AI Experiment Analysis

Loading Libraries

library(afex) # to run the ANOVA and plot results
library(psych) # for the describe() command
library(ggplot2) # to visualize our results
library(expss) # for the cross_cases() command
library(car) # for the leveneTest() command
library(emmeans) # for posthoc tests
library(effsize) # for the cohen.d() command
library(apaTables) # to create our correlation table
library(kableExtra) # to create our correlation table
library(sjPlot) # to visualize our results

Importing Data

# import your AI results dataset
d <- read.csv(file="Data/final_results_100.csv", header=T)

State Your Hypotheses & Chosen Tests

First t-test: participants with more social media use will have lower life satisfaction.

Second t-test: younger participants (18-30 years old) will have lower life satisfaction than older participants (older than 30 years old).

p-value is 0.025 because we are using the same sample for 2 different t-tests

Check Your Variables

This is just basic variable checking that is used across all HW assignments.

# to view stats for all variables
describe(d)
           vars   n  mean    sd median trimmed   mad min max range  skew
id            1 100 50.50 29.01   50.5   50.50 37.06   1 100    99  0.00
identity*     2 100 50.50 29.01   50.5   50.50 37.06   1 100    99  0.00
consent*      3 100  1.46  0.50    1.0    1.45  0.00   1   2     1  0.16
age           4 100 42.70 15.84   38.0   40.92 10.38  18  99    81  1.14
race          5 100  4.66  1.59    6.0    4.71  1.48   1   7     6 -0.27
gender        6 100  1.94  0.24    2.0    2.00  0.00   1   2     1 -3.65
manip_out*    7 100 38.42 17.62   41.0   39.40 19.27   1  68    67 -0.48
survey1*      8 100 16.91 10.98   14.0   16.21 10.38   1  42    41  0.43
survey2*      9 100  1.82  0.39    2.0    1.90  0.00   1   2     1 -1.64
ai_manip*    10 100 50.40 28.86   50.5   50.50 37.06   1  99    98 -0.01
condition    11 100  1.50  0.50    1.5    1.50  0.74   1   2     1  0.00
           kurtosis   se
id            -1.24 2.90
identity*     -1.24 2.90
consent*      -1.99 0.05
age            1.09 1.58
race          -1.34 0.16
gender        11.44 0.02
manip_out*    -0.78 1.76
survey1*      -0.66 1.10
survey2*       0.70 0.04
ai_manip*     -1.25 2.89
condition     -2.02 0.05
# we'll use the describeBy() command to view skew and kurtosis across our IVs
describeBy(d, group = "survey1")

