library(psych)
library(tidyverse)
library(haven)
library(nFactors)
library(EGAnet)
library(psychTools)
library(haven)
library(dplyr)
library(tidyr)
library(ggcorrplot)
library(knitr)
library(lavaan)
#Bu kod baya işlevsel oldu
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
Bu derste DFA ve ÇGDFA’nın adımlarına değinildi. Öğrenme günlüğünde DFA ve ÇGDFA’nın örnek bir uygulamasına yer verilmiştir.
Veri seti LISS veri paneli 2024 yılı, kişilik araştırmaları 16. döngüden alınmıştır. PANAS (Positive and Negative Affect Scale) için DFA ve ÇGDFA uygulamaları yapılmıştır. PANAS veri seti 1-7 arasında puanlanmaktadır. İki boyutlu ve bifaktör modelin daha iyi model-veri uyumu sağladığı bilinmektedir. ÇGDFA için veri seti toplam puan bazında 2 gruba ayrılmıştır (veri setinde demografik bilgi bulunmamaktadır).
data <- read_sav("cp24p_EN_1.0p.sav")
data <- data %>%
select("cp24p146":"cp24p165") %>% expss::drop_var_labs() %>% na.omit()
head(data)
## # A tibble: 6 × 20
## cp24p146 cp24p147 cp24p148 cp24p149 cp24p150 cp24p151 cp24p152 cp24p153
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 6 5 3 1 4 3 3 1
## 2 5 1 1 1 3 1 1 1
## 3 1 5 1 1 1 1 1 1
## 4 6 4 4 2 5 2 1 1
## 5 4 7 1 5 1 4 6 5
## 6 6 1 4 1 6 1 1 1
## # ℹ 12 more variables: cp24p154 <dbl>, cp24p155 <dbl>, cp24p156 <dbl>,
## # cp24p157 <dbl>, cp24p158 <dbl>, cp24p159 <dbl>, cp24p160 <dbl>,
## # cp24p161 <dbl>, cp24p162 <dbl>, cp24p163 <dbl>, cp24p164 <dbl>,
## # cp24p165 <dbl>
data %>%
psych::describe() %>%
select(mean, sd, skew, kurtosis) %>%
kable(digits = 2)
mean | sd | skew | kurtosis | |
---|---|---|---|---|
cp24p146 | 5.17 | 1.28 | -0.88 | 0.94 |
cp24p147 | 3.13 | 1.67 | 0.40 | -0.83 |
cp24p148 | 3.07 | 1.53 | 0.26 | -0.78 |
cp24p149 | 2.14 | 1.38 | 1.22 | 0.86 |
cp24p150 | 4.66 | 1.31 | -0.53 | 0.22 |
cp24p151 | 2.04 | 1.38 | 1.38 | 1.22 |
cp24p152 | 1.97 | 1.38 | 1.52 | 1.62 |
cp24p153 | 1.76 | 1.19 | 1.87 | 3.36 |
cp24p154 | 4.49 | 1.40 | -0.49 | 0.02 |
cp24p155 | 4.61 | 1.51 | -0.54 | -0.15 |
cp24p156 | 2.67 | 1.60 | 0.75 | -0.38 |
cp24p157 | 4.52 | 1.49 | -0.52 | -0.14 |
cp24p158 | 2.07 | 1.36 | 1.33 | 1.20 |
cp24p159 | 3.97 | 1.54 | -0.26 | -0.52 |
cp24p160 | 2.35 | 1.54 | 1.07 | 0.25 |
cp24p161 | 4.41 | 1.52 | -0.51 | -0.20 |
cp24p162 | 4.74 | 1.43 | -0.65 | 0.19 |
cp24p163 | 2.36 | 1.53 | 1.07 | 0.29 |
cp24p164 | 4.42 | 1.52 | -0.39 | -0.41 |
cp24p165 | 2.05 | 1.39 | 1.46 | 1.55 |
Çarpıklık ve basıklık katsayıları için [-2,2] aralığı kabul edilebilir sınır olarak alınmaktadır. Bu durumda veri setinde yer alan değişkenlerin çarpıklık ve basıklık değerlerinin uygun olduğu (m8 - basıklık hariç) yorumu yapılabilir.
PANAS ölçeği 2 boyuttan oluşmaktadır.
Positive affect: 1, 3, 5, 9, 10, 12, 14, 16, 17, 19 Negative affect: 2, 4, 6, 7, 8, 11, 13, 15, 18, 20
Maddeler 1-7 arası puanlanmaktadır. 1: Not at all, 7: Extremely ile etiketlenmiştir. Yüksek puanlar daha yüksek duygusal etkiyi temsil etmektedir.
Aşağıdaki model 2 boyutlu PANAS ölçeğinin yapısını içermektedir.
colnames(data) <- c(paste0("m",1:20))
model_1 <-
"
POS =~ m1 + m3 + m5 + m9 + m10 + m12 + m14 + m16 + m17 + m19
NEG =~ m2 + m4 + m6 + m7 + m8 + m11 + m13 + m15 + m18 + m20
"
DFA modelinin test edilmesi için veri 7 kategorili olması ve normallik varsayımının değişkenler özelinde sağlanamadığı için MLR yöntemi kullanılmıştır.
