programm14

Author

g.geya 1nt23is079

Develop a program to create co relation matrix for a given data set with color coded sets indicating the strength and direction of co-relation using ggplot2 (geom_tile)

step 1: load required library

library(ggplot2)
library(tidyr)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

step 2: load the dataset

head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

step 3: create co relation matrix for a given data set

data(mtcars)

cor_matrix <-cor(mtcars)
head(cor_matrix)
            mpg        cyl       disp         hp       drat         wt
mpg   1.0000000 -0.8521620 -0.8475514 -0.7761684  0.6811719 -0.8676594
cyl  -0.8521620  1.0000000  0.9020329  0.8324475 -0.6999381  0.7824958
disp -0.8475514  0.9020329  1.0000000  0.7909486 -0.7102139  0.8879799
hp   -0.7761684  0.8324475  0.7909486  1.0000000 -0.4487591  0.6587479
drat  0.6811719 -0.6999381 -0.7102139 -0.4487591  1.0000000 -0.7124406
wt   -0.8676594  0.7824958  0.8879799  0.6587479 -0.7124406  1.0000000
            qsec         vs         am       gear       carb
mpg   0.41868403  0.6640389  0.5998324  0.4802848 -0.5509251
cyl  -0.59124207 -0.8108118 -0.5226070 -0.4926866  0.5269883
disp -0.43369788 -0.7104159 -0.5912270 -0.5555692  0.3949769
hp   -0.70822339 -0.7230967 -0.2432043 -0.1257043  0.7498125
drat  0.09120476  0.4402785  0.7127111  0.6996101 -0.0907898
wt   -0.17471588 -0.5549157 -0.6924953 -0.5832870  0.4276059
cor_df<-as.data.frame(as.table(cor_matrix))
head(cor_df)
  Var1 Var2       Freq
1  mpg  mpg  1.0000000
2  cyl  mpg -0.8521620
3 disp  mpg -0.8475514
4   hp  mpg -0.7761684
5 drat  mpg  0.6811719
6   wt  mpg -0.8676594

step 4:

ggplot(cor_df, aes(x=Var1,y=Var2,fill=Freq))+
  geom_tile(color="black")+
  scale_fill_gradient2(
    low ="violet",mid="white",high="red",
    midpoint=0,limit=c(-1,1),
    name="Correlation"
  )+
  geom_text(aes(label=round(Freq,2)),size=3)+
  theme_minimal()+
labs(
  title="co-relation matrix with color code",
  x="var1",
  y="var2"
)+
  theme(axis.text.x=element_text(angle=45,hjust=1))