 Descriptive statistics by group 
survey1: 1
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2  6.0  2.83    6.0     6.0  2.97   4   8     4    0    -2.75
identity     2 2 28.0 38.18   28.0    28.0 40.03   1  55    54    0    -2.75
consent      3 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
age          4 2 21.5  4.95   21.5    21.5  5.19  18  25     7    0    -2.75
race         5 2  6.0  0.00    6.0     6.0  0.00   6   6     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 25.0 22.63   25.0    25.0 23.72   9  41    32    0    -2.75
survey1      8 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
survey2      9 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
ai_manip    10 2 64.0  2.83   64.0    64.0  2.97  62  66     4    0    -2.75
condition   11 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
            se
id         2.0
identity  27.0
consent    0.0
age        3.5
race       0.0
gender     0.0
manip_out 16.0
survey1    0.0
survey2    0.0
ai_manip   2.0
condition  0.0
------------------------------------------------------------ 
survey1: 2
          vars  n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 14 35.07 25.74   27.0   32.42 17.05   2 100    98  1.11     0.48
identity     2 14 52.21 33.03   57.5   52.33 41.51   3 100    97 -0.13    -1.55
consent      3 14  1.64  0.50    2.0    1.67  0.00   1   2     1 -0.53    -1.83
age          4 14 36.79 10.48   35.5   35.67 10.38  24  63    39  0.91     0.25
race         5 14  5.43  1.40    6.0    5.58  0.00   2   7     5 -1.35     0.44
gender       6 14  1.93  0.27    2.0    2.00  0.00   1   2     1 -2.98     7.41
manip_out    7 14 34.14 23.69   32.5   33.92 31.13   3  68    65  0.11    -1.59
survey1      8 14  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
survey2      9 14  1.64  0.50    2.0    1.67  0.00   1   2     1 -0.53    -1.83
ai_manip    10 14 39.86 33.92   27.0   38.75 34.84   3  90    87  0.27    -1.76
condition   11 14  1.14  0.36    1.0    1.08  0.00   1   2     1  1.83     1.45
            se
id        6.88
identity  8.83
consent   0.13
age       2.80
race      0.37
gender    0.07
manip_out 6.33
survey1   0.00
survey2   0.13
ai_manip  9.07
condition 0.10
------------------------------------------------------------ 
survey1: 3
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   75 NA     75      75   0  75  75     0   NA       NA NA
identity     2 1   66 NA     66      66   0  66  66     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   34 NA     34      34   0  34  34     0   NA       NA NA
race         5 1    6 NA      6       6   0   6   6     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   56 NA     56      56   0  56  56     0   NA       NA NA
survey1      8 1    3 NA      3       3   0   3   3     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   36 NA     36      36   0  36  36     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 4
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   89 NA     89      89   0  89  89     0   NA       NA NA
identity     2 1   33 NA     33      33   0  33  33     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   49 NA     49      49   0  49  49     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   54 NA     54      54   0  54  54     0   NA       NA NA
survey1      8 1    4 NA      4       4   0   4   4     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   86 NA     86      86   0  86  86     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 5
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   60 NA     60      60   0  60  60     0   NA       NA NA
identity     2 1   39 NA     39      39   0  39  39     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   70 NA     70      70   0  70  70     0   NA       NA NA
race         5 1    1 NA      1       1   0   1   1     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   52 NA     52      52   0  52  52     0   NA       NA NA
survey1      8 1    5 NA      5       5   0   5   5     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1    6 NA      6       6   0   6   6     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 6
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   95 NA     95      95   0  95  95     0   NA       NA NA
identity     2 1   32 NA     32      32   0  32  32     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   46 NA     46      46   0  46  46     0   NA       NA NA
race         5 1    6 NA      6       6   0   6   6     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   50 NA     50      50   0  50  50     0   NA       NA NA
survey1      8 1    6 NA      6       6   0   6   6     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   45 NA     45      45   0  45  45     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 7
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   91 NA     91      91   0  91  91     0   NA       NA NA
identity     2 1   13 NA     13      13   0  13  13     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   32 NA     32      32   0  32  32     0   NA       NA NA
race         5 1    4 NA      4       4   0   4   4     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   54 NA     54      54   0  54  54     0   NA       NA NA
survey1      8 1    7 NA      7       7   0   7   7     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   30 NA     30      30   0  30  30     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 8
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   66 NA     66      66   0  66  66     0   NA       NA NA
identity     2 1   99 NA     99      99   0  99  99     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   74 NA     74      74   0  74  74     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   50 NA     50      50   0  50  50     0   NA       NA NA
survey1      8 1    8 NA      8       8   0   8   8     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   51 NA     51      51   0  51  51     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 9
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 66.0  2.83   66.0    66.0  2.97  64  68     4    0    -2.75
identity     2 2 44.0 48.08   44.0    44.0 50.41  10  78    68    0    -2.75
consent      3 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
age          4 2 31.5 10.61   31.5    31.5 11.12  24  39    15    0    -2.75
race         5 2  6.0  0.00    6.0     6.0  0.00   6   6     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 57.5  4.95   57.5    57.5  5.19  54  61     7    0    -2.75
survey1      8 2  9.0  0.00    9.0     9.0  0.00   9   9     0  NaN      NaN
survey2      9 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
ai_manip    10 2 55.5 38.89   55.5    55.5 40.77  28  83    55    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id         2.0
identity  34.0
consent    0.0
age        7.5
race       0.0
gender     0.0
manip_out  3.5
survey1    0.0
survey2    0.5
ai_manip  27.5
condition  0.0
------------------------------------------------------------ 