model_1_fit <- cfa(model_1, data = data, estimator = "MLR", ordered = F)
summary(model_1_fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 41
##
## Number of observations 5421
##
## Model Test User Model:
## Standard Scaled
## Test Statistic 8741.604 6010.328
## Degrees of freedom 169 169
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.454
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 67054.725 43280.846
## Degrees of freedom 190 190
## P-value 0.000 0.000
## Scaling correction factor 1.549
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.872 0.864
## Tucker-Lewis Index (TLI) 0.856 0.848
##
## Robust Comparative Fit Index (CFI) 0.873
## Robust Tucker-Lewis Index (TLI) 0.857
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -164453.776 -164453.776
## Scaling correction factor 1.774
## for the MLR correction
## Loglikelihood unrestricted model (H1) -160082.973 -160082.973
## Scaling correction factor 1.517
## for the MLR correction
##
## Akaike (AIC) 328989.551 328989.551
## Bayesian (BIC) 329260.070 329260.070
## Sample-size adjusted Bayesian (SABIC) 329129.785 329129.785
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.097 0.080
## 90 Percent confidence interval - lower 0.095 0.078
## 90 Percent confidence interval - upper 0.098 0.081
## P-value H_0: RMSEA <= 0.050 0.000 0.000
## P-value H_0: RMSEA >= 0.080 1.000 0.434
##
## Robust RMSEA 0.096
## 90 Percent confidence interval - lower 0.094
## 90 Percent confidence interval - upper 0.098
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.098 0.098
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## POS =~
## m1 1.000 0.695 0.542
## m3 0.764 0.038 20.170 0.000 0.531 0.347
## m5 1.304 0.038 34.177 0.000 0.907 0.690
## m9 1.587 0.045 35.396 0.000 1.103 0.788
## m10 1.558 0.048 32.689 0.000 1.083 0.719
## m12 1.290 0.046 28.323 0.000 0.897 0.601
## m14 1.581 0.046 34.181 0.000 1.099 0.714
## m16 1.610 0.049 33.042 0.000 1.119 0.736
## m17 1.383 0.046 29.880 0.000 0.961 0.674
## m19 1.606 0.047 34.511 0.000 1.117 0.733
## NEG =~
## m2 1.000 1.049 0.629
## m4 1.088 0.021 52.758 0.000 1.141 0.827
## m6 0.991 0.024 41.240 0.000 1.040 0.755
## m7 1.155 0.023 49.662 0.000 1.211 0.875
## m8 0.817 0.023 35.127 0.000 0.856 0.718
## m11 1.119 0.022 50.546 0.000 1.173 0.735
## m13 0.951 0.024 39.799 0.000 0.998 0.735
## m15 1.251 0.023 55.029 0.000 1.312 0.851
## m18 1.227 0.023 54.328 0.000 1.287 0.844
## m20 1.082 0.021 50.697 0.000 1.135 0.814
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## POS ~~
## NEG -0.020 0.013 -1.599 0.110 -0.028 -0.028
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .m1 1.164 0.032 35.847 0.000 1.164 0.707
## .m3 2.060 0.034 59.988 0.000 2.060 0.879
## .m5 0.904 0.025 36.045 0.000 0.904 0.523
## .m9 0.741 0.026 28.723 0.000 0.741 0.378
## .m10 1.100 0.033 33.385 0.000 1.100 0.484
## .m12 1.422 0.040 35.393 0.000 1.422 0.639
## .m14 1.159 0.032 35.914 0.000 1.159 0.490
## .m16 1.058 0.033 31.854 0.000 1.058 0.458
## .m17 1.111 0.035 31.371 0.000 1.111 0.546
## .m19 1.074 0.031 34.222 0.000 1.074 0.463
## .m2 1.676 0.039 43.178 0.000 1.676 0.604
## .m4 0.602 0.023 25.741 0.000 0.602 0.317
## .m6 0.815 0.030 26.779 0.000 0.815 0.430
## .m7 0.447 0.020 22.347 0.000 0.447 0.234
## .m8 0.691 0.027 25.723 0.000 0.691 0.485
## .m11 1.175 0.034 35.041 0.000 1.175 0.460
## .m13 0.849 0.034 25.186 0.000 0.849 0.460
## .m15 0.653 0.026 24.798 0.000 0.653 0.275
## .m18 0.668 0.029 22.986 0.000 0.668 0.287
## .m20 0.656 0.028 23.650 0.000 0.656 0.337
## POS 0.484 0.027 17.937 0.000 1.000 1.000
## NEG 1.100 0.039 27.915 0.000 1.000 1.000
library(semoutput)
sem_sig(model_1_fit)
Model Significance | |||
N | χ2 | df | p |
---|---|---|---|
5421 | 8741.604 | 169 | 0.000 |
library(semoutput)
fitmeasures(model_1_fit,fit.measures = c("chisq" ,"df" , "pvalue","cfi","tli","rmsea","rmsea.ci.lower",
"rmsea.ci.upper","srmr"))
## chisq df pvalue cfi tli
## 8741.604 169.000 0.000 0.872 0.856
## rmsea rmsea.ci.lower rmsea.ci.upper srmr
## 0.097 0.095 0.098 0.098
Modelin genel uyumu incelendiğinde \(\chi^2\) istatistiği anlamlı bulunmuştur (\(\chi^2\) = 8741.604, df = 169, p < 0.001), ancak örneklem büyüklüğüne duyarlılığı nedeniyle model-veri uyumu indeksleri değerlendirilmiştir. Bu bağlamda CFI = 0.872, TLI = 0.856, RMSEA = 0.097[0.095-0.098] ve SRMR = 0.098 elde edilmiş olup Hu & Bentler (1999) tarafından belirlenen kesme noktalarına göre modelin kötü uyum gösterdiği söylenebilir.
library(FCO)
fits.esnek <- gen_fit(mod1 = model_1, x = data, rep = 100,seed = 59)
flex_co(fits = fits.esnek, index = c("RMSEA","TLI","CFI", "SRMR"))$cutoff #RMSEA ve TLI için de çıktı veriyormuş hocam.
## RMSEA TLI CFI SRMR
## 0.006825448 0.998012577 0.998232240 0.011439065
Esnek kesme noktaları da incelendiğinde model-veri uyumu indekslerinin esnek kesme noktalarından uzaklaştığı ve modelin kötü uyum sağladığı söylenebilir.
Flex-cutoffs gibi bir diğer simülasyon tabanlı kesme noktaları belirlemek için kullanılan fonksiyon, dynamic paketindeki cfaOne ve cfaHB fonksiyonlarıdır.
library(dynamic)
dynamic::cfaHB(model = model_1_fit,reps = 100) # çok boyutlu bir model girilirse cfaHB tercih edilebilir.
