library(ggplot2)
ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(binwidth = 0.3, fill = "skyblue", color = "black") +
facet_wrap(~ Species) + # creates a histogram for each species
labs(
title = "Distribution of Sepal Length by Species",
x = "Sepal Length",
y = "Count"
+
) theme_minimal()
prgm15.quarto
1.Create multiple histograms using ggplot2 to visualize how a variable is distributed across different groups in a built R dataset.
2.Develop an R program to draw a density curve representing the probability density function of a continuous variable, with separate curves for each group, using ggplot2.
# Load required libraries
library(ggplot2)
# Use iris dataset: Continuous variable = Sepal.Length, Grouping variable = Species
<- iris
data
# Plot density curves
ggplot(data, aes(x = Sepal.Length, color = Species, fill = Species)) +
geom_density(alpha = 0.4, size = 1) +
labs(title = "Density Plot of Sepal Length by Species",
x = "Sepal Length",
y = "Density") +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
3.To generate a basic box plot using ggplot2, enhanced with notches and outliers and grouped by using a categorical variable using the in-built dataset in R.
library(ggplot2)
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
ggplot(iris, aes(x = Species, y = Sepal.Length)) +
geom_boxplot(
notch = TRUE,
notchwidth = 0.5,
outlier.colour = "red",
outlier.shape = 16,
fill = "skyblue"
+
) labs(
title = "Basic Box Plot",
x = "Species",
y = "Sepal Length"
+
) theme_minimal()
4.Develop a script to create a violin plot displaying the distribution of a continous variable with separate violins for each plot .
library(ggplot2)
data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
geom_violin(trim = FALSE, alpha = 0.6, color = 'black') +
labs(
title = "Distribution of Petal Length by Iris Species",
x = "Species",
y = "Petal Length (cm)"
+
) theme_minimal(base_size = 14)
5.Write an R program to create multiple dot plots for grouped data , comparing the distribution of variable across different using ggplot2’s position dodge function .
library(ggplot2)
<- mtcars
data $cyl <- as.factor(data$cyl)
data$gear <- as.factor(data$gear)
dataggplot(data, aes(x = cyl, y = mpg, color = gear)) +
geom_dotplot(binaxis = 'y', stackdir = 'center',
position = position_dodge(width = 0.7),
dotsize = 0.6) +
labs(title = "Dot Plot of MPG by Cylinder and Gear",
x = "Number of Cylinders",
y = "Miles Per Gallon (MPG)",
color = "Gear") +
theme_minimal()
Bin width defaults to 1/30 of the range of the data. Pick better value with
`binwidth`.
6.Develop a R program to calculate and visualize a correlation matrix for a given dataset, with color coded cells indicating the strength and direction of correlation , using ggplot2 geom_time function .
# Load the library
library(ggplot2)
library(tidyr)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
#dim(mtcars)
str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
#use built-in mtcars dataset
data(mtcars)
# compute correlation matrix
<- cor(mtcars)
cor_matrix cor_matrix
mpg cyl disp hp drat wt
mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799
hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406
wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000
qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159
vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157
am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953
gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870
carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059
qsec vs am gear carb
mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
#convert matrix to data frame for plotting
<- as.data.frame(as.table(cor_matrix))
cor_df head(cor_df)
Var1 Var2 Freq
1 mpg mpg 1.0000000
2 cyl mpg -0.8521620
3 disp mpg -0.8475514
4 hp mpg -0.7761684
5 drat mpg 0.6811719
6 wt mpg -0.8676594
# Plot the correlation heatmap using ggplot2
ggplot(cor_df, aes(x = Var1, y = Var2, fill = Freq)) +
geom_tile(color = "white") +
scale_fill_gradient2(
low = "blue",
high = "red",
mid = "white",
midpoint = 0,
limit = c(-1, 1),
name = "Correlation"
+
) geom_text(aes(label = round(Freq, 2)), size = 3) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
labs(title = "Correlation Matrix (mtcars)",
x = "",
y = "")