####‘LNA bv’ = LNA mean cell size in units of cubic microns, ####‘LNA B’ = LNA total biomass in units of µg C per L, and ####‘%LNA BB’ = percent of total bacterial biomass in the LNA fraction. ####Other important variables are ####year, ####month, ####date, ####day of year, and ####‘temp 5 m E2’ = temperature at 5 meters depth.
bacteria <-read_csv("bacteria_size_temperature_edit.csv",
col_types = cols(`day of year` = col_number(),
`Z uml E2` = col_number(), `temp 5 m E2` = col_number(),
`LNA ab uml` = col_number(), `LNA bv` = col_number(),
`LNA B` = col_number(), `%LNA BB` = col_number()))
## New names:
## • `` -> `...32`
## • `` -> `...33`
## • `` -> `...34`
## • `` -> `...35`
## • `` -> `...36`
## • `` -> `...37`
## • `` -> `...38`
## • `` -> `...39`
## • `` -> `...40`
## • `` -> `...41`
## • `` -> `...42`
## • `` -> `...43`
## • `` -> `...44`
## • `` -> `...45`
## • `` -> `...46`
## • `` -> `...47`
## • `` -> `...48`
## • `` -> `...49`
## • `` -> `...50`
## • `` -> `...51`
## • `` -> `...52`
## • `` -> `...53`
## • `` -> `...54`
## • `` -> `...55`
## • `` -> `...56`
## • `` -> `...57`
## • `` -> `...58`
## • `` -> `...59`
## • `` -> `...60`
## • `` -> `...61`
## • `` -> `...62`
## • `` -> `...63`
## • `` -> `...64`
## • `` -> `...65`
## • `` -> `...66`
bacteria$date <- dmy(bacteria$date)
bacteria <- bacteria %>% filter(!is.na(`LNA ab uml`))
#LNA abundance
ggplot(bacteria, aes(x = factor(season), y = `LNA ab uml`)) +
geom_boxplot()
##Abundance appears to increase in seasons 3-4, or from Summer into autumn/early winter.
#LNA cell size
ggplot(bacteria, aes(x = factor(season), y = `LNA bv`)) +
geom_boxplot()
##Size might decrease from Summer into autumn/early winter.
#LNA biomass
ggplot(bacteria, aes(x = factor(season), y = `LNA B`)) +
geom_boxplot()
##Biomass is highest in season 3, Summer
#LNA % biomass
ggplot(bacteria, aes(x = factor(season), y = `%LNA BB`)) +
geom_boxplot()
##The LNA % of biomass increases from Summer into autumn/early winter.
#Temperature
ggplot(bacteria, aes(x = factor(season), y = `temp 5 m E2`)) +
geom_boxplot()
##Temperature at 5 meters deep is highest in season 3, July, August, and September.
#LNA abundance and temperature
ggplot(bacteria, aes(x = `temp uml`, y = `LNA ab uml`, color = factor(season))) +
geom_point(alpha = 0.6) +
geom_smooth(method = "lm", se = FALSE)
## `geom_smooth()` using formula = 'y ~ x'
##Abundance appears to be positively correlated with temeperature
#LNA abundance
ggplot(bacteria, aes(x = date, y = `LNA ab uml`))+ geom_point() + geom_line()
##Abundance does vary by year
#LNA cell size
ggplot(bacteria, aes(x = date, y = `LNA bv`)) + geom_point() + geom_line() + geom_smooth(method = "loess")
## `geom_smooth()` using formula = 'y ~ x'
##Size also varies by year with a possible downward trend overtime
#LNA biomass
ggplot(bacteria, aes(x = date, y = `LNA B`)) + geom_point() + geom_line()
##Biomass also varies by year. The fluctuations within each year is probably because of season.
#LNA % biomass
ggplot(bacteria, aes(x = date, y = `%LNA BB`)) + geom_point() + geom_line()
##The LNA % of biomass I think changes more by season, then by year.