## Your DFI cutoffs:
## SRMR RMSEA CFI Magnitude
## Level 1: 95/5 .055 .026 .99 .347
## Level 1: 90/10 -- -- --
##
## Empirical fit indices:
## Chi-Square df p-value SRMR RMSEA CFI
## 8741.604 169 0 0.098 0.097 0.872
dynamic paketinden elde edilen model-veri uyumu indeksleri için kesme noktaları incelendiğinde modelin kötü uyum gösterdiği söylenebilir. (çıktıları FCO’dan farklı neden bilmiyorum.)
sem_factorloadings(model_1_fit,standardized = T)
Factor Loadings | |||||||
Latent Factor | Indicator |
Standardized
|
|||||
---|---|---|---|---|---|---|---|
Loading | 95% CI | sig | SE | z | p | ||
NEG | m11 | 0.735 | 0.718 — 0.751 | *** | 0.008 | 88.901 | 0.000 |
NEG | m13 | 0.735 | 0.714 — 0.756 | *** | 0.011 | 68.649 | 0.000 |
NEG | m15 | 0.851 | 0.839 — 0.864 | *** | 0.006 | 136.590 | 0.000 |
NEG | m18 | 0.844 | 0.830 — 0.858 | *** | 0.007 | 119.535 | 0.000 |
NEG | m2 | 0.629 | 0.611 — 0.648 | *** | 0.010 | 65.232 | 0.000 |
NEG | m20 | 0.814 | 0.798 — 0.830 | *** | 0.008 | 102.516 | 0.000 |
NEG | m4 | 0.827 | 0.813 — 0.841 | *** | 0.007 | 115.557 | 0.000 |
NEG | m6 | 0.755 | 0.736 — 0.774 | *** | 0.010 | 77.566 | 0.000 |
NEG | m7 | 0.875 | 0.864 — 0.887 | *** | 0.006 | 153.457 | 0.000 |
NEG | m8 | 0.718 | 0.696 — 0.739 | *** | 0.011 | 64.575 | 0.000 |
POS | m1 | 0.542 | 0.517 — 0.567 | *** | 0.013 | 42.492 | 0.000 |
POS | m10 | 0.719 | 0.699 — 0.738 | *** | 0.010 | 72.965 | 0.000 |
POS | m12 | 0.601 | 0.576 — 0.626 | *** | 0.013 | 46.574 | 0.000 |
POS | m14 | 0.714 | 0.697 — 0.732 | *** | 0.009 | 79.070 | 0.000 |
POS | m16 | 0.736 | 0.718 — 0.754 | *** | 0.009 | 79.668 | 0.000 |
POS | m17 | 0.674 | 0.650 — 0.697 | *** | 0.012 | 55.838 | 0.000 |
POS | m19 | 0.733 | 0.716 — 0.750 | *** | 0.009 | 83.918 | 0.000 |
POS | m3 | 0.347 | 0.319 — 0.376 | *** | 0.014 | 23.961 | 0.000 |
POS | m5 | 0.690 | 0.671 — 0.710 | *** | 0.010 | 70.286 | 0.000 |
POS | m9 | 0.788 | 0.772 — 0.805 | *** | 0.008 | 94.682 | 0.000 |
* p < .05; ** p < .01; *** p < .001 |
Her bir madde incelendiğinde faktör yüklerinni istatistiksel olarak anlamlı olduğu belirlenmiştir (p<0.001). Faktör yükleri NEG boyutu için 0.718-0.851, POS boyutu için 0.347 - 0.788 arasında değişmektedir.
Faktör yükleri 0.30’un üzerinde olmasına rağmen model-veri uyumu indeksleri teorik modeli doğrulamadığı için modelin yeniden gözden geçirilmesi önerilmektedir.
sem_factorcor(model_1_fit)
Latent Factor Correlations | ||||||
Factor | Factor | r | 95% CI | sig | SE | p |
---|---|---|---|---|---|---|
POS | NEG | −0.028 | −0.061 — 0.006 | 0.017 | 0.110 | |
* p < .05; ** p < .01; *** p < .001 |
Faktörler arası korelasyon istatistiksel olarak anlamlı değildir (p>0.05).
#KRİTİK DEĞER 1.96 ALACAĞIZ
resid(model_1_fit, type = "normalized")
## $type
## [1] "normalized"
##
## $cov
## m1 m3 m5 m9 m10 m12 m14 m16 m17 m19
## m1 0.000
## m3 -1.378 0.000
## m5 1.513 -1.396 0.000
## m9 0.887 4.964 1.247 0.000
## m10 -1.181 2.507 4.495 6.013 0.000
## m12 -0.574 -2.118 -2.845 -5.259 -3.032 0.000
## m14 -0.218 4.054 -2.466 2.125 -1.653 -0.793 0.000
## m16 -1.627 -3.067 -0.362 -2.608 -0.955 0.729 1.094 0.000
## m17 0.199 -4.645 -3.371 -5.665 -5.918 14.229 -1.764 6.167 0.000
## m19 0.823 -2.371 0.313 -0.269 -3.576 1.347 0.751 -0.344 3.014 0.000
## m2 3.254 26.444 -6.726 -1.172 -0.738 7.280 3.300 0.192 4.317 -0.760
## m4 -4.660 29.877 -5.951 0.191 -1.169 5.519 5.292 -0.119 1.285 -1.457
## m6 -6.226 23.381 -5.841 0.094 -2.877 4.048 5.049 -1.144 -0.072 -2.178
## m7 -7.461 24.134 -9.107 -1.752 -3.758 5.070 4.281 -2.002 0.400 -2.810
## m8 -7.049 22.655 -3.048 3.323 2.018 6.807 7.494 4.266 2.890 1.836
## m11 -9.169 23.473 -9.074 -2.460 -1.038 5.464 1.557 -2.091 0.740 -4.679
## m13 -4.776 24.509 -3.488 3.335 0.733 8.137 9.834 3.200 4.189 2.451
## m15 -7.233 24.125 -9.562 -2.931 -4.091 6.468 3.671 -0.922 3.183 -3.005
## m18 -6.925 24.184 -9.830 -2.499 -3.128 5.759 3.197 -0.817 3.485 -1.777
## m20 -5.290 20.904 -8.988 -3.170 -3.710 5.932 3.458 0.202 3.398 -1.563
## m2 m4 m6 m7 m8 m11 m13 m15 m18 m20
## m1
## m3
## m5
## m9
## m10
## m12
## m14
## m16
## m17
## m19
## m2 0.000
## m4 4.433 0.000
## m6 -1.533 0.825 0.000
## m7 -2.174 0.855 2.311 0.000
## m8 -2.762 1.390 3.278 2.040 0.000
## m11 1.645 -0.211 -0.587 -0.706 0.597 0.000
## m13 -2.475 -0.585 6.074 -0.361 3.148 -0.207 0.000
## m15 0.294 -1.486 -3.605 -0.951 -3.495 1.202 -1.788 0.000
## m18 0.057 -1.597 -3.841 -1.229 -4.091 1.260 -2.322 6.165 0.000
## m20 1.443 -0.322 -1.714 -0.098 -0.420 -1.992 0.236 0.579 1.498 0.000
Hatalar arası kovaryanslar incelendiğinde 1.96 kesme noktasını alan birçok ikili kombinasyon bulunmaktadır. Bu durum modelin yeniden gözden geçirilmesi gerektiğini göstermektedir.
