library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'readr' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## Warning: package 'lubridate' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ ggplot2 3.5.1 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(knitr)
## Warning: package 'knitr' was built under R version 4.3.3
library(haven)
## Warning: package 'haven' was built under R version 4.3.3
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.3.3
##
## Attaching package: 'kableExtra'
##
## The following object is masked from 'package:dplyr':
##
## group_rows
AFA denemesi için elimdeki 23 madde 303 kişilik bir veriyi kullanacağım. Veriseti içinde kayıp veri yok. Diğer adımları buradan ilerleteceğim.
veri <- read_sav("data/AFAveri.sav")
afadata <- veri %>% select(starts_with("m"))
head(afadata,10)
Korelasyonları inceleyelim
library(psych)
## Warning: package 'psych' was built under R version 4.3.3
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
polychoric(afadata)$rho %>% kable() %>% kable_styling(full_width = FALSE, bootstrap_options = c("striped", "hover"))
| m1_1 | m2_1 | m3_1 | m4_1 | m5_1 | m6_1 | m7_1 | m8_1 | m9_1 | m10_1 | m11_1 | m12_1 | m13_1 | m14_1 | m15_1 | m16_1 | m17_1 | m18_1 | m19_1 | m20_1 | m21_1 | m22_1 | m23_1 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| m1_1 | 1.0000000 | 0.5866789 | 0.1539219 | 0.0852971 | 0.1203654 | 0.2385115 | 0.0285636 | 0.0038275 | -0.0888320 | 0.0797458 | -0.0612626 | -0.0803182 | 0.0732402 | 0.1133995 | -0.0161694 | 0.1459090 | 0.1228250 | 0.1574978 | 0.0341145 | 0.0202259 | 0.0661953 | 0.1762901 | 0.1862396 |
| m2_1 | 0.5866789 | 1.0000000 | 0.2530049 | 0.1666323 | 0.1543277 | 0.2227611 | 0.2035852 | -0.0673656 | -0.0901916 | 0.0151555 | -0.0140957 | 0.0346054 | 0.1091672 | 0.1590597 | -0.0886169 | 0.0383842 | 0.0653000 | 0.0855347 | -0.0156613 | 0.0497904 | 0.0948487 | 0.0194873 | 0.1970158 |
| m3_1 | 0.1539219 | 0.2530049 | 1.0000000 | 0.1761982 | 0.1551650 | 0.2510047 | 0.1842553 | 0.0710665 | -0.0034693 | 0.0127349 | 0.0657712 | -0.0114496 | 0.1110757 | 0.1808737 | -0.0016871 | 0.0695622 | 0.0330670 | 0.0266628 | 0.0580680 | 0.0938846 | 0.0498746 | -0.0232792 | 0.1271836 |
| m4_1 | 0.0852971 | 0.1666323 | 0.1761982 | 1.0000000 | 0.1491921 | 0.1376151 | 0.1469049 | -0.0096004 | 0.0318219 | -0.0356807 | -0.0684506 | -0.0611870 | -0.0304838 | 0.1418586 | -0.0420508 | 0.0972066 | -0.0483678 | 0.0444955 | 0.1365882 | -0.0378782 | 0.0805846 | 0.0713861 | 0.0710998 |
| m5_1 | 0.1203654 | 0.1543277 | 0.1551650 | 0.1491921 | 1.0000000 | 0.0905904 | 0.1880502 | 0.0725319 | 0.0145902 | 0.1465868 | -0.0162193 | -0.0666723 | 0.0830135 | 0.0183900 | 0.0509165 | 0.1391643 | 0.0739143 | 0.1467514 | 0.1036952 | -0.0862377 | 0.1118777 | 0.0120878 | 0.0667574 |
| m6_1 | 0.2385115 | 0.2227611 | 0.2510047 | 0.1376151 | 0.0905904 | 1.0000000 | 0.2305296 | 0.0769750 | 0.0609532 | 0.0487604 | -0.0677296 | -0.0142023 | 0.0806258 | 0.2045476 | 0.0281467 | 0.1811684 | 0.1716306 | 0.0265441 | -0.0475941 | 0.0316225 | 0.1040741 | 0.0415324 | 0.1282524 |
| m7_1 | 0.0285636 | 0.2035852 | 0.1842553 | 0.1469049 | 0.1880502 | 0.2305296 | 1.0000000 | 0.1063445 | 0.2702256 | 0.0221696 | 0.0945244 | -0.0524823 | -0.0927618 | 0.1584247 | -0.0981588 | 0.0674855 | -0.0409051 | 0.0032611 | -0.1017972 | -0.0402522 | -0.0552635 | 0.0299839 | 0.0793924 |
| m8_1 | 0.0038275 | -0.0673656 | 0.0710665 | -0.0096004 | 0.0725319 | 0.0769750 | 0.1063445 | 1.0000000 | 0.3958034 | 0.2080148 | 0.0599354 | 0.0788347 | -0.0284683 | -0.0209994 | -0.0967160 | -0.0397106 | 0.0153958 | 0.0927140 | -0.0333900 | -0.1129218 | 0.0206020 | 0.0174475 | -0.0314413 |
| m9_1 | -0.0888320 | -0.0901916 | -0.0034693 | 0.0318219 | 0.0145902 | 0.0609532 | 0.2702256 | 0.3958034 | 1.0000000 | 0.3275579 | 0.3435672 | 0.2284848 | -0.0409293 | -0.0412879 | -0.0191573 | -0.0511927 | -0.0986139 | -0.0560962 | -0.0255735 | 0.0016070 | -0.0848623 | 0.1966889 | -0.0846422 |