survey1: 10
          vars n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 4 79.25 18.48   86.0   79.25  5.93  52  93    41 -0.67    -1.73
identity     2 4 34.75 28.14   26.5   34.75 17.79  12  74    62  0.48    -1.91
consent      3 4  1.00  0.00    1.0    1.00  0.00   1   1     0   NaN      NaN
age          4 4 39.75 13.15   35.0   39.75  5.19  30  59    29  0.65    -1.76
race         5 4  5.25  1.50    6.0    5.25  0.00   3   6     3 -0.75    -1.69
gender       6 4  1.75  0.50    2.0    1.75  0.00   1   2     1 -0.75    -1.69
manip_out    7 4 57.50  2.65   58.0   57.50  2.22  54  60     6 -0.32    -2.01
survey1      8 4 10.00  0.00   10.0   10.00  0.00  10  10     0   NaN      NaN
survey2      9 4  1.75  0.50    2.0    1.75  0.00   1   2     1 -0.75    -1.69
ai_manip    10 4 56.00 24.95   53.0   56.00 20.76  29  89    60  0.26    -1.89
condition   11 4  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
             se
id         9.24
identity  14.07
consent    0.00
age        6.57
race       0.75
gender     0.25
manip_out  1.32
survey1    0.00
survey2    0.25
ai_manip  12.48
condition  0.00
------------------------------------------------------------ 
survey1: 11
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 94.5  3.54   94.5    94.5  3.71  92  97     5    0    -2.75
identity     2 2 55.5 44.55   55.5    55.5 46.70  24  87    63    0    -2.75
consent      3 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
age          4 2 44.5  7.78   44.5    44.5  8.15  39  50    11    0    -2.75
race         5 2  4.5  2.12    4.5     4.5  2.22   3   6     3    0    -2.75
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 43.5  3.54   43.5    43.5  3.71  41  46     5    0    -2.75
survey1      8 2 11.0  0.00   11.0    11.0  0.00  11  11     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 61.0 28.28   61.0    61.0 29.65  41  81    40    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id         2.5
identity  31.5
consent    0.5
age        5.5
race       1.5
gender     0.0
manip_out  2.5
survey1    0.0
survey2    0.0
ai_manip  20.0
condition  0.0
------------------------------------------------------------ 
survey1: 12
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 76.0  4.24   76.0    76.0  4.45  73  79     6    0    -2.75
identity     2 2 57.5  0.71   57.5    57.5  0.74  57  58     1    0    -2.75
consent      3 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
age          4 2 28.0  0.00   28.0    28.0  0.00  28  28     0  NaN      NaN
race         5 2  6.0  0.00    6.0     6.0  0.00   6   6     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 41.0  0.00   41.0    41.0  0.00  41  41     0  NaN      NaN
survey1      8 2 12.0  0.00   12.0    12.0  0.00  12  12     0  NaN      NaN
survey2      9 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
ai_manip    10 2 65.5 13.44   65.5    65.5 14.08  56  75    19    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
           se
id        3.0
identity  0.5
consent   0.0
age       0.0
race      0.0
gender    0.0
manip_out 0.0
survey1   0.0
survey2   0.0
ai_manip  9.5
condition 0.0
------------------------------------------------------------ 
survey1: 13
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   62 NA     62      62   0  62  62     0   NA       NA NA
identity     2 1   92 NA     92      92   0  92  92     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   54 NA     54      54   0  54  54     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   43 NA     43      43   0  43  43     0   NA       NA NA
survey1      8 1   13 NA     13      13   0  13  13     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   77 NA     77      77   0  77  77     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 14
          vars  n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 19 26.47 14.96     25   26.41 19.27   5  49    44  0.09    -1.56
identity     2 19 44.79 26.65     42   44.06 25.20   8  94    86  0.63    -0.96
consent      3 19  1.63  0.50      2    1.65  0.00   1   2     1 -0.50    -1.84
age          4 19 47.26 17.98     39   46.59  8.90  23  83    60  0.79    -0.69
race         5 19  4.42  1.57      4    4.41  1.48   2   7     5  0.14    -1.71
gender       6 19  1.89  0.32      2    1.94  0.00   1   2     1 -2.37     3.84
manip_out    7 19 27.00 16.00     25   26.24 16.31   1  66    65  0.41    -0.15
survey1      8 19 14.00  0.00     14   14.00  0.00  14  14     0   NaN      NaN
survey2      9 19  1.89  0.32      2    1.94  0.00   1   2     1 -2.37     3.84
ai_manip    10 19 51.11 28.67     63   51.88 22.24   1  88    87 -0.47    -1.43
condition   11 19  1.00  0.00      1    1.00  0.00   1   1     0   NaN      NaN
            se
id        3.43
identity  6.11
consent   0.11
age       4.12
race      0.36
gender    0.07
manip_out 3.67
survey1   0.00
survey2   0.07
ai_manip  6.58
condition 0.00
------------------------------------------------------------ 
survey1: 15
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   22 NA     22      22   0  22  22     0   NA       NA NA
identity     2 1    4 NA      4       4   0   4   4     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   39 NA     39      39   0  39  39     0   NA       NA NA
race         5 1    2 NA      2       2   0   2   2     0   NA       NA NA
gender       6 1    1 NA      1       1   0   1   1     0   NA       NA NA
manip_out    7 1    4 NA      4       4   0   4   4     0   NA       NA NA
survey1      8 1   15 NA     15      15   0  15  15     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   14 NA     14      14   0  14  14     0   NA       NA NA
condition   11 1    1 NA      1       1   0   1   1     0   NA       NA NA
------------------------------------------------------------ 
survey1: 16
          vars n mean    sd median trimmed   mad min max range  skew kurtosis
id           1 5 26.8 16.21     31    26.8 16.31   3  46    43 -0.29    -1.66
identity     2 5 75.2 17.70     79    75.2 25.20  53  97    44 -0.07    -1.96
consent      3 5  1.6  0.55      2     1.6  0.00   1   2     1 -0.29    -2.25
age          4 5 40.2 16.63     41    40.2 13.34  19  64    45  0.15    -1.62
race         5 5  4.2  1.64      3     4.2  0.00   3   6     3  0.29    -2.25
gender       6 5  2.0  0.00      2     2.0  0.00   2   2     0   NaN      NaN
manip_out    7 5 17.6  8.82     15    17.6 11.86   7  29    22  0.13    -1.95
survey1      8 5 16.0  0.00     16    16.0  0.00  16  16     0   NaN      NaN
survey2      9 5  1.8  0.45      2     1.8  0.00   1   2     1 -1.07    -0.92
ai_manip    10 5 45.6 44.29     16    45.6 10.38   9  96    87  0.29    -2.24
condition   11 5  1.0  0.00      1     1.0  0.00   1   1     0   NaN      NaN
             se
id         7.25
identity   7.91
consent    0.24
age        7.44
race       0.73
gender     0.00
manip_out  3.94
survey1    0.00
survey2    0.20
ai_manip  19.81
condition  0.00
------------------------------------------------------------ 
survey1: 17