#Temperature
ggplot(bacteria, aes(x = date, y = `temp 5 m E2`)) + geom_point() + geom_line()
##Temperature fluctuates by season throughout the year
bacteria <- bacteria %>%
arrange(year, month) %>%
mutate(sample_number = row_number())
bacteria <- bacteria %>%
rename(
LNA_ab_uml = `LNA ab uml`,
LNA_bv = `LNA bv`,
LNA_B = `LNA B`,
LNA_percent_BB = `%LNA BB`,
temp_5m_E2 = `temp 5 m E2`
)
#LNA abundance
abund = lm(LNA_ab_uml~ 1, data = bacteria)
summary(abund)
##
## Call:
## lm(formula = LNA_ab_uml ~ 1, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -320772 -167622 -42872 88128 1010628
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 359372 20742 17.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 221500 on 113 degrees of freedom
bacteria$resid.rainpredictor.raw = resid(abund)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
#probably a negative phi, because of the oscillation
abund1 = gls(LNA_ab_uml~ 1, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(abund1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_ab_uml ~ 1
## Data: bacteria
## AIC BIC logLik
## 3121.638 3129.846 -1557.819
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.3328666
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 356917.3 29212.1 12.21813 0
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.4426227 -0.7485427 -0.1831723 0.4105233 4.5913186
##
## Residual standard error: 220651.8
## Degrees of freedom: 114 total; 113 residual
ggAcf(resid(abund1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
##The ACF is smaller with the autocorrelation for time added. The ACF was actually 0.3ish
AICc(abund) #3132.848
## [1] 3132.848
AICc(abund1) # 3121.856
## [1] 3121.856
#LNA cell size
size = lm(LNA_bv~ 1, data = bacteria)
summary(size)
##
## Call:
## lm(formula = LNA_bv ~ 1, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.016632 -0.003632 -0.000632 0.003368 0.034368
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0516316 0.0006065 85.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006476 on 113 degrees of freedom
bacteria$resid.rainpredictor.raw = resid(size)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
size1 = gls(LNA_bv~ 1, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(size1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_bv ~ 1
## Data: bacteria
## AIC BIC logLik
## -836.4201 -828.2115 421.2101
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.3658858
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.0516954 0.0008870601 58.27722 0
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.5854782 -0.5722759 -0.1076908 0.5117561 5.3124693
##
## Residual standard error: 0.006457374
## Degrees of freedom: 114 total; 113 residual
ggAcf(resid(size1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
##The ACF is smaller with the autocorrelation for time added. The ACF was actually 0.3ish
AICc(size) #-822.4318
## [1] -822.4318
AICc(size1) # -836.202
## [1] -836.202
#LNA biomass
mass = lm(LNA_B~ 1, data = bacteria)
summary(mass)
##
## Call:
## lm(formula = LNA_B ~ 1, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6995 -2.3470 -0.6095 1.6480 15.4905
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3395 0.3048 17.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.254 on 113 degrees of freedom
bacteria$resid.rainpredictor.raw = resid(mass)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
mass1 = gls(LNA_B~ 1, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(mass1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_B ~ 1
## Data: bacteria
## AIC BIC logLik
## 585.8118 594.0204 -289.9059
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.3157917
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 5.306626 0.4212207 12.59821 0
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.4394688 -0.7138160 -0.1778663 0.5184828 4.7883443
##
## Residual standard error: 3.241908
## Degrees of freedom: 114 total; 113 residual
ggAcf(resid(mass1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
AICc(mass) #595.652
## [1] 595.652
AICc(mass1) # 586.03
## [1] 586.03
#LNA % biomass
Bmass = lm(LNA_percent_BB~ 1, data = bacteria)
summary(Bmass)
##
## Call:
## lm(formula = LNA_percent_BB ~ 1, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36228 -0.05228 0.01772 0.06772 0.22772
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.44228 0.01028 43.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1097 on 113 degrees of freedom
bacteria$resid.rainpredictor.raw = resid(Bmass)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
Bmass1 = gls(LNA_percent_BB~ 1, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(Bmass1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_percent_BB ~ 1
## Data: bacteria
## AIC BIC logLik
## -192.8633 -184.6547 99.43164
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.3897547