| m10_1 | 0.0797458 | 0.0151555 | 0.0127349 | -0.0356807 | 0.1465868 | 0.0487604 | 0.0221696 | 0.2080148 | 0.3275579 | 1.0000000 | 0.3174895 | 0.2456020 | 0.0704571 | 0.0294214 | 0.0691390 | 0.0648119 | 0.0993011 | -0.0152136 | 0.0275416 | 0.0577867 | -0.0067847 | 0.1804264 | -0.0591095 |
| m11_1 | -0.0612626 | -0.0140957 | 0.0657712 | -0.0684506 | -0.0162193 | -0.0677296 | 0.0945244 | 0.0599354 | 0.3435672 | 0.3174895 | 1.0000000 | 0.2290893 | 0.0254749 | -0.0594333 | 0.0365641 | -0.0860058 | -0.1699885 | -0.0841701 | -0.0163037 | 0.1115814 | -0.0331215 | 0.1883007 | -0.0873763 |
| m12_1 | -0.0803182 | 0.0346054 | -0.0114496 | -0.0611870 | -0.0666723 | -0.0142023 | -0.0524823 | 0.0788347 | 0.2284848 | 0.2456020 | 0.2290893 | 1.0000000 | 0.1142377 | 0.1080722 | 0.1853327 | -0.0350983 | 0.1938269 | -0.0604879 | 0.0704252 | 0.2125024 | -0.0007366 | 0.3502691 | -0.0304627 |
| m13_1 | 0.0732402 | 0.1091672 | 0.1110757 | -0.0304838 | 0.0830135 | 0.0806258 | -0.0927618 | -0.0284683 | -0.0409293 | 0.0704571 | 0.0254749 | 0.1142377 | 1.0000000 | 0.1470972 | 0.2412543 | 0.1275395 | 0.2272843 | 0.1254302 | 0.1489531 | 0.1180626 | 0.1068019 | 0.1609882 | 0.0958767 |
| m14_1 | 0.1133995 | 0.1590597 | 0.1808737 | 0.1418586 | 0.0183900 | 0.2045476 | 0.1584247 | -0.0209994 | -0.0412879 | 0.0294214 | -0.0594333 | 0.1080722 | 0.1470972 | 1.0000000 | 0.1104710 | 0.1278713 | 0.2030037 | 0.2122611 | 0.1143469 | 0.0705978 | 0.1224825 | 0.0474955 | 0.1484288 |
| m15_1 | -0.0161694 | -0.0886169 | -0.0016871 | -0.0420508 | 0.0509165 | 0.0281467 | -0.0981588 | -0.0967160 | -0.0191573 | 0.0691390 | 0.0365641 | 0.1853327 | 0.2412543 | 0.1104710 | 1.0000000 | 0.1937872 | 0.1946414 | 0.1853957 | 0.3385225 | 0.2246731 | 0.1420855 | 0.2270751 | 0.0553429 |
| m16_1 | 0.1459090 | 0.0383842 | 0.0695622 | 0.0972066 | 0.1391643 | 0.1811684 | 0.0674855 | -0.0397106 | -0.0511927 | 0.0648119 | -0.0860058 | -0.0350983 | 0.1275395 | 0.1278713 | 0.1937872 | 1.0000000 | 0.2453320 | 0.2173232 | 0.1472987 | 0.0772066 | 0.2029868 | -0.1441935 | 0.1590037 |
| m17_1 | 0.1228250 | 0.0653000 | 0.0330670 | -0.0483678 | 0.0739143 | 0.1716306 | -0.0409051 | 0.0153958 | -0.0986139 | 0.0993011 | -0.1699885 | 0.1938269 | 0.2272843 | 0.2030037 | 0.1946414 | 0.2453320 | 1.0000000 | 0.2092030 | 0.1158169 | 0.1964967 | 0.0650119 | 0.1641378 | 0.1825351 |
| m18_1 | 0.1574978 | 0.0855347 | 0.0266628 | 0.0444955 | 0.1467514 | 0.0265441 | 0.0032611 | 0.0927140 | -0.0560962 | -0.0152136 | -0.0841701 | -0.0604879 | 0.1254302 | 0.2122611 | 0.1853957 | 0.2173232 | 0.2092030 | 1.0000000 | 0.2305348 | 0.2060302 | 0.2155499 | -0.0145756 | 0.2005102 |
| m19_1 | 0.0341145 | -0.0156613 | 0.0580680 | 0.1365882 | 0.1036952 | -0.0475941 | -0.1017972 | -0.0333900 | -0.0255735 | 0.0275416 | -0.0163037 | 0.0704252 | 0.1489531 | 0.1143469 | 0.3385225 | 0.1472987 | 0.1158169 | 0.2305348 | 1.0000000 | 0.3618779 | 0.3485327 | 0.1086655 | 0.0101837 |
| m20_1 | 0.0202259 | 0.0497904 | 0.0938846 | -0.0378782 | -0.0862377 | 0.0316225 | -0.0402522 | -0.1129218 | 0.0016070 | 0.0577867 | 0.1115814 | 0.2125024 | 0.1180626 | 0.0705978 | 0.2246731 | 0.0772066 | 0.1964967 | 0.2060302 | 0.3618779 | 1.0000000 | 0.2225619 | 0.2533892 | 0.0204981 |
| m21_1 | 0.0661953 | 0.0948487 | 0.0498746 | 0.0805846 | 0.1118777 | 0.1040741 | -0.0552635 | 0.0206020 | -0.0848623 | -0.0067847 | -0.0331215 | -0.0007366 | 0.1068019 | 0.1224825 | 0.1420855 | 0.2029868 | 0.0650119 | 0.2155499 | 0.3485327 | 0.2225619 | 1.0000000 | -0.0209004 | 0.0820679 |
| m22_1 | 0.1762901 | 0.0194873 | -0.0232792 | 0.0713861 | 0.0120878 | 0.0415324 | 0.0299839 | 0.0174475 | 0.1966889 | 0.1804264 | 0.1883007 | 0.3502691 | 0.1609882 | 0.0474955 | 0.2270751 | -0.1441935 | 0.1641378 | -0.0145756 | 0.1086655 | 0.2533892 | -0.0209004 | 1.0000000 | -0.0238364 |
| m23_1 | 0.1862396 | 0.1970158 | 0.1271836 | 0.0710998 | 0.0667574 | 0.1282524 | 0.0793924 | -0.0314413 | -0.0846422 | -0.0591095 | -0.0873763 | -0.0304627 | 0.0958767 | 0.1484288 | 0.0553429 | 0.1590037 | 0.1825351 | 0.2005102 | 0.0101837 | 0.0204981 | 0.0820679 | -0.0238364 | 1.0000000 |
Korelasyonlar inanılmaz düşük gözüküyor. Bir bakmak lazım. Deniyoruz sonuçta.