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 36.5  6.36   36.5    36.5  6.67  32  41     9    0    -2.75
identity     2 2 75.0  8.49   75.0    75.0  8.90  69  81    12    0    -2.75
consent      3 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
age          4 2 38.0  5.66   38.0    38.0  5.93  34  42     8    0    -2.75
race         5 2  5.0  1.41    5.0     5.0  1.48   4   6     2    0    -2.75
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 27.0  9.90   27.0    27.0 10.38  20  34    14    0    -2.75
survey1      8 2 17.0  0.00   17.0    17.0  0.00  17  17     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 59.5 55.86   59.5    59.5 58.56  20  99    79    0    -2.75
condition   11 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
            se
id         4.5
identity   6.0
consent    0.0
age        4.0
race       1.0
gender     0.0
manip_out  7.0
survey1    0.0
survey2    0.0
ai_manip  39.5
condition  0.0
------------------------------------------------------------ 
survey1: 18
          vars n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 4 34.25  7.80   33.0   34.25  7.41  27  44    17  0.22    -2.15
identity     2 4 39.25 37.23   37.5   39.25 43.74   2  80    78  0.05    -2.31
consent      3 4  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
age          4 4 31.50  8.19   32.0   31.50  6.67  21  41    20 -0.14    -1.87
race         5 4  6.25  0.50    6.0    6.25  0.00   6   7     1  0.75    -1.69
gender       6 4  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
manip_out    7 4 32.50 23.27   29.0   32.50 17.05   8  64    56  0.32    -1.85
survey1      8 4 18.00  0.00   18.0   18.00  0.00  18  18     0   NaN      NaN
survey2      9 4  1.75  0.50    2.0    1.75  0.00   1   2     1 -0.75    -1.69
ai_manip    10 4 38.75 40.80   33.0   38.75 41.51   2  87    85  0.15    -2.25
condition   11 4  1.00  0.00    1.0    1.00  0.00   1   1     0   NaN      NaN
             se
id         3.90
identity  18.62
consent    0.00
age        4.09
race       0.25
gender     0.00
manip_out 11.64
survey1    0.00
survey2    0.25
ai_manip  20.40
condition  0.00
------------------------------------------------------------ 
survey1: 19
          vars n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 4 18.50 16.09   13.0   18.50  6.67   6  42    36  0.63    -1.76
identity     2 4 53.00 14.21   49.5   53.00  8.90  40  73    33  0.49    -1.84
consent      3 4  1.50  0.58    1.5    1.50  0.74   1   2     1  0.00    -2.44
age          4 4 45.50 17.25   38.5   45.50  5.19  34  71    37  0.69    -1.73
race         5 4  4.25  1.26    4.0    4.25  0.74   3   6     3  0.42    -1.82
gender       6 4  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
manip_out    7 4 26.75 13.96   28.5   26.75 14.83  11  39    28 -0.10    -2.32
survey1      8 4 19.00  0.00   19.0   19.00  0.00  19  19     0   NaN      NaN
survey2      9 4  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
ai_manip    10 4 65.25 33.67   72.0   65.25 24.46  19  98    79 -0.40    -1.88
condition   11 4  1.00  0.00    1.0    1.00  0.00   1   1     0   NaN      NaN
             se
id         8.05
identity   7.11
consent    0.29
age        8.63
race       0.63
gender     0.00
manip_out  6.98
survey1    0.00
survey2    0.00
ai_manip  16.83
condition  0.00
------------------------------------------------------------ 
survey1: 20
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   54 NA     54      54   0  54  54     0   NA       NA NA
identity     2 1   15 NA     15      15   0  15  15     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   32 NA     32      32   0  32  32     0   NA       NA NA
race         5 1    6 NA      6       6   0   6   6     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   20 NA     20      20   0  20  20     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   31 NA     31      31   0  31  31     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 21
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 81.0 25.46   81.0    81.0 26.69  63  99    36    0    -2.75
identity     2 2 49.0 59.40   49.0    49.0 62.27   7  91    84    0    -2.75
consent      3 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
age          4 2 37.5 20.51   37.5    37.5 21.50  23  52    29    0    -2.75
race         5 2  4.5  2.12    4.5     4.5  2.22   3   6     3    0    -2.75
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 49.0  7.07   49.0    49.0  7.41  44  54    10    0    -2.75
survey1      8 2 21.0  0.00   21.0    21.0  0.00  21  21     0  NaN      NaN
survey2      9 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
ai_manip    10 2 59.0 45.25   59.0    59.0 47.44  27  91    64    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id        18.0
identity  42.0
consent    0.5
age       14.5
race       1.5
gender     0.0
manip_out  5.0
survey1    0.0
survey2    0.5
ai_manip  32.0
condition  0.0
------------------------------------------------------------ 
survey1: 22
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   77 NA     77      77   0  77  77     0   NA       NA NA
identity     2 1   23 NA     23      23   0  23  23     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   37 NA     37      37   0  37  37     0   NA       NA NA
race         5 1    4 NA      4       4   0   4   4     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   22 NA     22      22   0  22  22     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   60 NA     60      60   0  60  60     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 23
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   96 NA     96      96   0  96  96     0   NA       NA NA
identity     2 1    6 NA      6       6   0   6   6     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   45 NA     45      45   0  45  45     0   NA       NA NA
race         5 1    4 NA      4       4   0   4   4     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   23 NA     23      23   0  23  23     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   93 NA     93      93   0  93  93     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 24
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   76 NA     76      76   0  76  76     0   NA       NA NA
identity     2 1   84 NA     84      84   0  84  84     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   44 NA     44      44   0  44  44     0   NA       NA NA
race         5 1    6 NA      6       6   0   6   6     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   55 NA     55      55   0  55  55     0   NA       NA NA
survey1      8 1   24 NA     24      24   0  24  24     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   44 NA     44      44   0  44  44     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 25
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 68.0 16.97   68.0    68.0 17.79  56  80    24    0    -2.75
identity     2 2 61.5 21.92   61.5    61.5 22.98  46  77    31    0    -2.75
consent      3 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
