library(ggplot2)
pr-15
Program-9
Create multiple histograms using ggplot2::facet_wrap()
to visualize how a variable (e.g., Sepal.Length
) is distributed across different groups (e.g., Species
) in a built-in R dataset.
Step 1: Load the library
Step 2: Load and Explore the Dataset
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Step 3: Create Grouped Histograms Using facet_wrap
ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(binwidth = 0.3, fill = "skyblue", color = "black") +
facet_wrap(~ Species) +
labs(title = "Distribution of Sepal Length by Species",
x = "Sepal Length (cm)",
y = "Frequency") +
theme_minimal()
Program-10
Develop an R function to draw a density curve representing the probability density function of a continuous variable, with separate curves for each group, using ggplot2.
Step 1: Load Required Library
library(ggplot2)
Step 2: Define the Function
<- function(data, continuous_var, group_var, fill_colors = NULL) {
plot_density_by_group if (!(continuous_var %in% names(data)) || !(group_var %in% names(data))) {
stop("Invalid column names. Make sure both variables exist in the dataset.")
}
<- ggplot(data, aes_string(x = continuous_var, color = group_var, fill = group_var)) +
p geom_density(alpha = 0.4) +
labs(title = paste("Density Plot of", continuous_var, "by", group_var),
x = continuous_var,
y = "Density") +
theme_minimal()
if (!is.null(fill_colors)) {
<- p + scale_fill_manual(values = fill_colors) +
p scale_color_manual(values = fill_colors)
}
return(p)
}
Step 3: Example with Built-in iris Dataset
plot_density_by_group(iris, "Sepal.Length", "Species")
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.
Step 4: Example with Custom Colors
<- c("setosa" = "steelblue",
custom_colors "versicolor" = "forestgreen",
"virginica" = "darkorange")
plot_density_by_group(iris, "Petal.Length", "Species", fill_colors = custom_colors)
Program-11
Write a R program to generate a basic box plot, enhance with notches and outliers ,and grouped by a categorical variable,using ggplot2
Step 1: Load the library
library(ggplot2)
Step 2: Load the necessary Dataset
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Step 3: Create and display basic box plot
ggplot(iris, aes(x = Species, y=Sepal.Length)) +
geom_boxplot(notch = TRUE, outlier.colour = "red", outlier.shape = 16, outlier.size = 2, fill="skyblue") +
labs(title = "Distribution of Sepal Length ", x = "Species", y = "Sepal Length") +
theme_minimal()
Program-12
Develop a script in R to create a violin plot displaying the distribution of a continuous variable, with separate violins, using ggplot2.
Step-1: Load the library
library(ggplot2)
Step-2: Load and Explore the Dataset
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Step 3: Create and display the distribution of violin plot
ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
geom_violin(trim = FALSE, alpha = 0.6, color = "black") +
labs(
title = "Distribution of Petal Length by Iris Species",
x = "Species",
y = "Petal Length (cm)"
+
) theme_minimal(base_size = 17)
Program-13
Write a R program to create multiple dot plots for grouped data, comparing the distributions of variables across different categories, using ggplot2’s position dodge function.
Step 1: Load the libraries
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Step 2: Create multiple dot plots
$dose<- as.factor(ToothGrowth$dose)
ToothGrowthggplot(ToothGrowth,aes(x=dose, y=len, color=supp))+
geom_dotplot(
position = position_dodge(width = 0.7),
binwidth = 1.6,
binaxis = "y",
stackdir = "center",
dotsize = 0.8,
width = 0.9
+
)labs(
title = "Dot Plot of Tooth Length by Dose and Supplement Type",
x="Dose (mg/day)",
y="Tooth Length",
color="Supplement Type"
+
)theme_minimal()
Program-14
Develop a script in R to calculate and visualize a correlation matrix for a given dataset, with color-coded cells indicating the strength and direction of correlations, using ggplot2’s geom_tile function.
Step 1: Load the libraries
library(ggplot2)
library(dplyr)
library(tidyr)
Step 2: Load the Dataset
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Step 3: Compute the correlation matrix
data(mtcars)
<-cor(mtcars)
cor_matrix<-as.data.frame(as.table(cor_matrix))
cor_dfhead(cor_df)
Var1 Var2 Freq
1 mpg mpg 1.0000000
2 cyl mpg -0.8521620
3 disp mpg -0.8475514
4 hp mpg -0.7761684
5 drat mpg 0.6811719
6 wt mpg -0.8676594
Step 4: Visualize Using ggplot2::geom_tile
ggplot(cor_df, aes(x = Var1, y = Var2, fill = Freq)) +
geom_tile(color = "white") +
scale_fill_gradient2(
low = "blue", mid = "white", high = "red",
midpoint = 0, limit = c(-1, 1),
name = "Correlation"
+
) geom_text(aes(label = round(Freq, 2)), size = 3) +
theme_minimal() +
labs(
title = "Correlation Matrix (mtcars)",
x = "", y = ""
+
) theme(axis.text.x = element_text(angle = 45, hjust = 1))