İlişki katsayıları matrisini inceleyelim
matris <- round(polychoric(afadata)$rho,2)
matris[upper.tri(matris)] <- NA
matris
## m1_1 m2_1 m3_1 m4_1 m5_1 m6_1 m7_1 m8_1 m9_1 m10_1 m11_1 m12_1
## m1_1 1.00 NA NA NA NA NA NA NA NA NA NA NA
## m2_1 0.59 1.00 NA NA NA NA NA NA NA NA NA NA
## m3_1 0.15 0.25 1.00 NA NA NA NA NA NA NA NA NA
## m4_1 0.09 0.17 0.18 1.00 NA NA NA NA NA NA NA NA
## m5_1 0.12 0.15 0.16 0.15 1.00 NA NA NA NA NA NA NA
## m6_1 0.24 0.22 0.25 0.14 0.09 1.00 NA NA NA NA NA NA
## m7_1 0.03 0.20 0.18 0.15 0.19 0.23 1.00 NA NA NA NA NA
## m8_1 0.00 -0.07 0.07 -0.01 0.07 0.08 0.11 1.00 NA NA NA NA
## m9_1 -0.09 -0.09 0.00 0.03 0.01 0.06 0.27 0.40 1.00 NA NA NA
## m10_1 0.08 0.02 0.01 -0.04 0.15 0.05 0.02 0.21 0.33 1.00 NA NA
## m11_1 -0.06 -0.01 0.07 -0.07 -0.02 -0.07 0.09 0.06 0.34 0.32 1.00 NA
## m12_1 -0.08 0.03 -0.01 -0.06 -0.07 -0.01 -0.05 0.08 0.23 0.25 0.23 1.00
## m13_1 0.07 0.11 0.11 -0.03 0.08 0.08 -0.09 -0.03 -0.04 0.07 0.03 0.11
## m14_1 0.11 0.16 0.18 0.14 0.02 0.20 0.16 -0.02 -0.04 0.03 -0.06 0.11
## m15_1 -0.02 -0.09 0.00 -0.04 0.05 0.03 -0.10 -0.10 -0.02 0.07 0.04 0.19
## m16_1 0.15 0.04 0.07 0.10 0.14 0.18 0.07 -0.04 -0.05 0.06 -0.09 -0.04
## m17_1 0.12 0.07 0.03 -0.05 0.07 0.17 -0.04 0.02 -0.10 0.10 -0.17 0.19
## m18_1 0.16 0.09 0.03 0.04 0.15 0.03 0.00 0.09 -0.06 -0.02 -0.08 -0.06
## m19_1 0.03 -0.02 0.06 0.14 0.10 -0.05 -0.10 -0.03 -0.03 0.03 -0.02 0.07
## m20_1 0.02 0.05 0.09 -0.04 -0.09 0.03 -0.04 -0.11 0.00 0.06 0.11 0.21
## m21_1 0.07 0.09 0.05 0.08 0.11 0.10 -0.06 0.02 -0.08 -0.01 -0.03 0.00
## m22_1 0.18 0.02 -0.02 0.07 0.01 0.04 0.03 0.02 0.20 0.18 0.19 0.35
## m23_1 0.19 0.20 0.13 0.07 0.07 0.13 0.08 -0.03 -0.08 -0.06 -0.09 -0.03
## m13_1 m14_1 m15_1 m16_1 m17_1 m18_1 m19_1 m20_1 m21_1 m22_1 m23_1
## m1_1 NA NA NA NA NA NA NA NA NA NA NA
## m2_1 NA NA NA NA NA NA NA NA NA NA NA
## m3_1 NA NA NA NA NA NA NA NA NA NA NA
## m4_1 NA NA NA NA NA NA NA NA NA NA NA
## m5_1 NA NA NA NA NA NA NA NA NA NA NA
## m6_1 NA NA NA NA NA NA NA NA NA NA NA
## m7_1 NA NA NA NA NA NA NA NA NA NA NA
## m8_1 NA NA NA NA NA NA NA NA NA NA NA
## m9_1 NA NA NA NA NA NA NA NA NA NA NA
## m10_1 NA NA NA NA NA NA NA NA NA NA NA
## m11_1 NA NA NA NA NA NA NA NA NA NA NA
## m12_1 NA NA NA NA NA NA NA NA NA NA NA
## m13_1 1.00 NA NA NA NA NA NA NA NA NA NA
## m14_1 0.15 1.00 NA NA NA NA NA NA NA NA NA
## m15_1 0.24 0.11 1.00 NA NA NA NA NA NA NA NA
## m16_1 0.13 0.13 0.19 1.00 NA NA NA NA NA NA NA
## m17_1 0.23 0.20 0.19 0.25 1.00 NA NA NA NA NA NA
## m18_1 0.13 0.21 0.19 0.22 0.21 1.00 NA NA NA NA NA
## m19_1 0.15 0.11 0.34 0.15 0.12 0.23 1.00 NA NA NA NA
## m20_1 0.12 0.07 0.22 0.08 0.20 0.21 0.36 1.00 NA NA NA
## m21_1 0.11 0.12 0.14 0.20 0.07 0.22 0.35 0.22 1.00 NA NA
## m22_1 0.16 0.05 0.23 -0.14 0.16 -0.01 0.11 0.25 -0.02 1.00 NA
## m23_1 0.10 0.15 0.06 0.16 0.18 0.20 0.01 0.02 0.08 -0.02 1
Bir de KMO denemesi, Faktör yok gibi geliyor ama denemek lazım
KMO(afadata)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = afadata)
## Overall MSA = 0.68
## MSA for each item =
## m1_1 m2_1 m3_1 m4_1 m5_1 m6_1 m7_1 m8_1 m9_1 m10_1 m11_1 m12_1 m13_1
## 0.57 0.59 0.71 0.63 0.64 0.75 0.61 0.57 0.64 0.70 0.66 0.68 0.79
## m14_1 m15_1 m16_1 m17_1 m18_1 m19_1 m20_1 m21_1 m22_1 m23_1
## 0.75 0.77 0.71 0.73 0.72 0.72 0.70 0.74 0.63 0.82
Yani şaşırtıcı olsa da yola devam etmeye bir iki madde dışında engel yok gibi (MSA>0.6). Sanırım o maddeleri görmezden geleceğim.
Bartlett Testine de bakalım
cortest.bartlett(afadata)
## R was not square, finding R from data
## $chisq
## [1] 929.0887
##
## $p.value
## [1] 5.951553e-78
##
## $df
## [1] 253
Çok şaşırtıcı. Durmak yok.
Faktör Sayısı Belirleme
Yani adet olmuş K1’e bakacağım ama buradan desteklediğim anlamı çıkmasın.
fa(veri)$e.values
## [1] 3.3354370 2.4684482 2.1085581 1.5742683 1.4072110 1.1862457 1.1154548
## [8] 1.0170884 0.9873431 0.9543550 0.9112528 0.8544246 0.8160868 0.7859924
## [15] 0.7540383 0.7078609 0.6824253 0.6485610 0.6028691 0.5591987 0.5523819
## [22] 0.4814849 0.4615243 0.4223779 0.3436202 0.2614914
:)
sum(fa(veri)$e.values>=1)
## [1] 8
:):)
Yani K1 kuralına göre 8 boyutlu bir yapı bulunmaktadır.
Maksat deneme olduğu için 8 boyutlu bir deneme biz de yapalım. 8 boyut çıktığına göre zeka falan ölçüyoruz sanırım. Principal Axis Factoring kullanacağım. Normalde bu aşamada dönürme yapmasam da olur ama bir de promax döndürelim.