age          4 2 61.0 32.53   61.0    61.0 34.10  38  84    46    0    -2.75
race         5 2  5.0  1.41    5.0     5.0  1.48   4   6     2    0    -2.75
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 52.5  2.12   52.5    52.5  2.22  51  54     3    0    -2.75
survey1      8 2 25.0  0.00   25.0    25.0  0.00  25  25     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 47.0  9.90   47.0    47.0 10.38  40  54    14    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id        12.0
identity  15.5
consent    0.0
age       23.0
race       1.0
gender     0.0
manip_out  1.5
survey1    0.0
survey2    0.0
ai_manip   7.0
condition  0.0
------------------------------------------------------------ 
survey1: 26
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   74 NA     74      74   0  74  74     0   NA       NA NA
identity     2 1   96 NA     96      96   0  96  96     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   63 NA     63      63   0  63  63     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   63 NA     63      63   0  63  63     0   NA       NA NA
survey1      8 1   26 NA     26      26   0  26  26     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   84 NA     84      84   0  84  84     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 27
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 63.5  7.78   63.5    63.5  8.15  58  69    11    0    -2.75
identity     2 2 52.0 25.46   52.0    52.0 26.69  34  70    36    0    -2.75
consent      3 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
age          4 2 44.5 13.44   44.5    44.5 14.08  35  54    19    0    -2.75
race         5 2  3.0  0.00    3.0     3.0  0.00   3   3     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 41.5  0.71   41.5    41.5  0.74  41  42     1    0    -2.75
survey1      8 2 27.0  0.00   27.0    27.0  0.00  27  27     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 71.0 32.53   71.0    71.0 34.10  48  94    46    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id         5.5
identity  18.0
consent    0.5
age        9.5
race       0.0
gender     0.0
manip_out  0.5
survey1    0.0
survey2    0.0
ai_manip  23.0
condition  0.0
------------------------------------------------------------ 
survey1: 28
          vars n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 3 84.00  2.00     84   84.00  2.97  82  86     4  0.00    -2.33
identity     2 3 65.00 34.04     67   65.00 45.96  30  98    68 -0.06    -2.33
consent      3 3  1.67  0.58      2    1.67  0.00   1   2     1 -0.38    -2.33
age          4 3 48.67 16.80     45   48.67 16.31  34  67    33  0.21    -2.33
race         5 3  4.33  2.89      6    4.33  0.00   1   6     5 -0.38    -2.33
gender       6 3  2.00  0.00      2    2.00  0.00   2   2     0   NaN      NaN
manip_out    7 3 54.33  8.02     55   54.33 10.38  46  62    16 -0.08    -2.33
survey1      8 3 28.00  0.00     28   28.00  0.00  28  28     0   NaN      NaN
survey2      9 3  2.00  0.00      2    2.00  0.00   2   2     0   NaN      NaN
ai_manip    10 3 66.67 29.02     68   66.67 40.03  37  95    58 -0.05    -2.33
condition   11 3  2.00  0.00      2    2.00  0.00   2   2     0   NaN      NaN
             se
id         1.15
identity  19.66
consent    0.33
age        9.70
race       1.67
gender     0.00
manip_out  4.63
survey1    0.00
survey2    0.00
ai_manip  16.76
condition  0.00
------------------------------------------------------------ 
survey1: 29
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 68.5 13.44   68.5    68.5 14.08  59  78    19    0    -2.75
identity     2 2 52.0 33.94   52.0    52.0 35.58  28  76    48    0    -2.75
consent      3 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
age          4 2 40.0  2.83   40.0    40.0  2.97  38  42     4    0    -2.75
race         5 2  3.0  0.00    3.0     3.0  0.00   3   3     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 41.0  0.00   41.0    41.0  0.00  41  41     0  NaN      NaN
survey1      8 2 29.0  0.00   29.0    29.0  0.00  29  29     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 40.5  2.12   40.5    40.5  2.22  39  42     3    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id         9.5
identity  24.0
consent    0.0
age        2.0
race       0.0
gender     0.0
manip_out  0.0
survey1    0.0
survey2    0.0
ai_manip   1.5
condition  0.0
------------------------------------------------------------ 
survey1: 30
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   81 NA     81      81   0  81  81     0   NA       NA NA
identity     2 1   50 NA     50      50   0  50  50     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   35 NA     35      35   0  35  35     0   NA       NA NA
race         5 1    4 NA      4       4   0   4   4     0   NA       NA NA
gender       6 1    1 NA      1       1   0   1   1     0   NA       NA NA
manip_out    7 1   54 NA     54      54   0  54  54     0   NA       NA NA
survey1      8 1   30 NA     30      30   0  30  30     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   97 NA     97      97   0  97  97     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 31
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 68.0  4.24   68.0    68.0  4.45  65  71     6    0    -2.75
identity     2 2 63.5 37.48   63.5    63.5 39.29  37  90    53    0    -2.75
consent      3 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
age          4 2 57.0  8.49   57.0    57.0  8.90  51  63    12    0    -2.75
race         5 2  3.0  0.00    3.0     3.0  0.00   3   3     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 50.0  7.07   50.0    50.0  7.41  45  55    10    0    -2.75
survey1      8 2 31.0  0.00   31.0    31.0  0.00  31  31     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 48.5  2.12   48.5    48.5  2.22  47  50     3    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id         3.0
identity  26.5
consent    0.5
age        6.0
race       0.0
gender     0.0
manip_out  5.0
survey1    0.0
survey2    0.0
ai_manip   1.5
condition  0.0
------------------------------------------------------------ 
survey1: 32
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 63.5  9.19   63.5    63.5  9.64  57  70    13    0    -2.75
identity     2 2 59.5  7.78   59.5    59.5  8.15  54  65    11    0    -2.75
consent      3 2  1.0  0.00    1.0     1.0  0.00   1   1     0  NaN      NaN
age          4 2 27.5  9.19   27.5    27.5  9.64  21  34    13    0    -2.75
race         5 2  6.0  0.00    6.0     6.0  0.00   6   6     0  NaN      NaN
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 52.5  3.54   52.5    52.5  3.71  50  55     5    0    -2.75
survey1      8 2 32.0  0.00   32.0    32.0  0.00  32  32     0  NaN      NaN
survey2      9 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
ai_manip    10 2 26.0 12.73   26.0    26.0 13.34  17  35    18    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
           se
id        6.5
identity  5.5
consent   0.0
age       6.5
race      0.0
gender    0.0