Modelin iyileştirilmesi için hatalar arası kovaryansların tanımlanması için çeşitli öneriler bulunmaktadır, ancak bu öneriler kuramsal çerçevede değerlendirilmelidir.
modindices <- modificationIndices(model_1_fit, sort = TRUE, minimum.value = 10)
kable(modindices)
lhs | op | rhs | mi | epc | sepc.lv | sepc.all | sepc.nox | |
---|---|---|---|---|---|---|---|---|
251 | m15 | ~~ | m18 | 1422.10218 | 0.4138044 | 0.4138044 | 0.6263419 | 0.6263419 |
55 | NEG | =~ | m3 | 1243.36714 | 0.6790352 | 0.7121629 | 0.4652787 | 0.4652787 |
151 | m12 | ~~ | m17 | 1102.16471 | 0.6220720 | 0.6220720 | 0.4948296 | 0.4948296 |
118 | m9 | ~~ | m10 | 492.28369 | 0.3375462 | 0.3375462 | 0.3739297 | 0.3739297 |
229 | m6 | ~~ | m13 | 483.56103 | 0.2694615 | 0.2694615 | 0.3241214 | 0.3241214 |
122 | m9 | ~~ | m17 | 340.08680 | -0.2745000 | -0.2745000 | -0.3024690 | -0.3024690 |
176 | m16 | ~~ | m17 | 333.28808 | 0.3111684 | 0.3111684 | 0.2869417 | 0.2869417 |
242 | m8 | ~~ | m18 | 294.42490 | -0.1788981 | -0.1788981 | -0.2633377 | -0.2633377 |
231 | m6 | ~~ | m18 | 271.71776 | -0.1889969 | -0.1889969 | -0.2561842 | -0.2561842 |
230 | m6 | ~~ | m15 | 257.00010 | -0.1829609 | -0.1829609 | -0.2508162 | -0.2508162 |
137 | m10 | ~~ | m17 | 245.19969 | -0.2692845 | -0.2692845 | -0.2435682 | -0.2435682 |
241 | m8 | ~~ | m15 | 239.33301 | -0.1604973 | -0.1604973 | -0.2389323 | -0.2389323 |
56 | NEG | =~ | m5 | 232.98409 | -0.2038139 | -0.2137572 | -0.1626799 | -0.1626799 |
119 | m9 | ~~ | m12 | 226.45550 | -0.2460097 | -0.2460097 | -0.2396706 | -0.2396706 |
92 | m3 | ~~ | m4 | 223.34659 | 0.2419621 | 0.2419621 | 0.2171647 | 0.2171647 |
226 | m6 | ~~ | m7 | 180.41427 | 0.1304998 | 0.1304998 | 0.2161822 | 0.2161822 |
209 | m2 | ~~ | m4 | 166.34877 | 0.1929212 | 0.1929212 | 0.1919897 | 0.1919897 |
102 | m5 | ~~ | m10 | 159.25834 | 0.1971408 | 0.1971408 | 0.1977462 | 0.1977462 |
227 | m6 | ~~ | m8 | 149.98509 | 0.1348230 | 0.1348230 | 0.1797431 | 0.1797431 |
233 | m7 | ~~ | m8 | 145.29604 | 0.1063041 | 0.1063041 | 0.1912360 | 0.1912360 |
73 | m1 | ~~ | m2 | 143.41176 | 0.2362265 | 0.2362265 | 0.1691121 | 0.1691121 |
91 | m3 | ~~ | m2 | 133.56407 | 0.2989472 | 0.2989472 | 0.1608734 | 0.1608734 |
240 | m8 | ~~ | m13 | 124.23832 | 0.1245288 | 0.1245288 | 0.1626636 | 0.1626636 |
84 | m3 | ~~ | m9 | 115.65873 | 0.2024349 | 0.2024349 | 0.1638307 | 0.1638307 |
138 | m10 | ~~ | m19 | 107.48842 | -0.1808479 | -0.1808479 | -0.1664161 | -0.1664161 |
54 | NEG | =~ | m1 | 94.95347 | -0.1433356 | -0.1503285 | -0.1171096 | -0.1171096 |
121 | m9 | ~~ | m16 | 94.78823 | -0.1473063 | -0.1473063 | -0.1663670 | -0.1663670 |
249 | m13 | ~~ | m18 | 90.39760 | -0.1104466 | -0.1104466 | -0.1466839 | -0.1466839 |
59 | NEG | =~ | m12 | 87.75117 | 0.1536338 | 0.1611291 | 0.1079919 | 0.1079919 |
237 | m7 | ~~ | m18 | 76.91234 | -0.0824743 | -0.0824743 | -0.1508508 | -0.1508508 |
60 | NEG | =~ | m14 | 76.05437 | 0.1329450 | 0.1394309 | 0.0906325 | 0.0906325 |
224 | m4 | ~~ | m18 | 75.57716 | -0.0893512 | -0.0893512 | -0.1408263 | -0.1408263 |
106 | m5 | ~~ | m17 | 75.34243 | -0.1334793 | -0.1334793 | -0.1331764 | -0.1331764 |
188 | m17 | ~~ | m19 | 70.33441 | 0.1437171 | 0.1437171 | 0.1315443 | 0.1315443 |
223 | m4 | ~~ | m15 | 70.33074 | -0.0858951 | -0.0858951 | -0.1369151 | -0.1369151 |