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.439873 0.01549497 28.38811 0
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.2788118 -0.4543945 0.1833771 0.6389283 2.0966920
##
## Residual standard error: 0.1097572
## Degrees of freedom: 114 total; 113 residual
ggAcf(resid(Bmass1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
AICc(Bmass) #-177.2299
## [1] -177.2299
AICc(Bmass1) # -192.6451
## [1] -192.6451
#Temperature
temp = lm(temp_5m_E2~ 1, data = bacteria)
summary(temp)
##
## Call:
## lm(formula = temp_5m_E2 ~ 1, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.421 -2.668 -1.223 2.778 7.634
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.7683 0.2923 53.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.12 on 113 degrees of freedom
bacteria$resid.rainpredictor.raw = resid(temp)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
temp1 = gls(temp_5m_E2~ 1, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(temp1)
## Generalized least squares fit by maximum likelihood
## Model: temp_5m_E2 ~ 1
## Data: bacteria
## AIC BIC logLik
## 494.645 502.8536 -244.3225
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.7498502
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 15.61436 0.7535141 20.72206 0
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.3732161 -0.8090866 -0.3440195 0.9435985 2.5063416
##
## Residual standard error: 3.107133
## Degrees of freedom: 114 total; 113 residual
ggAcf(resid(temp1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
AICc(temp) #586.0755
## [1] 586.0755
AICc(temp1) # 494.8632
## [1] 494.8632
#LNA abundance
abund = lm(LNA_ab_uml~ temp_5m_E2, data = bacteria)
summary(abund)
##
## Call:
## lm(formula = LNA_ab_uml ~ temp_5m_E2, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -285341 -127694 -49946 79080 1062318
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -71294 99480 -0.717 0.475
## temp_5m_E2 27312 6190 4.412 2.36e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 205300 on 112 degrees of freedom
## Multiple R-squared: 0.1481, Adjusted R-squared: 0.1405
## F-statistic: 19.47 on 1 and 112 DF, p-value: 2.363e-05
bacteria$resid.rainpredictor.raw = resid(abund)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
plot(ggeffect(abund))
abund1 = gls(LNA_ab_uml~ temp_5m_E2, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(abund1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_ab_uml ~ temp_5m_E2
## Data: bacteria
## AIC BIC logLik
## 3114.499 3125.444 -1553.249
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.1912381
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -25089.47 112956.30 -0.222117 0.8246
## temp_5m_E2 24327.48 7014.93 3.467958 0.0007
##
## Correlation:
## (Intr)
## temp_5m_E2 -0.978
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.3919184 -0.6500211 -0.2209597 0.3769490 5.1909826
##
## Residual standard error: 203724.2
## Degrees of freedom: 114 total; 112 residual
ggAcf(resid(abund1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
plot(ggeffect(abund1))
## Can't compute adjusted predictions, `effects::Effect()` returned an error.
##
## Reason: the following predictor is not in the model: sample_number
## You may try `ggpredict()` or `ggemmeans()`.
AICc(abund) #3116.686
## [1] 3116.686
AICc(abund1) # [1] 3114.866
## [1] 3114.866
#LNA cell size
size = lm(LNA_bv~ temp_5m_E2, data = bacteria)
summary(size)
##
## Call:
## lm(formula = LNA_bv ~ temp_5m_E2, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.018101 -0.003579 -0.000305 0.002547 0.033770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.058286 0.003086 18.889 <2e-16 ***
## temp_5m_E2 -0.000422 0.000192 -2.198 0.03 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006369 on 112 degrees of freedom
## Multiple R-squared: 0.04135, Adjusted R-squared: 0.03279
## F-statistic: 4.831 on 1 and 112 DF, p-value: 0.03001
bacteria$resid.rainpredictor.raw = resid(size)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
size1 = gls(LNA_bv~ temp_5m_E2, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(size1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_bv ~ temp_5m_E2
## Data: bacteria
## AIC BIC logLik
## -837.799 -826.8542 422.8995
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.3493379
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.05843996 0.003756441 15.557270 0.0000
## temp_5m_E2 -0.00042879 0.000232385 -1.845173 0.0677
##
## Correlation:
## (Intr)
## temp_5m_E2 -0.974
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.87543510 -0.57222425 -0.05359929 0.39527644 5.33467976
##
## Residual standard error: 0.00631973
## Degrees of freedom: 114 total; 112 residual
ggAcf(resid(size1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
plot(ggeffect(size1))