manip_out 2.5
survey1   0.0
survey2   0.5
ai_manip  9.0
condition 0.0
------------------------------------------------------------ 
survey1: 33
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   61 NA     61      61   0  61  61     0   NA       NA NA
identity     2 1   71 NA     71      71   0  71  71     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   35 NA     35      35   0  35  35     0   NA       NA NA
race         5 1    7 NA      7       7   0   7   7     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   53 NA     53      53   0  53  53     0   NA       NA NA
survey1      8 1   33 NA     33      33   0  33  33     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   82 NA     82      82   0  82  82     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 34
          vars n mean    sd median trimmed   mad min max range skew kurtosis
id           1 2 82.5 21.92   82.5    82.5 22.98  67  98    31    0    -2.75
identity     2 2 20.0  2.83   20.0    20.0  2.97  18  22     4    0    -2.75
consent      3 2  1.5  0.71    1.5     1.5  0.74   1   2     1    0    -2.75
age          4 2 35.0  1.41   35.0    35.0  1.48  34  36     2    0    -2.75
race         5 2  5.0  1.41    5.0     5.0  1.48   4   6     2    0    -2.75
gender       6 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
manip_out    7 2 53.5  6.36   53.5    53.5  6.67  49  58     9    0    -2.75
survey1      8 2 34.0  0.00   34.0    34.0  0.00  34  34     0  NaN      NaN
survey2      9 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
ai_manip    10 2 35.5  3.54   35.5    35.5  3.71  33  38     5    0    -2.75
condition   11 2  2.0  0.00    2.0     2.0  0.00   2   2     0  NaN      NaN
            se
id        15.5
identity   2.0
consent    0.5
age        1.0
race       1.0
gender     0.0
manip_out  4.5
survey1    0.0
survey2    0.0
ai_manip   2.5
condition  0.0
------------------------------------------------------------ 
survey1: 35
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   94 NA     94      94   0  94  94     0   NA       NA NA
identity     2 1   64 NA     64      64   0  64  64     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   34 NA     34      34   0  34  34     0   NA       NA NA
race         5 1    7 NA      7       7   0   7   7     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   35 NA     35      35   0  35  35     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   34 NA     34      34   0  34  34     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 36
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   51 NA     51      51   0  51  51     0   NA       NA NA
identity     2 1   38 NA     38      38   0  38  38     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   64 NA     64      64   0  64  64     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   36 NA     36      36   0  36  36     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   26 NA     26      26   0  26  26     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 37
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   88 NA     88      88   0  88  88     0   NA       NA NA
identity     2 1   48 NA     48      48   0  48  48     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   30 NA     30      30   0  30  30     0   NA       NA NA
race         5 1    4 NA      4       4   0   4   4     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   55 NA     55      55   0  55  55     0   NA       NA NA
survey1      8 1   37 NA     37      37   0  37  37     0   NA       NA NA
survey2      9 1    1 NA      1       1   0   1   1     0   NA       NA NA
ai_manip    10 1   23 NA     23      23   0  23  23     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 38
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   55 NA     55      55   0  55  55     0   NA       NA NA
identity     2 1    5 NA      5       5   0   5   5     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   63 NA     63      63   0  63  63     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   38 NA     38      38   0  38  38     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   25 NA     25      25   0  25  25     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 39
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   83 NA     83      83   0  83  83     0   NA       NA NA
identity     2 1   89 NA     89      89   0  89  89     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   51 NA     51      51   0  51  51     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   54 NA     54      54   0  54  54     0   NA       NA NA
survey1      8 1   39 NA     39      39   0  39  39     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   46 NA     46      46   0  46  46     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 40
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   53 NA     53      53   0  53  53     0   NA       NA NA
identity     2 1   60 NA     60      60   0  60  60     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   32 NA     32      32   0  32  32     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   40 NA     40      40   0  40  40     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   55 NA     55      55   0  55  55     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 41
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1   90 NA     90      90   0  90  90     0   NA       NA NA
identity     2 1   86 NA     86      86   0  86  86     0   NA       NA NA
consent      3 1    1 NA      1       1   0   1   1     0   NA       NA NA
age          4 1   49 NA     49      49   0  49  49     0   NA       NA NA
race         5 1    3 NA      3       3   0   3   3     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey1      8 1   41 NA     41      41   0  41  41     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   80 NA     80      80   0  80  80     0   NA       NA NA
condition   11 1    2 NA      2       2   0   2   2     0   NA       NA NA
------------------------------------------------------------ 
survey1: 42
          vars n mean sd median trimmed mad min max range skew kurtosis se
id           1 1    1 NA      1       1   0   1   1     0   NA       NA NA
identity     2 1   41 NA     41      41   0  41  41     0   NA       NA NA
consent      3 1    2 NA      2       2   0   2   2     0   NA       NA NA
age          4 1   99 NA     99      99   0  99  99     0   NA       NA NA
race         5 1    7 NA      7       7   0   7   7     0   NA       NA NA
gender       6 1    2 NA      2       2   0   2   2     0   NA       NA NA
manip_out    7 1   40 NA     40      40   0  40  40     0   NA       NA NA
survey1      8 1   42 NA     42      42   0  42  42     0   NA       NA NA
survey2      9 1    2 NA      2       2   0   2   2     0   NA       NA NA
ai_manip    10 1   52 NA     52      52   0  52  52     0   NA       NA NA
condition   11 1    1 NA      1       1   0   1   1     0   NA       NA NA
describeBy(d, group = "survey2")