faktor8 <- fa(afadata, nfactors = 8, fm="pa", rotate="promax",max.iter = 1000)
## Loading required namespace: GPArotation
faktor8
## Factor Analysis using method = pa
## Call: fa(r = afadata, nfactors = 8, rotate = "promax", max.iter = 1000,
## fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA5 PA1 PA3 PA2 PA6 PA4 PA7 PA8 h2 u2 com
## m1_1 0.00 -0.03 0.91 0.01 -0.13 0.20 0.05 0.13 0.70 0.30 1.2
## m2_1 0.02 -0.08 0.65 0.09 0.16 -0.02 -0.05 -0.09 0.50 0.50 1.2
## m3_1 0.05 -0.02 0.07 0.07 0.33 -0.06 -0.06 0.00 0.15 0.85 1.4
## m4_1 0.10 -0.09 -0.02 -0.13 0.40 0.13 -0.01 0.07 0.15 0.85 1.8
## m5_1 0.04 0.00 0.04 0.05 0.12 0.05 0.03 0.33 0.15 0.85 1.4
## m6_1 -0.11 0.17 0.11 0.00 0.31 0.05 0.02 0.09 0.20 0.80 2.4
## m7_1 -0.18 -0.07 -0.13 0.08 0.63 0.00 0.06 0.13 0.41 0.59 1.5
## m8_1 0.08 0.03 0.01 0.06 -0.05 -0.01 0.67 0.01 0.43 0.57 1.1
## m9_1 -0.02 -0.11 -0.13 0.46 0.21 0.06 0.39 0.05 0.55 0.45 2.8
## m10_1 -0.06 0.09 0.09 0.54 -0.13 -0.02 0.14 0.15 0.34 0.66 1.6
## m11_1 0.06 -0.26 0.03 0.64 0.03 -0.06 -0.10 0.03 0.37 0.63 1.4
## m12_1 0.00 0.26 -0.02 0.32 -0.01 0.12 0.07 -0.24 0.33 0.67 3.3
## m13_1 0.03 0.32 0.02 0.07 -0.04 0.07 -0.10 0.06 0.15 0.85 1.6
## m14_1 0.05 0.32 -0.06 -0.02 0.30 -0.07 -0.01 -0.14 0.25 0.75 2.6
## m15_1 0.22 0.29 -0.14 0.07 -0.06 0.17 -0.13 0.13 0.31 0.69 4.3
## m16_1 0.10 0.30 -0.07 0.07 0.05 -0.17 -0.10 0.34 0.32 0.68 3.2
## m17_1 -0.13 0.80 -0.05 -0.14 -0.09 0.09 0.10 -0.02 0.46 0.54 1.2
## m18_1 0.33 0.22 0.03 -0.13 -0.03 -0.07 0.20 0.05 0.25 0.75 3.0
## m19_1 0.76 -0.15 -0.04 -0.03 0.00 0.08 0.04 0.06 0.48 0.52 1.1
## m20_1 0.47 0.05 0.02 0.10 0.02 0.08 -0.04 -0.19 0.33 0.67 1.5
## m21_1 0.51 -0.07 0.05 0.02 0.01 -0.11 0.04 0.08 0.25 0.75 1.2
## m22_1 0.00 0.13 0.15 -0.05 0.13 0.88 -0.01 0.03 0.71 0.29 1.2
## m23_1 -0.04 0.28 0.08 -0.10 0.11 -0.06 0.00 0.02 0.14 0.86 1.9
##
## PA5 PA1 PA3 PA2 PA6 PA4 PA7 PA8
## SS loadings 1.26 1.26 1.25 1.11 0.97 0.86 0.75 0.48
## Proportion Var 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.02
## Cumulative Var 0.05 0.11 0.16 0.21 0.25 0.29 0.32 0.35
## Proportion Explained 0.16 0.16 0.16 0.14 0.12 0.11 0.09 0.06
## Cumulative Proportion 0.16 0.32 0.47 0.61 0.74 0.84 0.94 1.00
##
## With factor correlations of
## PA5 PA1 PA3 PA2 PA6 PA4 PA7 PA8
## PA5 1.00 0.57 0.13 0.07 0.14 0.10 -0.29 0.12
## PA1 0.57 1.00 0.34 0.16 0.31 0.03 -0.13 0.13
## PA3 0.13 0.34 1.00 -0.12 0.45 -0.29 -0.06 0.20
## PA2 0.07 0.16 -0.12 1.00 0.10 0.45 0.16 -0.14
## PA6 0.14 0.31 0.45 0.10 1.00 -0.21 0.16 0.18
## PA4 0.10 0.03 -0.29 0.45 -0.21 1.00 -0.06 -0.33
## PA7 -0.29 -0.13 -0.06 0.16 0.16 -0.06 1.00 0.20
## PA8 0.12 0.13 0.20 -0.14 0.18 -0.33 0.20 1.00
##
## Mean item complexity = 1.9
## Test of the hypothesis that 8 factors are sufficient.
##
## df null model = 253 with the objective function = 3.17 with Chi Square = 929.09
## df of the model are 97 and the objective function was 0.26
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.03
##
## The harmonic n.obs is 303 with the empirical chi square 71.54 with prob < 0.98
## The total n.obs was 303 with Likelihood Chi Square = 75.87 with prob < 0.94
##
## Tucker Lewis Index of factoring reliability = 1.084
## RMSEA index = 0 and the 90 % confidence intervals are 0 0.005
## BIC = -478.36
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
## PA5 PA1 PA3 PA2 PA6 PA4
## Correlation of (regression) scores with factors 0.84 0.84 0.88 0.82 0.79 0.85
## Multiple R square of scores with factors 0.71 0.70 0.78 0.67 0.62 0.73
## Minimum correlation of possible factor scores 0.41 0.40 0.56 0.34 0.25 0.46
## PA7 PA8
## Correlation of (regression) scores with factors 0.77 0.67
## Multiple R square of scores with factors 0.60 0.45
## Minimum correlation of possible factor scores 0.19 -0.10
düzgün biçimli bir faktörleşme olmuyor haliyle.
Diğer faktör sayısı belirleme metotlarına bakalım
scree(polychoric(afadata)$rho, factors=F)
K1 bakış açısıyla bakmazsak ben olsam 3 boyutlu çözümü bir denerdim. En yüksek kırılma orada gözüküyor. Biraz arada bırakan bir sonuç var.
artik8 <- round(faktor8$residual,2)
artik8