253 | m18 | ~~ | m20 | 67.55843 | 0.0872599 | 0.0872599 | 0.1318214 | 0.1318214 |
77 | m1 | ~~ | m8 | 62.53364 | -0.1012741 | -0.1012741 | -0.1129329 | -0.1129329 |
50 | POS | =~ | m13 | 60.47728 | 0.1526754 | 0.1061618 | 0.0781793 | 0.0781793 |
89 | m3 | ~~ | m17 | 60.14726 | -0.1691077 | -0.1691077 | -0.1117444 | -0.1117444 |
211 | m2 | ~~ | m7 | 59.27148 | -0.1035270 | -0.1035270 | -0.1195631 | -0.1195631 |
248 | m13 | ~~ | m15 | 59.01246 | -0.0888086 | -0.0888086 | -0.1192848 | -0.1192848 |
232 | m6 | ~~ | m20 | 53.20216 | -0.0810848 | -0.0810848 | -0.1109409 | -0.1109409 |
87 | m3 | ~~ | m14 | 53.05978 | 0.1644370 | 0.1644370 | 0.1064262 | 0.1064262 |
120 | m9 | ~~ | m14 | 52.87504 | 0.1132234 | 0.1132234 | 0.1221973 | 0.1221973 |
247 | m11 | ~~ | m20 | 52.20272 | -0.0958124 | -0.0958124 | -0.1091536 | -0.1091536 |
134 | m10 | ~~ | m12 | 51.43300 | -0.1361582 | -0.1361582 | -0.1088872 | -0.1088872 |
236 | m7 | ~~ | m15 | 49.75003 | -0.0662081 | -0.0662081 | -0.1224729 | -0.1224729 |
104 | m5 | ~~ | m14 | 42.72923 | -0.1045812 | -0.1045812 | -0.1022006 | -0.1022006 |
172 | m14 | ~~ | m13 | 42.68166 | 0.0960092 | 0.0960092 | 0.0968315 | 0.0968315 |
48 | POS | =~ | m8 | 42.40372 | 0.1149636 | 0.0799391 | 0.0669826 | 0.0669826 |
103 | m5 | ~~ | m12 | 42.04288 | -0.1102276 | -0.1102276 | -0.0972361 | -0.0972361 |
220 | m4 | ~~ | m8 | 40.48558 | 0.0621926 | 0.0621926 | 0.0964080 | 0.0964080 |
212 | m2 | ~~ | m8 | 38.22535 | -0.0952866 | -0.0952866 | -0.0885632 | -0.0885632 |
219 | m4 | ~~ | m7 | 37.58231 | 0.0537091 | 0.0537091 | 0.1034531 | 0.1034531 |
144 | m10 | ~~ | m11 | 34.14663 | 0.0985790 | 0.0985790 | 0.0867264 | 0.0867264 |
88 | m3 | ~~ | m16 | 33.47145 | -0.1260010 | -0.1260010 | -0.0853382 | -0.0853382 |
78 | m1 | ~~ | m11 | 31.65136 | -0.0942594 | -0.0942594 | -0.0805937 | -0.0805937 |
197 | m17 | ~~ | m18 | 31.61618 | 0.0737559 | 0.0737559 | 0.0855856 | 0.0855856 |
196 | m17 | ~~ | m15 | 30.38847 | 0.0718403 | 0.0718403 | 0.0843086 | 0.0843086 |
214 | m2 | ~~ | m13 | 29.91838 | -0.0937856 | -0.0937856 | -0.0786467 | -0.0786467 |
133 | m9 | ~~ | m20 | 26.09454 | -0.0559127 | -0.0559127 | -0.0802077 | -0.0802077 |
100 | m3 | ~~ | m20 | 25.40681 | -0.0846492 | -0.0846492 | -0.0728203 | -0.0728203 |
116 | m5 | ~~ | m18 | 23.53796 | -0.0576350 | -0.0576350 | -0.0741673 | -0.0741673 |
246 | m11 | ~~ | m18 | 22.93632 | 0.0654603 | 0.0654603 | 0.0738822 | 0.0738822 |
198 | m17 | ~~ | m20 | 22.58601 | 0.0608107 | 0.0608107 | 0.0712260 | 0.0712260 |
245 | m11 | ~~ | m15 | 22.13286 | 0.0639946 | 0.0639946 | 0.0730474 | 0.0730474 |
164 | m14 | ~~ | m17 | 21.68394 | -0.0820190 | -0.0820190 | -0.0722756 | -0.0722756 |
135 | m10 | ~~ | m14 | 21.47054 | -0.0829957 | -0.0829957 | -0.0735278 | -0.0735278 |
58 | NEG | =~ | m10 | 21.22284 | -0.0685255 | -0.0718686 | -0.0476662 | -0.0476662 |
204 | m19 | ~~ | m11 | 21.20522 | -0.0771758 | -0.0771758 | -0.0687072 | -0.0687072 |
108 | m5 | ~~ | m2 | 20.36764 | -0.0805531 | -0.0805531 | -0.0654520 | -0.0654520 |
190 | m17 | ~~ | m4 | 20.22948 | -0.0554835 | -0.0554835 | -0.0678008 | -0.0678008 |
85 | m3 | ~~ | m10 | 20.21628 | 0.0990485 | 0.0990485 | 0.0658004 | 0.0658004 |
191 | m17 | ~~ | m6 | 19.86969 | -0.0624045 | -0.0624045 | -0.0655844 | -0.0655844 |
