library(rpart)
library(rpart.plot)
# 1. Install dan load package
install.packages("rpart")
## Warning: package 'rpart' is in use and will not be installed
install.packages("rpart.plot")
## Warning: package 'rpart.plot' is in use and will not be installed
library(rpart)
library(rpart.plot)
# 2. Buat data simulasi
data <- data.frame(
Usia = c(25, 32, 45, 60, 28, 50, 35, 55, 40, 30),
BeratBadan = c(55, 65, 85, 90, 60, 70, 68, 78, 72, 59)
)
# Menampilkan tabel di Console
print(data)
## Usia BeratBadan
## 1 25 55
## 2 32 65
## 3 45 85
## 4 60 90
## 5 28 60
## 6 50 70
## 7 35 68
## 8 55 78
## 9 40 72
## 10 30 59
# 3. Ubah logika Risiko agar kedua variabel digunakan
# Risiko Tinggi hanya jika Usia ≥ 50 **dan** BeratBadan ≥ 75
data$Risiko <- ifelse(data$Usia >= 50 & data$BeratBadan >= 75, "Tinggi", "Rendah")
data$Risiko <- as.factor(data$Risiko)
# 4. Buat decision tree
tree_model <- rpart(Risiko ~ Usia + BeratBadan,
data = data,
method = "class",
control = rpart.control(minsplit = 2, cp = 0.001, maxdepth = 3))
# 5. Gambar pohon keputusan vertikal
rpart.plot(tree_model,
type = 2, # tampilkan aturan dan keputusan
extra = 104, # tampilkan jumlah dan proporsi kelas
under = TRUE, # letakkan nama kelas di bawah node
faclen = 0, # tampilkan label kategori lengkap
box.palette = "BuGn", # kombinasi warna biru-hijau
fallen.leaves = TRUE,
main = "Pohon Keputusan Risiko (Usia & Berat Badan)")