## m1_1 m2_1 m3_1 m4_1 m5_1 m6_1 m7_1 m8_1 m9_1 m10_1 m11_1 m12_1
## m1_1 0.30 0.01 -0.01 -0.01 -0.03 0.03 0.00 0.00 0.01 0.00 0.00 -0.02
## m2_1 0.01 0.50 -0.01 0.01 0.04 -0.03 0.02 -0.02 0.00 0.00 -0.02 0.04
## m3_1 -0.01 -0.01 0.85 0.02 0.05 0.04 -0.02 0.05 -0.05 -0.01 0.03 -0.02
## m4_1 -0.01 0.01 0.02 0.85 -0.01 0.01 -0.04 -0.01 0.01 0.02 -0.02 0.01
## m5_1 -0.03 0.04 0.05 -0.01 0.85 -0.04 0.03 0.00 -0.04 0.04 -0.01 0.01
## m6_1 0.03 -0.03 0.04 0.01 -0.04 0.80 0.00 0.02 0.00 0.00 -0.02 -0.01
## m7_1 0.00 0.02 -0.02 -0.04 0.03 0.00 0.59 -0.01 0.03 -0.03 0.00 -0.02
## m8_1 0.00 -0.02 0.05 -0.01 0.00 0.02 -0.01 0.57 -0.01 0.01 -0.01 0.01
## m9_1 0.01 0.00 -0.05 0.01 -0.04 0.00 0.03 -0.01 0.45 0.00 0.01 0.01
## m10_1 0.00 0.00 -0.01 0.02 0.04 0.00 -0.03 0.01 0.00 0.66 0.01 0.00
## m11_1 0.00 -0.02 0.03 -0.02 -0.01 -0.02 0.00 -0.01 0.01 0.01 0.63 -0.02
## m12_1 -0.02 0.04 -0.02 0.01 0.01 -0.01 -0.02 0.01 0.01 0.00 -0.02 0.67
## m13_1 -0.03 0.02 0.07 -0.03 0.02 0.00 -0.03 0.02 -0.01 -0.02 0.01 -0.01
## m14_1 0.01 -0.02 0.01 0.02 -0.04 0.00 0.01 -0.02 -0.02 0.03 0.01 0.01
## m15_1 0.01 -0.01 -0.01 -0.04 -0.01 0.02 0.02 -0.01 0.01 -0.02 -0.01 0.02
## m16_1 0.02 -0.03 -0.03 0.03 -0.03 0.03 0.01 -0.02 0.02 0.00 0.00 0.01
## m17_1 -0.01 0.00 -0.01 0.00 0.02 0.01 0.00 -0.01 -0.01 0.02 -0.02 0.01
## m18_1 0.01 0.01 -0.04 -0.02 0.03 -0.07 0.01 0.01 0.02 -0.03 0.04 -0.06
## m19_1 0.01 0.00 0.00 0.04 0.02 -0.03 -0.01 0.00 0.01 0.01 -0.02 0.01
## m20_1 0.00 -0.01 0.03 -0.04 -0.04 0.02 0.03 -0.02 0.00 0.00 0.01 -0.01
## m21_1 -0.02 0.01 -0.01 0.00 0.01 0.04 -0.03 0.03 -0.02 -0.01 0.00 0.02
## m22_1 0.00 -0.01 -0.01 0.02 0.01 0.00 0.00 0.00 -0.01 -0.01 0.02 0.00
## m23_1 0.00 0.01 0.01 0.00 -0.02 -0.04 0.00 -0.01 0.01 -0.02 0.02 -0.01
## m13_1 m14_1 m15_1 m16_1 m17_1 m18_1 m19_1 m20_1 m21_1 m22_1 m23_1
## m1_1 -0.03 0.01 0.01 0.02 -0.01 0.01 0.01 0.00 -0.02 0.00 0.00
## m2_1 0.02 -0.02 -0.01 -0.03 0.00 0.01 0.00 -0.01 0.01 -0.01 0.01
## m3_1 0.07 0.01 -0.01 -0.03 -0.01 -0.04 0.00 0.03 -0.01 -0.01 0.01
## m4_1 -0.03 0.02 -0.04 0.03 0.00 -0.02 0.04 -0.04 0.00 0.02 0.00
## m5_1 0.02 -0.04 -0.01 -0.03 0.02 0.03 0.02 -0.04 0.01 0.01 -0.02
## m6_1 0.00 0.00 0.02 0.03 0.01 -0.07 -0.03 0.02 0.04 0.00 -0.04
## m7_1 -0.03 0.01 0.02 0.01 0.00 0.01 -0.01 0.03 -0.03 0.00 0.00
## m8_1 0.02 -0.02 -0.01 -0.02 -0.01 0.01 0.00 -0.02 0.03 0.00 -0.01
## m9_1 -0.01 -0.02 0.01 0.02 -0.01 0.02 0.01 0.00 -0.02 -0.01 0.01
## m10_1 -0.02 0.03 -0.02 0.00 0.02 -0.03 0.01 0.00 -0.01 -0.01 -0.02
## m11_1 0.01 0.01 -0.01 0.00 -0.02 0.04 -0.02 0.01 0.00 0.02 0.02
## m12_1 -0.01 0.01 0.02 0.01 0.01 -0.06 0.01 -0.01 0.02 0.00 -0.01
## m13_1 0.85 0.00 0.04 -0.02 0.00 0.00 -0.01 -0.03 0.00 0.01 0.00
## m14_1 0.00 0.75 0.01 -0.03 -0.01 0.05 0.01 -0.05 0.00 0.00 0.00
## m15_1 0.04 0.01 0.69 0.00 -0.04 0.02 0.03 -0.02 -0.02 0.00 0.00
## m16_1 -0.02 -0.03 0.00 0.68 0.01 0.00 -0.01 0.01 0.04 -0.01 0.02
## m17_1 0.00 -0.01 -0.04 0.01 0.54 -0.01 0.01 0.03 -0.02 0.00 -0.01
## m18_1 0.00 0.05 0.02 0.00 -0.01 0.75 -0.03 0.04 -0.02 0.01 0.06
## m19_1 -0.01 0.01 0.03 -0.01 0.01 -0.03 0.52 0.01 -0.01 -0.02 -0.02
## m20_1 -0.03 -0.05 -0.02 0.01 0.03 0.04 0.01 0.67 0.01 0.01 -0.02
## m21_1 0.00 0.00 -0.02 0.04 -0.02 -0.02 -0.01 0.01 0.75 0.01 -0.01
## m22_1 0.01 0.00 0.00 -0.01 0.00 0.01 -0.02 0.01 0.01 0.29 0.02
## m23_1 0.00 0.00 0.00 0.02 -0.01 0.06 -0.02 -0.02 -0.01 0.02 0.86
sum(abs(artik8[lower.tri(artik8)])>0.05)
## [1] 4
4 tane .5 üstü artık var. Farklı döndürmelerle farklı çözümler bulunabilirdi belki. Bir paralel analize de bakmak gerekiyorm.
Paralel Analiz
fa.parallel(afadata, fa = "fa")
## Parallel analysis suggests that the number of factors = 5 and the number of components = NA
Paralel analiz 5 faktörlü yapıyı öneriyor. Örnekleme hatası 3 farklı boyut gözükmesine neden olmuş. Ben paralel analizi temel alacağım.
Pattern Coeffs
out8 <- fa(afadata,5,fm="pa",rotate="none")
out8$loadings[,1:5]
## PA1 PA2 PA3 PA4 PA5
## m1_1 0.399259617 -0.03297469 0.40724287 -0.287996799 0.05024999
## m2_1 0.397513529 0.00147396 0.52999836 -0.352771914 0.15498500
## m3_1 0.244698882 0.06743903 0.22228012 0.026700114 0.08564910
## m4_1 0.186669512 0.03819245 0.16744435 0.090555666 0.09856839
## m5_1 0.201454560 0.08555331 0.15365022 0.167360676 0.04454646
## m6_1 0.307368376 0.11884804 0.27697917 0.033919909 -0.07137152
## m7_1 0.084608720 0.33092123 0.35777095 0.187898334 0.01351317
## m8_1 0.002183037 0.35380945 0.07975228 0.225428147 -0.08887687
## m9_1 0.002986012 0.76994999 -0.02573947 0.186225513 0.03005985
## m10_1 0.147120476 0.44786682 -0.07927802 -0.014750053 -0.02375331
## m11_1 0.005738494 0.42949554 -0.13670224 -0.102223573 0.20306288
## m12_1 0.217568686 0.34462883 -0.30071384 -0.226679374 -0.09616934
## m13_1 0.335097512 -0.02289354 -0.12580506 -0.063186850 -0.08969855
## m14_1 0.388030201 0.01562976 0.07053289 0.053741807 -0.08955213
## m15_1 0.395778413 -0.04612496 -0.37390479 0.010101754 -0.01144027
## m16_1 0.393342071 -0.09486294 0.06561313 0.269318848 -0.04796831
## m17_1 0.489921093 -0.07066061 -0.13064684 0.002640702 -0.48209353
## m18_1 0.390928716 -0.13558550 -0.01027756 0.221978830 -0.02823991
## m19_1 0.427357954 -0.16654696 -0.32759560 0.169550515 0.33322804
## m20_1 0.394920947 -0.03716696 -0.32064858 -0.091102236 0.16135860
## m21_1 0.365440901 -0.14988091 -0.05980224 0.192576037 0.23000845
## m22_1 0.302840536 0.24101172 -0.28248464 -0.318557372 -0.01146261
## m23_1 0.287199892 -0.09327097 0.17936355 0.051182592 -0.12930746
Ortak Varyans Kats.