90 | m3 | ~~ | m19 | 19.16684 | -0.0959109 | -0.0959109 | -0.0644767 | -0.0644767 |
96 | m3 | ~~ | m11 | 18.69049 | 0.0949841 | 0.0949841 | 0.0610480 | 0.0610480 |
101 | m5 | ~~ | m9 | 18.41603 | 0.0581182 | 0.0581182 | 0.0710188 | 0.0710188 |
124 | m9 | ~~ | m2 | 17.07426 | -0.0696608 | -0.0696608 | -0.0625107 | -0.0625107 |
217 | m2 | ~~ | m20 | 16.89346 | 0.0636901 | 0.0636901 | 0.0607516 | 0.0607516 |
62 | NEG | =~ | m17 | 15.49486 | 0.0580061 | 0.0608360 | 0.0426366 | 0.0426366 |
97 | m3 | ~~ | m13 | 15.18364 | 0.0727572 | 0.0727572 | 0.0550256 | 0.0550256 |
70 | m1 | ~~ | m16 | 14.71218 | -0.0643539 | -0.0643539 | -0.0579830 | -0.0579830 |
95 | m3 | ~~ | m8 | 14.44522 | 0.0638287 | 0.0638287 | 0.0535035 | 0.0535035 |
193 | m17 | ~~ | m8 | 14.18317 | -0.0481889 | -0.0481889 | -0.0549974 | -0.0549974 |
126 | m9 | ~~ | m6 | 14.15620 | 0.0450571 | 0.0450571 | 0.0579956 | 0.0579956 |
160 | m12 | ~~ | m15 | 14.09937 | 0.0545563 | 0.0545563 | 0.0566073 | 0.0566073 |
153 | m12 | ~~ | m2 | 14.06066 | 0.0823935 | 0.0823935 | 0.0533747 | 0.0533747 |
47 | POS | =~ | m7 | 13.91203 | -0.0568716 | -0.0395452 | -0.0285763 | -0.0285763 |
79 | m1 | ~~ | m13 | 13.49450 | -0.0523063 | -0.0523063 | -0.0526258 | -0.0526258 |
158 | m12 | ~~ | m11 | 13.40173 | 0.0683225 | 0.0683225 | 0.0528612 | 0.0528612 |
218 | m4 | ~~ | m6 | 13.39653 | 0.0393156 | 0.0393156 | 0.0561214 | 0.0561214 |
210 | m2 | ~~ | m6 | 12.82254 | -0.0604739 | -0.0604739 | -0.0517583 | -0.0517583 |
117 | m5 | ~~ | m20 | 12.67868 | -0.0412626 | -0.0412626 | -0.0535966 | -0.0535966 |
213 | m2 | ~~ | m11 | 12.63221 | 0.0717061 | 0.0717061 | 0.0511014 | 0.0511014 |
65 | m1 | ~~ | m5 | 11.94596 | 0.0525078 | 0.0525078 | 0.0511876 | 0.0511876 |
63 | NEG | =~ | m19 | 11.57381 | -0.0503073 | -0.0527616 | -0.0346346 | -0.0346346 |
234 | m7 | ~~ | m11 | 11.52926 | -0.0392861 | -0.0392861 | -0.0541893 | -0.0541893 |
128 | m9 | ~~ | m8 | 11.47511 | 0.0370771 | 0.0370771 | 0.0518261 | 0.0518261 |
110 | m5 | ~~ | m6 | 11.31393 | 0.0426467 | 0.0426467 | 0.0497042 | 0.0497042 |
49 | POS | =~ | m11 | 11.26528 | -0.0775346 | -0.0539132 | -0.0337503 | -0.0337503 |
187 | m16 | ~~ | m20 | 11.18404 | 0.0425801 | 0.0425801 | 0.0511178 | 0.0511178 |
182 | m16 | ~~ | m8 | 11.06850 | 0.0423593 | 0.0423593 | 0.0495508 | 0.0495508 |
131 | m9 | ~~ | m15 | 10.71148 | -0.0364855 | -0.0364855 | -0.0524411 | -0.0524411 |
163 | m14 | ~~ | m16 | 10.68063 | 0.0580682 | 0.0580682 | 0.0524473 | 0.0524473 |
115 | m5 | ~~ | m15 | 10.59155 | -0.0384108 | -0.0384108 | -0.0499895 | -0.0499895 |
252 | m15 | ~~ | m20 | 10.55149 | 0.0343560 | 0.0343560 | 0.0524896 | 0.0524896 |
86 | m3 | ~~ | m12 | 10.41548 | -0.0782495 | -0.0782495 | -0.0457160 | -0.0457160 |
152 | m12 | ~~ | m19 | 10.37620 | 0.0608920 | 0.0608920 | 0.0492774 | 0.0492774 |
189 | m17 | ~~ | m2 | 10.27726 | 0.0631819 | 0.0631819 | 0.0462925 | 0.0462925 |
Bu yapıya ilişkin detaylı bilgim olmadığı için ki-kareyi en çok düşürecek modifikasyonları tamamlayarak modeli yeniden gözden geçireceğim.
Modelden elde edilen güvenirlik katsayıları 0.70’in üzerinde olup yüksek güvenirliğe işaret etmektedir (\(\alpha\) = 0.88, \(\omega\) = 0.88). Açıklanan varyans oranı POS boyutu için 0.44, nEG boyutu için 0.61 olarak hesaplanmıştır.