## Can't compute adjusted predictions, `effects::Effect()` returned an error.
##
## Reason: the following predictor is not in the model: sample_number
## You may try `ggpredict()` or `ggemmeans()`.
AICc(size) #-825.1361
## [1] -825.1361
AICc(size1) # [1] -837.432
## [1] -837.432
#LNA biomass
mass = lm(LNA_B~ temp_5m_E2, data = bacteria)
summary(mass)
##
## Call:
## lm(formula = LNA_B ~ temp_5m_E2, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1996 -2.0080 -0.7228 1.2707 16.2048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.61170 1.47640 -0.414 0.679
## temp_5m_E2 0.37741 0.09187 4.108 7.61e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.047 on 112 degrees of freedom
## Multiple R-squared: 0.131, Adjusted R-squared: 0.1232
## F-statistic: 16.88 on 1 and 112 DF, p-value: 7.612e-05
bacteria$resid.rainpredictor.raw = resid(mass)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
mass1 = gls(LNA_B~ temp_5m_E2, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(mass1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_B ~ temp_5m_E2
## Data: bacteria
## AIC BIC logLik
## 579.8249 590.7697 -285.9124
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.1852965
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.0621473 1.67078 0.037197 0.9704
## temp_5m_E2 0.3339085 0.10377 3.217774 0.0017
##
## Correlation:
## (Intr)
## temp_5m_E2 -0.979
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.3289655 -0.6728622 -0.2107094 0.4031903 5.3365923
##
## Residual standard error: 3.023397
## Degrees of freedom: 114 total; 112 residual
ggAcf(resid(mass1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
plot(ggeffect(mass1))
## Can't compute adjusted predictions, `effects::Effect()` returned an error.
##
## Reason: the following predictor is not in the model: sample_number
## You may try `ggpredict()` or `ggemmeans()`.
AICc(mass) #581.7598
## [1] 581.7598
AICc(mass1) #580.1918
## [1] 580.1918
#LNA % biomass
Bmass = lm(LNA_percent_BB~ temp_5m_E2, data = bacteria)
summary(Bmass)
##
## Call:
## lm(formula = LNA_percent_BB ~ temp_5m_E2, data = bacteria)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.31774 -0.05272 0.00403 0.07151 0.19718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.196786 0.047875 4.110 7.55e-05 ***
## temp_5m_E2 0.015569 0.002979 5.226 8.09e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09881 on 112 degrees of freedom
## Multiple R-squared: 0.1961, Adjusted R-squared: 0.1889
## F-statistic: 27.31 on 1 and 112 DF, p-value: 8.092e-07
bacteria$resid.rainpredictor.raw = resid(Bmass)
ggAcf(bacteria$resid.rainpredictor.raw) + labs(title = 'raw residuals, no predictor and no autocorrelation for time')
Bmass1 = gls(LNA_percent_BB~ temp_5m_E2, data = bacteria, correlation = corAR1(form =~ sample_number), method = "ML")
summary(Bmass1)
## Generalized least squares fit by maximum likelihood
## Model: LNA_percent_BB ~ temp_5m_E2
## Data: bacteria
## AIC BIC logLik
## -204.9979 -194.0531 106.499
##
## Correlation Structure: AR(1)
## Formula: ~sample_number
## Parameter estimate(s):
## Phi
## 0.2482872
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.21155723 0.05603314 3.775573 3e-04
## temp_5m_E2 0.01456914 0.00347621 4.191096 1e-04
##
## Correlation:
## (Intr)
## temp_5m_E2 -0.977
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.25743954 -0.50862611 0.06507804 0.72092525 2.00054770
##
## Residual standard error: 0.098116
## Degrees of freedom: 114 total; 112 residual
ggAcf(resid(Bmass1, type = 'normalized')) + labs(title = 'normalized resi
duals, no predictor')
plot(ggeffect(Bmass1))
## Can't compute adjusted predictions, `effects::Effect()` returned an error.
##
## Reason: the following predictor is not in the model: sample_number
## You may try `ggpredict()` or `ggemmeans()`.
AICc(Bmass) #-199.999
## [1] -199.999
AICc(Bmass1) #-204.631
## [1] -204.631
#Based on the models, abundance of LNA significantly increased with temperature, with the model that included time autocorrelation being the best. LNA size was negatively correlated with temperature, with the model not including time autocorrelation being the best. Total biomass increased with temperature, with or without taking into account time autocorrelation. Percent biomass increased with temperature, with the model not including time autocorrelation being the best.So, time autocorrelation ended up being most important when considering LNA abundance, and temperature changes did drive abundance, size, total biomass, and percent biomass difference witht he notable change that as abundance increased, size decreased for LNA.