out8
## Factor Analysis using method = pa
## Call: fa(r = afadata, nfactors = 5, rotate = "none", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 PA4 PA5 h2 u2 com
## m1_1 0.40 -0.03 0.41 -0.29 0.05 0.412 0.59 2.8
## m2_1 0.40 0.00 0.53 -0.35 0.15 0.587 0.41 2.9
## m3_1 0.24 0.07 0.22 0.03 0.09 0.122 0.88 2.4
## m4_1 0.19 0.04 0.17 0.09 0.10 0.082 0.92 3.1
## m5_1 0.20 0.09 0.15 0.17 0.04 0.102 0.90 3.4
## m6_1 0.31 0.12 0.28 0.03 -0.07 0.192 0.81 2.4
## m7_1 0.08 0.33 0.36 0.19 0.01 0.280 0.72 2.6
## m8_1 0.00 0.35 0.08 0.23 -0.09 0.190 0.81 2.0
## m9_1 0.00 0.77 -0.03 0.19 0.03 0.629 0.37 1.1
## m10_1 0.15 0.45 -0.08 -0.01 -0.02 0.229 0.77 1.3
## m11_1 0.01 0.43 -0.14 -0.10 0.20 0.255 0.75 1.8
## m12_1 0.22 0.34 -0.30 -0.23 -0.10 0.317 0.68 3.7
## m13_1 0.34 -0.02 -0.13 -0.06 -0.09 0.141 0.86 1.5
## m14_1 0.39 0.02 0.07 0.05 -0.09 0.167 0.83 1.2
## m15_1 0.40 -0.05 -0.37 0.01 -0.01 0.299 0.70 2.0
## m16_1 0.39 -0.09 0.07 0.27 -0.05 0.243 0.76 2.0
## m17_1 0.49 -0.07 -0.13 0.00 -0.48 0.495 0.51 2.2
## m18_1 0.39 -0.14 -0.01 0.22 -0.03 0.221 0.78 1.9
## m19_1 0.43 -0.17 -0.33 0.17 0.33 0.457 0.54 3.6
## m20_1 0.39 -0.04 -0.32 -0.09 0.16 0.294 0.71 2.4
## m21_1 0.37 -0.15 -0.06 0.19 0.23 0.250 0.75 2.8
## m22_1 0.30 0.24 -0.28 -0.32 -0.01 0.331 0.67 3.9
## m23_1 0.29 -0.09 0.18 0.05 -0.13 0.143 0.86 2.5
##
## PA1 PA2 PA3 PA4 PA5
## SS loadings 2.24 1.51 1.38 0.74 0.57
## Proportion Var 0.10 0.07 0.06 0.03 0.02
## Cumulative Var 0.10 0.16 0.22 0.26 0.28
## Proportion Explained 0.35 0.24 0.21 0.11 0.09
## Cumulative Proportion 0.35 0.58 0.80 0.91 1.00
##
## Mean item complexity = 2.4
## Test of the hypothesis that 5 factors are sufficient.
##
## df null model = 253 with the objective function = 3.17 with Chi Square = 929.09
## df of the model are 148 and the objective function was 0.52
##
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.04
##
## The harmonic n.obs is 303 with the empirical chi square 164.38 with prob < 0.17
## The total n.obs was 303 with Likelihood Chi Square = 151.94 with prob < 0.4
##
## Tucker Lewis Index of factoring reliability = 0.99
## RMSEA index = 0.009 and the 90 % confidence intervals are 0 0.029
## BIC = -693.7
## Fit based upon off diagonal values = 0.93
## Measures of factor score adequacy
## PA1 PA2 PA3 PA4 PA5
## Correlation of (regression) scores with factors 0.88 0.86 0.83 0.74 0.71
## Multiple R square of scores with factors 0.77 0.74 0.69 0.54 0.50
## Minimum correlation of possible factor scores 0.54 0.48 0.38 0.08 -0.01
Tüm değerler kötü ama deneme yapıyoruz sonuçta. O yüzden bir de açıklanan varyansa bakalım
sum(out8$loadings[,1]^2)/23*100
## [1] 9.72521
İlk boyut neredeyse varyansın onda birini açıklıyor. Diğerlerine de bakalım.
sum(out8$loadings[,2]^2)/23*100
## [1] 6.580498
sum(out8$loadings[,3]^2)/23*100
## [1] 6.011768
sum(out8$loadings[,4]^2)/23*100
## [1] 3.197156
sum(out8$loadings[,5]^2)/23*100
## [1] 2.475
Üretilen ve artık korelasyon matrislerine bakalım.
factor.model(out8$loadings)
## m1_1 m2_1 m3_1 m4_1 m5_1
## m1_1 0.411809544 0.483885724 0.182610914 0.120334051 0.094223654
## m2_1 0.483885724 0.587385810 0.219033893 0.146336309 0.109505267
## m3_1 0.182610914 0.219033893 0.121882682 0.096333175 0.097502641
## m4_1 0.120334051 0.146336309 0.096333175 0.082257838 0.086147108
## m5_1 0.094223654 0.109505267 0.097502641 0.086147108 0.101505682
## m6_1 0.218243353 0.246129266 0.139587417 0.104330666 0.117144026
## m7_1 0.115133406 0.159547975 0.128720332 0.106686518 0.132376561
## m8_1 -0.047705260 -0.049641437 0.040528830 0.038927772 0.076731964
## m9_1 -0.086800730 -0.072356324 0.054480820 0.045480475 0.095024328
## m10_1 0.014739952 0.018647298 0.046153714 0.027616358 0.052246791
## m11_1 -0.027898377 -0.002004467 0.014645546 0.005343330 0.008834008
## m12_1 0.013489218 -0.007322066 -0.004651646 -0.026583533 -0.015111625
## m13_1 0.097002859 0.074884193 0.043120409 0.026049413 0.031647582
## m14_1 0.163155957 0.158814770 0.105447524 0.080880297 0.095350060
## m15_1 0.003785088 -0.046246323 0.009914180 0.009297014 0.019515682
## m16_1 0.106920789 0.088551329 0.107519797 0.100448661 0.124142753
## m17_1 0.119745017 0.049754669 0.044857294 0.019598502 0.051544062
## m18_1 0.091019227 0.067067855 0.087739705 0.083393088 0.101467973
## m19_1 0.010622335 -0.012157358 0.053591960 0.066759340 0.064729647
## m20_1 0.062665129 0.044134891 0.034244186 0.026264443 0.019052168
## m21_1 0.082590675 0.081064137 0.090864128 0.092589221 0.094084019
## m22_1 0.089092362 0.081623619 0.018080336 -0.011541560 -0.015600466
## m23_1 0.169549307 0.170994255 0.094147854 0.071971876 0.080243100
## m6_1 m7_1 m8_1 m9_1 m10_1
## m1_1 0.218243353 0.1151334055 -0.047705260 -0.08680073 0.014739952
## m2_1 0.246129266 0.1595479748 -0.049641437 -0.07235632 0.018647298
## m3_1 0.139587417 0.1287203323 0.040528830 0.05448082 0.046153714
## m4_1 0.104330666 0.1066865180 0.038927772 0.04548047 0.027616358
## m5_1 0.117144026 0.1323765611 0.076731964 0.09502433 0.052246791
## m6_1 