semTools::reliability(model_1_fit)
## POS NEG
## alpha 0.8806419 0.9370960
## omega 0.8847214 0.9384465
## omega2 0.8847214 0.9384465
## omega3 0.8851710 0.9379849
## avevar 0.4439495 0.6071642
model_1_mod <- "
POS =~ m1 + m3 + m5 + m9 + m10 + m12 + m14 + m16 + m17 + m19
NEG =~ m2 + m3 + m4 + m6 + m7 + m8 + m11 + m13 + m15 + m18 + m20
m15 ~~ m18
m2 ~~ m17
"
model_1mod_fit <- cfa(model_1_mod, data = data, estimator = "MLR", ordered = F)
summary(model_1mod_fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 34 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 44
##
## Number of observations 5421
##
## Model Test User Model:
## Standard Scaled
## Test Statistic 5899.420 4079.115
## Degrees of freedom 166 166
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.446
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 67054.725 43280.846
## Degrees of freedom 190 190
## P-value 0.000 0.000
## Scaling correction factor 1.549
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.914 0.909
## Tucker-Lewis Index (TLI) 0.902 0.896
##
## Robust Comparative Fit Index (CFI) 0.915
## Robust Tucker-Lewis Index (TLI) 0.903
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -163032.684 -163032.684
## Scaling correction factor 1.783
## for the MLR correction
## Loglikelihood unrestricted model (H1) -160082.973 -160082.973
## Scaling correction factor 1.517
## for the MLR correction
##
## Akaike (AIC) 326153.367 326153.367
## Bayesian (BIC) 326443.681 326443.681
## Sample-size adjusted Bayesian (SABIC) 326303.863 326303.863
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.080 0.066
## 90 Percent confidence interval - lower 0.078 0.064
## 90 Percent confidence interval - upper 0.082 0.067
## P-value H_0: RMSEA <= 0.050 0.000 0.000
## P-value H_0: RMSEA >= 0.080 0.435 0.000
##
## Robust RMSEA 0.079
## 90 Percent confidence interval - lower 0.077
## 90 Percent confidence interval - upper 0.081
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 0.296
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.055 0.055
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## POS =~
## m1 1.000 0.698 0.544
## m3 0.811 0.034 23.829 0.000 0.566 0.370
## m5 1.309 0.038 34.407 0.000 0.914 0.695
## m9 1.587 0.044 35.700 0.000 1.108 0.792
## m10 1.559 0.047 32.916 0.000 1.088 0.722
## m12 1.272 0.045 28.204 0.000 0.888 0.595
## m14 1.570 0.046 34.385 0.000 1.096 0.712
## m16 1.599 0.048 33.157 0.000 1.116 0.734
## m17 1.365 0.046 29.695 0.000 0.953 0.668
## m19 1.598 0.046 34.651 0.000 1.115 0.732
## NEG =~
## m2 1.000 1.051 0.631
## m3 0.689 0.018 38.143 0.000 0.724 0.473
## m4 1.103 0.021 53.327 0.000 1.158 0.840
## m6 1.012 0.024 42.040 0.000 1.063 0.772
## m7 1.161 0.023 49.869 0.000 1.220 0.882
## m8 0.836 0.023 35.819 0.000 0.878 0.736
## m11 1.112 0.022 50.350 0.000 1.168 0.731
## m13 0.962 0.024 40.449 0.000 1.011 0.745
## m15 1.196 0.022 54.107 0.000 1.256 0.815
## m18 1.170 0.022 54.007 0.000 1.229 0.806
## m20 1.068 0.021 50.035 0.000 1.122 0.805
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .m15 ~~
## .m18 0.422 0.024 17.326 0.000 0.422 0.524
## .m17 ~~
## .m2 0.079 0.022 3.607 0.000 0.079 0.057
## POS ~~
## NEG -0.033 0.012 -2.706 0.007 -0.045 -0.045
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .m1 1.161 0.032 35.760 0.000 1.161 0.704
## .m3 1.536 0.030 50.555 0.000 1.536 0.656
## .m5 0.892 0.025 35.824 0.000 0.892 0.516
## .m9 0.730 0.026 28.624 0.000 0.730 0.373
## .m10 1.089 0.033 33.260 0.000 1.089 0.479
## .m12 1.438 0.041 35.484 0.000 1.438 0.646
## .m14 1.166 0.032 36.145 0.000 1.166 0.493
## .m16 1.066 0.033 31.887 0.000 1.066 0.461
## .m17 1.126 0.036 31.421 0.000 1.126 0.554
## .m19 1.076 0.031 34.178 0.000 1.076 0.464
## .m2 1.664 0.039 42.780 0.000 1.664 0.601
## .m4 0.562 0.022 25.209 0.000 0.562 0.295
## .m6 0.764 0.029 26.226 0.000 0.764 0.403
## .m7 0.427 0.019 22.214 0.000 0.427 0.223
## .m8 0.653 0.026 25.048 0.000 0.653 0.459
## .m11 1.188 0.034 35.312 0.000 1.188 0.466
## .m13 0.822 0.033 24.588 0.000 0.822 0.446
## .m15 0.798 0.029 27.474 0.000 0.798 0.336
## .m18 0.815 0.031 26.108 0.000 0.815 0.350
## .m20 0.684 0.029 23.741 0.000 0.684 0.352
## POS 0.487 0.027 18.070 0.000 1.000 1.000
## NEG 1.104 0.039 28.029 0.000 1.000 1.000
Modifikasyonlar sonrasında modelin uyum indekslerinin iyileştiği görülmektedir. \(\chi^2\) = 4079.115, df = 166, p < 0.001, CFI = 0.909, TLI = 0.896, RMSEA = 0.066[0.064-0.067] ve SRMR = 0.055 elde edilmiştir.
library(semPlot)
semPaths(model_1mod_fit, what="std",style="lisrel",layout="tree",residuals = TRUE,rotation = 2)
Not: Süre 25 dk.
DFA modelinin ölçme değişmezliğinin test edilmesi için CFA modelinin 2 grup için test edilmesi gerekmektedir. Bu bağlamda veri seti rastgele 2 alt gruba ayrılmıştır.
data$ID <- 1:nrow(data)
sample1 <- data %>% sample_frac(0.5)
sample2 <- data[!data$ID %in% sample1$ID,]
sample1$group <- 1
sample2$group <- 2
data <- rbind(sample1, sample2)
data$ID <- NULL
library(MVN)
## Warning: package 'MVN' was built under R version 4.4.3
MVN::mvn(data[,-21],mvnTest = "mardia")$multivariateNormality
## Test Statistic p value Result
## 1 Mardia Skewness 32730.7591297429 0 NO
## 2 Mardia Kurtosis 269.394992667509 0 NO
## 3 MVN <NA> <NA> NO
Veri setinin çok değişkenli normallik varsayımını sağlamadığı görülmektedir.
