous_var, group_var, fill_colors = NULL) {
  if (!(continuous_var %in% names(data)) || !(group_var %in% names(data))) {
    stop("Invalid column names. Make sure both variables exist in the dataset.")
  }

  p <- ggplot(data, aes_string(x = continuous_var, color = group_var, fill = group_var)) +
    geom_density(alpha = 0.4) +
    labs(title = paste("Density Plot of", continuous_var, "by", group_var),
         x = continuous_var,
         y = "Density") +
    theme_minimal()

if (!is.null(fill_colors)) {
    p <- p + scale_fill_manual(values = fill_colors) +
             scale_color_manual(values = fill_colors)
  }

  return(p)
}

Step 3: Example with Built-in iris Dataset

plot_density_by_group(iris, "Sepal.Length", "Species")
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.

Step 4: Example with Custom Colors

custom_colors <- c("setosa" = "steelblue",
                   "versicolor" = "forestgreen",
                   "virginica" = "darkorange")

plot_density_by_group(iris, "Petal.Length", "Species", fill_colors = custom_colors)

Program-11

Write a R program to generate a basic box plot, enhance with notches and outliers ,and grouped by a categorical variable,using ggplot2

Step 1: Load the library

library(ggplot2)

Step 2: Load the necessary Dataset

data(iris)
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Step 3: Create and display basic box plot

ggplot(iris, aes(x = Species, y=Sepal.Length)) +
  geom_boxplot(notch = TRUE, outlier.colour = "red", outlier.shape = 16, outlier.size = 2, fill="skyblue") +
  labs(title = "Distribution of Sepal Length ", x = "Species", y = "Sepal Length") +
  theme_minimal()

Program-12

Develop a script in R to create a violin plot displaying the distribution of a continuous variable, with separate violins, using ggplot2.

Step-1: Load the library

library(ggplot2)

Step-2: Load and Explore the Dataset

data(iris)
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
str(iris)
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Step 3: Create and display the distribution of violin plot

ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
  geom_violin(trim = FALSE, alpha = 0.6, color = "black") +
  labs(
  title = "Distribution of Petal Length by Iris Species",
    x = "Species",
    y = "Petal Length (cm)"
  ) +
  theme_minimal(base_size = 17)

Program-13

Write a R program to create multiple dot plots for grouped data, comparing the distributions of variables across different categories, using ggplot2’s position dodge function.

Step 1: Load the libraries

library(ggplot2)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Step 2: Create multiple dot plots

ToothGrowth$dose<- as.factor(ToothGrowth$dose)
ggplot(ToothGrowth,aes(x=dose, y=len, color=supp))+
  geom_dotplot(
  position = position_dodge(width = 0.7),
  binwidth = 1.6,
  binaxis = "y",
  stackdir = "center",
  dotsize = 0.8,
  width = 0.9
  )+
  labs(
    title = "Dot Plot of Tooth Length by Dose and Supplement Type",
    x="Dose (mg/day)",
    y="Tooth Length",
    color="Supplement Type"
  )+
theme_minimal()

Program-14

Develop a script in R to calculate and visualize a correlation matrix for a given dataset, with color-coded cells indicating the strength and direction of correlations, using ggplot2’s geom_tile function.

Step 1: Load the libraries

library(ggplot2)
library(dplyr)
library(tidyr)

Step 2: Load the Dataset

head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Step 3: Compute the correlation matrix

data(mtcars)
cor_matrix<-cor(mtcars)
cor_df<-as.data.frame(as.table(cor_matrix))
head(cor_df)
  Var1 Var2       Freq
1  mpg  mpg  1.0000000
2  cyl  mpg -0.8521620
3 disp  mpg -0.8475514
4   hp  mpg -0.7761684
5 drat  mpg  0.6811719
6   wt  mpg -0.8676594

Step 4: Visualize Using ggplot2::geom_tile

ggplot(cor_df, aes(x = Var1, y = Var2, fill = Freq)) +
  geom_tile(color = "white") + 
  scale_fill_gradient2(
    low = "blue", mid = "white", high = "red", 
    midpoint = 0, limit = c(-1, 1),
    name = "Correlation"
  ) +
  geom_text(aes(label = round(Freq, 2)), size = 3) +  
  theme_minimal() +
  labs(
    title = "Correlation Matrix (mtcars)",
    x = "", y = ""
  ) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))