0.191562092 0.1698395277 0.078800057 0.08946689 0.077684908
## m7_1 0.169839528 0.2801559424 0.186957377 0.28123428 0.129200454
## m8_1 0.078800057 0.1869573774 0.190263266 0.30967816 0.151244124
## m9_1 0.089466894 0.2812342765 0.309678164 0.62907795 0.343854076
## m10_1 0.077684908 0.1292004541 0.151244124 0.34385408 0.229295915
## m11_1 -0.003015458 0.0772430130 0.099978126 0.32129326 0.200722922
## m12_1 0.023715532 -0.0190257004 0.055872602 0.22863252 0.215824499
## m13_1 0.069690775 -0.0373179954 -0.023673626 -0.02785145 0.052082672
## m14_1 0.148876309 0.0721254405 0.032076230 0.01869349 0.059829997
## m15_1 0.013763228 -0.1138061865 -0.041981210 -0.02317069 0.067334443
## m16_1 0.140358952 0.0753188399 0.037503394 -0.02484192 0.007347968
## m17_1 0.140499240 -0.0346915703 0.009091996 -0.06357934 0.062200670
## m18_1 0.110743408 0.0258586847 0.004612472 -0.06247296 -0.004999253
## m19_1 0.002793528 -0.0997986806 -0.075514253 -0.07693318 0.003837230
## m20_1 0.013549425 -0.1085418177 -0.072738404 -0.03129928 0.064386457
## m21_1 0.068064057 -0.0007819356 -0.034031251 -0.06999373 -0.016925815
## m22_1 0.033497681 -0.0556972475 -0.007388495 0.13407418 0.179861031
## m23_1 0.137836039 0.0654751090 0.004961908 -0.06992858 -0.011423043
## m11_1 m12_1 m13_1 m14_1 m15_1
## m1_1 -0.027898377 0.013489218 0.097002859 0.16315596 0.003785088
## m2_1 -0.002004467 -0.007322066 0.074884193 0.15881477 -0.046246323
## m3_1 0.014645546 -0.004651646 0.043120409 0.10544752 0.009914180
## m4_1 0.005343330 -0.026583533 0.026049413 0.08088030 0.009297014
## m5_1 0.008834008 -0.015111625 0.031647582 0.09535006 0.019515682
## m6_1 -0.003015458 0.023715532 0.069690775 0.14887631 0.013763228
## m7_1 0.077243013 -0.019025700 -0.037317995 0.07212544 -0.113806186
## m8_1 0.099978126 0.055872602 -0.023673626 0.03207623 -0.041981210
## m9_1 0.321293263 0.228632522 -0.027851446 0.01869349 -0.023170689
## m10_1 0.200722922 0.215824499 0.052082672 0.05983000 0.067334443
## m11_1 0.254871041 0.194016870 -0.002467144 -0.02438077 0.030218599
## m12_1 0.194016870 0.317166061 0.125797681 0.06502948 0.181461690
## m13_1 -0.002467144 0.125797681 0.140679777 0.12543366 0.181107316
## m14_1 -0.024380775 0.065029482 0.125433661 0.16669438 0.128047858
## m15_1 0.030218599 0.181461690 0.181107316 0.12804786 0.298805781
## m16_1 -0.084726798 -0.023280312 0.113010511 0.17454315 0.138788148
## m17_1 -0.107842534 0.167291141 0.225301277 0.22309929 0.251550848
## m18_1 -0.083011005 -0.006184429 0.123903177 0.16330656 0.167383301
## m19_1 0.026038456 0.063615434 0.147629183 0.11938911 0.297211126
## m20_1 0.072215327 0.174670341 0.164809953 0.11069807 0.275141269
## m21_1 -0.027080633 -0.019934202 0.100613366 0.12499312 0.173221211
## m22_1 0.174104028 0.307207982 0.152658312 0.08526043 0.211276598
## m23_1 -0.094420385 -0.022761893 0.084175055 0.13696586 0.052901092
## m16_1 m17_1 m18_1 m19_1 m20_1
## m1_1 0.106920789 0.119745017 0.091019227 0.010622335 0.06266513
## m2_1 0.088551329 0.049754669 0.067067855 -0.012157358 0.04413489
## m3_1 0.107519797 0.044857294 0.087739705 0.053591960 0.03424419
## m4_1 0.100448661 0.019598502 0.083393088 0.066759340 0.02626444
## m5_1 0.124142753 0.051544062 0.101467973 0.064729647 0.01905217
## m6_1 0.140358952 0.140499240 0.110743408 0.002793528 0.01354943
## m7_1 0.075318840 -0.034691570 0.025858685 -0.099798681 -0.10854182
## m8_1 0.037503394 0.009091996 0.004612472 -0.075514253 -0.07273840
## m9_1 -0.024841923 -0.063579340 -0.062472964 -0.076933178 -0.03129928
## m10_1 0.007347968 0.062200670 -0.004999253 0.003837230 0.06438646
## m11_1 -0.084726798 -0.107842534 -0.083011005 0.026038456 0.07221533
## m12_1 -0.023280312 0.167291141 -0.006184429 0.063615434 0.17467034
## m13_1 0.113010511 0.225301277 0.123903177 0.147629183 0.16480995
## m14_1 0.174543147 0.223099292 0.163306560 0.119389109 0.11069807
## m15_1 0.138788148 0.251550848 0.167383301 0.297211126 0.27514127
## m16_1 0.242855646 0.214673903 0.227094110 0.192081187 0.10555038
## m17_1 0.214673903 0.494505337 0.216647965 0.103739968 0.15996756
## m18_1 0.227094110 0.216647965 0.221386411 0.221241031 0.13794121
## m19_1 0.192081187 0.103739968 0.221241031 0.457479892 0.31832849
## m20_1 0.105550384 0.159967556 0.137941206 0.318328493 0.29449566
## m21_1 0.194868853 0.087063806 0.200050029 0.310023870 0.18863612
## m22_1 -0.007521521 0.172928495 0.018225332 0.123991037 0.22839039
## m23_1 0.153571461 0.186336036 0.138090539 0.045101606 0.03384746
## m21_1 m22_1 m23_1
## m1_1 0.0825906752 0.0890923623 0.1695493075
## m2_1 0.0810641375 0.0816236190 0.1709942550
## m3_1 0.0908641280 0.0180803358 0.0941478536
## m4_1 0.0925892213 -0.0115415600 0.0719718759
## m5_1 0.0940840186 -0.0156004658 0.0802430999
## m6_1 0.0680640570 0.0334976811 0.1378360390
## m7_1 -0.0007819356 -0.0556972475 0.0654751090
## m8_1 -0.0340312505 -0.0073884951 0.0049619080
## m9_1 -0.0699937267 0.1340741831 -0.0699285849
## m10_1 -0.0169258149 0.1798610307 -0.0114230430
## m11_1 -0.0270806333 0.1741040283 -0.0944203854
## m12_1 -0.0199342019 0.3072079824 -0.0227618928
## m13_1 0.1006133665 0.1526583121 0.0841750548
## m14_1 0.1249931155 0.0852604258 0.1369658620
## m15_1 0.1732212108 0.2112765977 0.0529010920
## m16_1 0.1948688531 -0.0075215208 0.1535714606
## m17_1 0.0870638056 0.1729284948 0.1863360360
## m18_1 0.2000500292 0.0182253321 0.1380905387
## m19_1 0.3100238696 0.1239910369 0.0451016058
## m20_1 0.1886361216 0.2283903932 0.0338474635
## m21_1 0.2495770676 0.0274574615 0.0883225145
## m22_1 0.0274574615 0.3312067980 -0.0009934671
## m23_1 0.0883225145 -0.0009934671 0.1426946148
çıkarılan ortak varyanslara da bakalım