library(ggcorrplot)
ggcorrplot(cor(data[,-21]), sig.level = 0.05, insig = "blank", lab = TRUE, lab_size = 3, title = "Correlation Matrix", colors = c("red", "white", "blue"), tl.srt = 45)
configural <- cfa(model_1_mod, data = data, group = "group", estimator = "MLR", ordered = F, group.equal = NULL)
fit.configural <- fitmeasures(configural, fit.measures = c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "srmr"))
fit.configural <- round(fit.configural, 3)
metric <- cfa(model_1_mod, data = data, group = "group", estimator = "MLR", ordered = F, group.equal = c("loadings"))
fit.metric <- fitmeasures(metric, fit.measures = c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "srmr"))
fit.metric <- round(fit.metric, 3)
scalar <- cfa(model_1_mod, data = data, group = "group", estimator = "MLR", ordered = F, group.equal = c("loadings", "intercepts"))
fit.scalar <- fitmeasures(scalar, fit.measures = c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "srmr"))
strict <- cfa(model_1_mod, data = data, group = "group", estimator = "MLR", ordered = F, group.equal = c("loadings", "intercepts", "residuals"))
fit.strict <- fitmeasures(strict, fit.measures = c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "srmr"))
library(semTools)
## Warning: package 'semTools' was built under R version 4.4.3
##
## ###############################################################################
## This is semTools 0.5-7
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################
##
## Attaching package: 'semTools'
## The following object is masked from 'package:readr':
##
## clipboard
## The following objects are masked from 'package:psych':
##
## reliability, skew
compare <- semTools::compareFit(configural, metric, scalar, strict)
kable(compare@nested,digits = 3, captions = "Testing Chi-squared Differences")
Df | AIC | BIC | Chisq | Chisq diff | Df diff | Pr(>Chisq) | |
---|---|---|---|---|---|---|---|
configural | 332 | 326206.2 | 327050.8 | 6205.617 | NA | NA | NA |
metric | 351 | 326192.7 | 326911.8 | 6230.045 | 19.594 | 19 | 0.419 |
scalar | 369 | 326173.7 | 326774.1 | 6247.041 | 16.990 | 18 | 0.524 |
strict | 389 | 326190.3 | 326658.7 | 6303.659 | 25.022 | 20 | 0.201 |
kable(compare@fit.diff,digits = 3, captions = "Differences between Model Fit Indices")
npar | fmin | df | df.scaled | baseline.df | baseline.df.scaled | cfi | tli | cfi.scaled | tli.scaled | cfi.robust | tli.robust | nnfi | rfi | nfi | pnfi | ifi | rni | nnfi.scaled | rfi.scaled | nfi.scaled | pnfi.scaled | ifi.scaled | rni.scaled | nnfi.robust | rni.robust | logl | unrestricted.logl | aic | bic | bic2 | scaling.factor.h1 | scaling.factor.h0 | rmsea | rmsea.ci.lower | rmsea.ci.upper | rmsea.ci.level | rmsea.close.h0 | rmsea.notclose.h0 | rmsea.scaled | rmsea.ci.lower.scaled | rmsea.ci.upper.scaled | rmsea.robust | rmsea.ci.lower.robust | rmsea.ci.upper.robust | rmr | rmr_nomean | srmr | srmr_bentler | srmr_bentler_nomean | crmr | crmr_nomean | srmr_mplus | srmr_mplus_nomean | cn_05 | cn_01 | gfi | agfi | pgfi | mfi | ecvi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
metric - configural | -19 | 0.002 | 19 | 19 | 0 | 0 | 0.000 | 0.005 | -0.001 | 0.005 | 0 | 0.005 | 0.005 | 0.005 | 0 | 0.045 | 0.000 | 0.000 | 0.005 | 0.005 | -0.001 | 0.044 | -0.001 | -0.001 | 0.005 | 0 | -12.214 | 0 | -13.572 | -138.935 | -78.559 | 0 | -0.185 | -0.002 | -0.002 | -0.002 | 0 | 0 | 0 | -0.002 | -0.002 | -0.002 | -0.002 | -0.002 | -0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0 | 0 | 0.001 | 0 | 16.288 | 16.652 | 0 | 0.002 | 0.040 | 0.000 | -0.003 |
scalar - metric | -18 | 0.002 | 18 | 18 | 0 | 0 | 0.000 | 0.005 | -0.001 | 0.004 | 0 | 0.005 | 0.005 | 0.005 | 0 | 0.043 | 0.000 | 0.000 | 0.004 | 0.003 | -0.002 | 0.041 | -0.001 | -0.001 | 0.005 | 0 | -8.498 | 0 | -19.004 | -137.768 | -80.570 | 0 | -0.159 | -0.002 | -0.002 | -0.002 | 0 | 0 | 0 | -0.001 | -0.001 | -0.001 | -0.002 | -0.002 | -0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.000 | 0 | 15.641 | 15.991 | 0 | 0.002 | 0.038 | 0.000 | -0.004 |
strict - scalar | -20 | 0.005 | 20 | 20 | 0 | 0 | -0.001 | 0.004 | 0.003 | 0.008 | 0 | 0.004 | 0.004 | NA | NA | 0.047 | -0.001 | -0.001 | 0.008 | NA | NA | 0.050 | 0.003 | 0.003 | 0.004 | 0 | -28.309 | 0 | 16.618 | -115.343 | -51.789 | 0 | -0.348 | -0.002 | -0.002 | -0.002 | 0 | 0 | 0 | -0.003 | -0.003 | -0.003 | -0.002 | -0.002 | -0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.000 | 0 | 14.995 | 15.262 | 0 | 0.002 | 0.042 | -0.002 | 0.003 |
Tablolar incelendiğinde rastgele oluşturulmuş iki grup arasında \(\chi^2\) testlerinin anlamlı olmadığı yani modellerin birbirinde farklılaşmadığı, aynı zamanda AIC ve BIC değerleri incelendiğinde manidar bir model değişimi görülmediği söylenebilir. Model-veri uyumu indeksileri arasındaki farklar incelendiğinde katı değişmezliğe kadar tüm aşamaların sağlandığı, rastgele oluşturulmuş iki grubun karşılaştırılabileceği söylenebilir.