library(tidyverse)
## Warning: package 'purrr' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(broom) # Tidy model results
library(umap) #dimension reduction
## Warning: package 'umap' was built under R version 4.4.3
library(plotly) # Interactive Visualization
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
employed <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-02-23/employed.csv")
## Rows: 8184 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): industry, major_occupation, minor_occupation, race_gender
## dbl (3): industry_total, employ_n, year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
employed_grouped <- employed %>%
filter(!is.na(employ_n)) %>%
group_by(occupation = paste(industry, minor_occupation), race_gender) %>%
summarise(n = sum(employ_n)) %>%
ungroup()
## `summarise()` has grouped output by 'occupation'. You can override using the
## `.groups` argument.
employed_tidy <- employed_grouped %>%
#Remove total category
filter(race_gender != "TOTAL") %>%
# Add total column
left_join(employed_grouped %>%
filter(race_gender == "TOTAL") %>%
select(occupation, total = n)) %>%
# Get pct in total
mutate(pct = n/total) %>%
# Remove Outliers
filter(total >1000) %>%
select(-n)
## Joining with `by = join_by(occupation)`
employed_tidy
## # A tibble: 1,160 × 4
## occupation race_gender total pct
## <chr> <chr> <dbl> <dbl>
## 1 Agriculture and related Construction and extractio… Asian 7.3 e4 0.0274
## 2 Agriculture and related Construction and extractio… Black or A… 7.3 e4 0.0822
## 3 Agriculture and related Construction and extractio… Men 7.3 e4 0.973
## 4 Agriculture and related Construction and extractio… White 7.3 e4 0.863
## 5 Agriculture and related Construction and extractio… Women 7.3 e4 0.0274
## 6 Agriculture and related Farming, fishing, and fore… Asian 5.74e6 0.0139
## 7 Agriculture and related Farming, fishing, and fore… Black or A… 5.74e6 0.0342
## 8 Agriculture and related Farming, fishing, and fore… Men 5.74e6 0.789
## 9 Agriculture and related Farming, fishing, and fore… White 5.74e6 0.911
## 10 Agriculture and related Farming, fishing, and fore… Women 5.74e6 0.211
## # ℹ 1,150 more rows
employed_standard <- employed_tidy %>%
# Standardize
group_by(race_gender) %>%
mutate(pct = pct %>% scale() %>% as.numeric())
library(janitor)
## Warning: package 'janitor' was built under R version 4.4.3
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
occupation_demo_tbl <- employed_tidy %>%
pivot_wider(names_from = race_gender, values_from = pct) %>%
janitor::clean_names()
occupation_demo_tbl
## # A tibble: 232 × 7
## occupation total asian black_or_african_ame…¹ men white women
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Agriculture and rel… 7.3 e4 0.0274 0.0822 0.973 0.863 0.0274
## 2 Agriculture and rel… 5.74e6 0.0139 0.0342 0.789 0.911 0.211
## 3 Agriculture and rel… 1.94e5 0.0155 0.0309 0.985 0.918 0.0103
## 4 Agriculture and rel… 1.01e6 0.00992 0.00794 0.739 0.967 0.261
## 5 Agriculture and rel… 5.22e6 0.00997 0.00882 0.741 0.962 0.259
## 6 Agriculture and rel… 5.15e5 0.0233 0.0155 0.159 0.938 0.841
## 7 Agriculture and rel… 2.11e5 0.0332 0.104 0.815 0.820 0.185
## 8 Agriculture and rel… 2.95e5 0.0339 0.0373 0.675 0.902 0.329
## 9 Agriculture and rel… 8.80e4 0 0.0682 0.864 0.875 0.136
## 10 Agriculture and rel… 9.40e4 0 0.0213 0.585 0.968 0.426
## # ℹ 222 more rows
## # ℹ abbreviated name: ¹black_or_african_american
Occupation_cluster <- kmeans(occupation_demo_tbl %>% select(-occupation), centers = 3, nstart = 20)
summary(Occupation_cluster)
## Length Class Mode
## cluster 232 -none- numeric
## centers 18 -none- numeric
## totss 1 -none- numeric
## withinss 3 -none- numeric
## tot.withinss 1 -none- numeric
## betweenss 1 -none- numeric
## size 3 -none- numeric
## iter 1 -none- numeric
## ifault 1 -none- numeric
tidy(Occupation_cluster)
## # A tibble: 3 × 9
## total asian black_or_african_ame…¹ men white women size withinss cluster
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <fct>
## 1 1.80e6 0.0424 0.104 0.693 0.816 0.305 198 8.13e14 1
## 2 5.41e7 0.0654 0.124 0.533 0.774 0.467 8 4.86e15 2
## 3 1.47e7 0.0684 0.120 0.554 0.779 0.446 26 5.46e14 3
## # ℹ abbreviated name: ¹black_or_african_american
glance(Occupation_cluster)
## # A tibble: 1 × 4
## totss tot.withinss betweenss iter
## <dbl> <dbl> <dbl> <int>
## 1 3.00e16 6.22e15 2.37e16 3
augment(Occupation_cluster, occupation_demo_tbl) %>%
ggplot(aes(total, asian, color = .cluster)) +
geom_point()
kclusts <- tibble(k = 1:9) %>%
mutate(kclust = map(.x = k, .f = ~ kmeans(occupation_demo_tbl %>% select(-occupation), centers = .x, nstart = 20)), glanced = map(.x = kclust, .f = glance))
kclusts %>%
unnest(glanced) %>%
ggplot(aes(k, tot.withinss))+
geom_point() +
geom_line()
final_cluster <- kmeans(occupation_demo_tbl %>% select(-occupation), centers = 5, nstart = 20)
augment(final_cluster, occupation_demo_tbl) %>%
ggplot(aes(total, asian, color = .cluster)) +
geom_point()
library(dplyr)
umap_results <- occupation_demo_tbl %>%
select(-occupation) %>%
umap()
umap_results_tbl <- umap_results$layout %>%
as.tibble() %>%
bind_cols(occupation_demo_tbl %>% select(occupation))
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## ℹ Please use `as_tibble()` instead.