rep_matrix <- factor.model(out8$loadings)
diag(rep_matrix)
## m1_1 m2_1 m3_1 m4_1 m5_1 m6_1 m7_1
## 0.41180954 0.58738581 0.12188268 0.08225784 0.10150568 0.19156209 0.28015594
## m8_1 m9_1 m10_1 m11_1 m12_1 m13_1 m14_1
## 0.19026327 0.62907795 0.22929591 0.25487104 0.31716606 0.14067978 0.16669438
## m15_1 m16_1 m17_1 m18_1 m19_1 m20_1 m21_1
## 0.29880578 0.24285565 0.49450534 0.22138641 0.45747989 0.29449566 0.24957707
## m22_1 m23_1
## 0.33120680 0.14269461
Faktörlerin Yorumlanması
out8$loadings
##
## Loadings:
## PA1 PA2 PA3 PA4 PA5
## m1_1 0.399 0.407 -0.288
## m2_1 0.398 0.530 -0.353 0.155
## m3_1 0.245 0.222
## m4_1 0.187 0.167
## m5_1 0.201 0.154 0.167
## m6_1 0.307 0.119 0.277
## m7_1 0.331 0.358 0.188
## m8_1 0.354 0.225
## m9_1 0.770 0.186
## m10_1 0.147 0.448
## m11_1 0.429 -0.137 -0.102 0.203
## m12_1 0.218 0.345 -0.301 -0.227
## m13_1 0.335 -0.126
## m14_1 0.388
## m15_1 0.396 -0.374
## m16_1 0.393 0.269
## m17_1 0.490 -0.131 -0.482
## m18_1 0.391 -0.136 0.222
## m19_1 0.427 -0.167 -0.328 0.170 0.333
## m20_1 0.395 -0.321 0.161
## m21_1 0.365 -0.150 0.193 0.230
## m22_1 0.303 0.241 -0.282 -0.319
## m23_1 0.287 0.179 -0.129
##
## PA1 PA2 PA3 PA4 PA5
## SS loadings 2.237 1.514 1.383 0.735 0.569
## Proportion Var 0.097 0.066 0.060 0.032 0.025
## Cumulative Var 0.097 0.163 0.223 0.255 0.280
Ciddi dercede fazlaca sorun var. Ortak yük veren maddeler, çok düşük yük verenler vs. Hangi birini çözeceğimi, analiz dışı bırakacağımı bilmediğimden devam ediyorum.
Dik Döndürme deneyeceğim bir de
outvari <- fa(afadata, 5, fm="pa", rotate="varimax")
print(outvari$loadings[,1:5], digits = 3, cut = 0.30)
## PA3 PA4 PA2 PA5 PA1
## m1_1 0.61649 0.09088 -0.10694 -0.0122 0.10912
## m2_1 0.75552 0.07519 -0.09879 -0.0339 0.00277
## m3_1 0.30988 -0.01097 0.10966 0.1053 0.05120
## m4_1 0.21940 -0.05595 0.10867 0.1349 0.03144
## m5_1 0.18219 -0.06434 0.18978 0.1418 0.08964
## m6_1 0.34792 0.00924 0.17329 0.0253 0.19940
## m7_1 0.27668 -0.11620 0.43223 -0.0569 0.00596
## m8_1 -0.01131 -0.00784 0.42990 -0.0539 0.04851
## m9_1 -0.02837 0.26039 0.73216 -0.0655 -0.14189
## m10_1 0.03920 0.31642 0.35695 -0.0149 -0.00180
## m11_1 0.00201 0.32724 0.27136 0.0168 -0.27177
## m12_1 -0.04760 0.54182 0.12929 -0.0145 0.06635
## m13_1 0.07523 0.22735 -0.05621 0.1551 0.23686
## m14_1 0.21654 0.09198 0.07053 0.1629 0.28256
## m15_1 -0.08844 0.32665 -0.07519 0.3556 0.22840
## m16_1 0.15053 -0.08314 0.09256 0.3151 0.32468
## m17_1 0.03707 0.24294 -0.03917 0.0648 0.65451
## m18_1 0.10905 -0.03518 0.02088 0.3382 0.30567
## m19_1 -0.01463 0.15233 -0.09529 0.6511 0.03264
## m20_1 0.02421 0.35571 -0.12117 0.3852 0.06562
## m21_1 0.12658 -0.01696 -0.02600 0.4750 0.08358
## m22_1 0.05335 0.56855 -0.00341 0.0559 0.04442
## m23_1 0.23294 -0.05285 -0.00631 0.0717 0.28365
EGA
library(EGAnet); library(psychTools)
## Warning: package 'EGAnet' was built under R version 4.3.3
## [1;m[4;m
## EGAnet (version 2.2.0)[0m[0m
##
## For help getting started, see <https://r-ega.net>
##
## For bugs and errors, submit an issue to <https://github.com/hfgolino/EGAnet/issues>
## Warning: package 'psychTools' was built under R version 4.3.3
##
## Attaching package: 'psychTools'
## The following object is masked from 'package:dplyr':
##
## recode
bfi_uva <- UVA(
data = afadata
)
# Print results
bfi_uva$keep_remove
## $keep
## [1] "m1_1" "m8_1"
##
## $remove
## [1] "m2_1" "m9_1"
EGA(afadata)
## Model: GLASSO (EBIC with gamma = 0)
## Correlations: auto
## Lambda: 0.112521046460677 (n = 100, ratio = 0.1)
##
## Number of nodes: 23
## Number of edges: 81
## Edge density: 0.320
##
## Non-zero edge weights:
## M SD Min Max
## 0.068 0.071 -0.066 0.458
##
## ----
##
## Algorithm: Walktrap
##
## Number of communities: 4
##
## m1_1 m2_1 m3_1 m4_1 m5_1 m6_1 m7_1 m8_1 m9_1 m10_1 m11_1 m12_1 m13_1
## 1 1 1 1 1 1 1 2 2 2 2 3 4
## m14_1 m15_1 m16_1 m17_1 m18_1 m19_1 m20_1 m21_1 m22_1 m23_1
## 1 4 4 4 4 4 4 4 3 1
##
## ----
##
## Unidimensional Method: Louvain
## Unidimensional: No
##
## ----
##
## TEFI: -18.227
Açımlayıcı Grafik Analizi de incelendiğinde 4 boyutlu bir yapı görülmekte. Her metot ve her döndürme yöntemi kafamı ayrı ayrı karıştırdığından bu işlemleri bu noktada bitiriyorum. Bu denemeler ders materyalleri kullanılarak kodlarda akıcılık kazanmak için yapılmıştır. Bana derste öğretilen bundan çok daha fazlası ve doğru bilgilerdir :)