 Descriptive statistics by group 
survey2: 1
          vars  n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 18 46.39 31.00   46.0   45.75 39.29   4  99    95  0.20    -1.54
identity     2 18 30.28 24.40   27.0   30.31 36.32   1  59    58  0.02    -2.00
consent      3 18  1.44  0.51    1.0    1.44  0.00   1   2     1  0.21    -2.06
age          4 18 25.28  3.89   25.5   25.44  3.71  18  30    12 -0.31    -1.25
race         5 18  5.94  0.54    6.0    6.00  0.00   4   7     3 -2.19     7.20
gender       6 18  1.94  0.24    2.0    2.00  0.00   1   2     1 -3.56    11.32
manip_out    7 18 38.72 22.27   41.0   39.19 24.46   3  67    64 -0.29    -1.52
survey1      8 18 11.50 10.62   11.0   10.56 13.34   1  37    36  0.92    -0.05
survey2      9 18  1.00  0.00    1.0    1.00  0.00   1   1     0   NaN      NaN
ai_manip    10 18 35.56 28.81   27.5   34.56 35.58   2  85    83  0.31    -1.59
condition   11 18  1.39  0.50    1.0    1.38  0.00   1   2     1  0.42    -1.92
            se
id        7.31
identity  5.75
consent   0.12
age       0.92
race      0.13
gender    0.06
manip_out 5.25
survey1   2.50
survey2   0.00
ai_manip  6.79
condition 0.12
------------------------------------------------------------ 
survey2: 2
          vars  n  mean    sd median trimmed   mad min max range  skew kurtosis
id           1 82 51.40 28.68   52.5   51.62 34.84   1 100    99 -0.04    -1.18
identity     2 82 54.94 28.16   56.0   55.20 37.06   4 100    96 -0.06    -1.34
consent      3 82  1.46  0.50    1.0    1.45  0.00   1   2     1  0.14    -2.00
age          4 82 46.52 14.87   41.0   44.18 10.38  32  99    67  1.30     1.15
race         5 82  4.38  1.61    4.0    4.38  1.48   1   7     6  0.05    -1.35
gender       6 82  1.94  0.24    2.0    2.00  0.00   1   2     1 -3.60    11.11
manip_out    7 82 38.35 16.59   41.0   39.44 17.79   1  68    67 -0.55    -0.61
survey1      8 82 18.10 10.76   16.0   17.62 10.38   2  42    40  0.37    -0.69
survey2      9 82  2.00  0.00    2.0    2.00  0.00   2   2     0   NaN      NaN
ai_manip    10 82 53.66 28.00   52.5   54.03 35.58   1  99    98 -0.06    -1.22
condition   11 82  1.52  0.50    2.0    1.53  0.00   1   2     1 -0.10    -2.01
            se
id        3.17
identity  3.11
consent   0.06
age       1.64
race      0.18
gender    0.03
manip_out 1.83
survey1   1.19
survey2   0.00
ai_manip  3.09
condition 0.06
# also use histograms and scatterplots to examine your continuous variables