## ℹ The signature and semantics have changed, see `?as_tibble`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
## `.name_repair` is omitted as of tibble 2.0.0.
## ℹ Using compatibility `.name_repair`.
## ℹ The deprecated feature was likely used in the tibble package.
## Please report the issue at <https://github.com/tidyverse/tibble/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
umap_results_tbl
## # A tibble: 232 × 3
## V1 V2 occupation
## <dbl> <dbl> <chr>
## 1 -5.99 -7.34 Agriculture and related Construction and extraction occupations
## 2 -1.18 7.29 Agriculture and related Farming, fishing, and forestry occupati…
## 3 -1.91 -7.64 Agriculture and related Installation, maintenance, and repair o…
## 4 7.30 -1.81 Agriculture and related Manage-ment, business, and financial op…
## 5 -0.599 7.04 Agriculture and related Management, business, and financial ope…
## 6 2.71 -5.84 Agriculture and related Office and administrative support occup…
## 7 -1.54 -7.74 Agriculture and related Production occupations
## 8 0.175 -7.08 Agriculture and related Professional and related occupations
## 9 -5.74 -7.55 Agriculture and related Protective service occupations
## 10 -5.51 -7.81 Agriculture and related Sales and related occupations
## # ℹ 222 more rows
umap_results_tbl %>%
ggplot(aes(V1, V2, text = occupation)) +
geom_point()
kmeans_umaps_tbl <- final_cluster %>%
augment(occupation_demo_tbl) %>%
select(occupation, .cluster) %>%
# Add umap results
left_join(umap_results_tbl) %>%
# Add employment info
left_join(employed_tidy %>%
select(-total) %>%
pivot_wider(names_from = race_gender, values_from = pct) %>%
janitor::clean_names())
## Joining with `by = join_by(occupation)`
## Joining with `by = join_by(occupation)`
kmeans_umaps_tbl
## # A tibble: 232 × 9
## occupation .cluster V1 V2 asian black_or_african_ame…¹ men white
## <chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Agriculture… 1 -5.99 -7.34 0.0274 0.0822 0.973 0.863
## 2 Agriculture… 3 -1.18 7.29 0.0139 0.0342 0.789 0.911
## 3 Agriculture… 1 -1.91 -7.64 0.0155 0.0309 0.985 0.918
## 4 Agriculture… 1 7.30 -1.81 0.00992 0.00794 0.739 0.967
## 5 Agriculture… 3 -0.599 7.04 0.00997 0.00882 0.741 0.962
## 6 Agriculture… 1 2.71 -5.84 0.0233 0.0155 0.159 0.938
## 7 Agriculture… 1 -1.54 -7.74 0.0332 0.104 0.815 0.820
## 8 Agriculture… 1 0.175 -7.08 0.0339 0.0373 0.675 0.902
## 9 Agriculture… 1 -5.74 -7.55 0 0.0682 0.864 0.875
## 10 Agriculture… 1 -5.51 -7.81 0 0.0213 0.585 0.968
## # ℹ 222 more rows
## # ℹ abbreviated name: ¹black_or_african_american
## # ℹ 1 more variable: women <dbl>
g <- kmeans_umaps_tbl %>%
#Create text label
mutate(text_label = str_glue("Occupation: {occupation}
Cluster: {.cluster}
Asian: {asian %>% scales::percent(1)}
Women: {women %>% scales::percent(1)}")) %>%
# Plot
ggplot(aes(V1,V2,color = .cluster, text = text_label))+
geom_point()
g %>% ggplotly(tooltip = "text")