d$survey1 <- as.numeric(d$survey1)
Warning: NAs introduced by coercion
hist(d$survey1)

# and table() and cross_cases() to examine your categorical variables
# you may not need the cross_cases code
table(d$survey2)

Between 18 and 30     Older than 30 
               18                82 
table(d$condition)

 1  2 
50 50 
cross_cases(d, survey2, condition)
 condition 
 1   2 
 survey2 
   Between 18 and 30  11 7
   Older than 30  39 43
   #Total cases  50 50
# and boxplot to examine any categorical variables with continuous variables
boxplot(d$survey1~d$survey2)

boxplot(d$survey1~d$condition)

# convert any categorical variables to factors
d$survey2 <- as.factor(d$survey2)
d$condition <- as.factor(d$condition)

Check Your Assumptions

t-Test Assumptions

  • Data values must be independent (independent t-test only) (confirmed by data report)
  • Data obtained via a random sample (confirmed by data report)
  • IV must have two levels (will check below)
  • Dependent variable must be normally distributed (will check below. if issues, note and proceed)
  • Variances of the two groups must be approximately equal, aka ‘homogeneity of variance’. Lacking this makes our results inaccurate (will check below - this really only applies to Student’s t-test, but we’ll check it anyway)

Checking IV levels

# preview the levels and counts for your IV
table(d$survey1, useNA = "always")

2.833333333           3 3.166666667 3.333333333         3.5 3.666666667 
          2          14          19           1           5           2 
3.833333333           4 4.166666667        <NA> 
          4           4           1          48 
table(d$survey2, useNA = "always")

Between 18 and 30     Older than 30              <NA> 
               18                82                 0 
table(d$condition, useNA = "always")

   1    2 <NA> 
  50   50    0 
# note that the table() output shows you exactly how the levels of your variable are written. when recoding, make sure you are spelling them exactly as they appear

# to drop levels from your variable
# this subsets the data and says that any participant who is coded as 'BAD' should be removed
# d <- subset(d, IV != "BAD")

# table(d$iv, useNA = "always")

# to combine levels
# this says that where any participant is coded as 'BAD' it should be replaced by 'GOOD'
# d$iv_rc[d$iv == "BAD"] <- "GOOD"

# table(d$iv, useNA = "always")

# check your variable types
str(d)
'data.frame':   100 obs. of  11 variables:
 $ id       : int  1 2 3 4 5 6 7 8 9 10 ...
 $ identity : chr  "I'm a 99-year-old multiracial woman, reflecting on a life filled with both achievement and loneliness. I’m pass"| __truncated__ "I’m 38, a Latina woman navigating the challenges of single parenthood while juggling a demanding job in marketi"| __truncated__ "I’m a 32-year-old White woman, navigating life with a mix of ambition and anxiety. I work in marketing but ofte"| __truncated__ "I’m a 25-year-old white woman navigating life in a small town. I love painting, but I often feel lonely and str"| __truncated__ ...
 $ consent  : chr  "I understand these instructions." "I understand these instructions." "I understand the instructions." "I understand the instructions." ...
 $ age      : int  99 38 32 25 38 41 60 18 58 39 ...
 $ race     : int  7 4 6 6 2 4 3 6 3 6 ...
 $ gender   : int  2 2 2 2 2 2 2 2 1 2 ...
 $ manip_out: chr  "I enter the room, my heart a bit heavier than usual, but I remind myself that this is an opportunity to engage."| __truncated__ "Upon entering the assigned room, I take a moment to orient myself and breathe deeply. The atmosphere is calm, f"| __truncated__ "Entering the room, I glance around, taking in the cozy atmosphere. The space has a warm vibe, with comfortable "| __truncated__ "*Enters the room and picks up the sheet of paper.* \n\nI scan the list of games and conversation starters. I de"| __truncated__ ...
 $ survey1  : num  4.17 3 3.5 2.83 3.17 ...
 $ survey2  : Factor w/ 2 levels "Between 18 and 30",..: 2 2 2 1 2 2 2 1 2 2 ...
 $ ai_manip : chr  "I'm a 99-year-old multiracial woman, reflecting on a life filled with both achievement and loneliness. I’m pass"| __truncated__ "38  \nYour satisfaction with life score was 3, 3, 4, 3, 2, 3  \nYour age was Older than 30" "32  \nYour satisfaction with life score was 4, 3, 4, 3, 2, 5  \nYour age was Older than 30" "Thank you for participating! Although we said this was a study of subjective well-being, we are really interest"| __truncated__ ...
 $ condition: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
# make sure that your IV is recognized as a factor by R
# if you created a new _rc variable make sure to use that one instead
# d$iv <- as.factor(d$iv)

Testing Homogeneity of Variance with Levene’s Test

We can test whether the variances of our two groups are equal using Levene’s test. The null hypothesis is that the variance between the two groups is equal, which is the result we want. So when running Levene’s test we’re hoping for a non-significant result!

# use the leveneTest() command from the car package to test homogeneity of variance
# uses the same 'formula' setup that we'll use for our t-test: formula is y~x, where y is our DV and x is our IV
leveneTest(survey1~condition, data = d)
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  1.4768   0.23
      50               
leveneTest(survey1~survey2, data = d)
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  0.4836   0.49
      50               

Issues with My Data

Since age is already converted into a categorical variable, we did not need to combine or drop any variables for this test. I confirmed significant homogeneity of variance using Levene’s Test (p = .49) for survey1 and survey2, and (p = .23) for survey1 and condition. I also confirmed that my dependent variable is normally distributed (skew and kurtosis between -2 and +2).

Run Your Analysis

Run a t-Test

# very simple! we specify the dataframe alongside the variables instead of having a separate argument for the dataframe like we did for leveneTest()
t_output <- t.test(d$survey1~d$condition)
t_output2 <- t.test(d$survey1~d$survey2) 

View Test Output

t_output

    Welch Two Sample t-test

data:  d$survey1 by d$condition
t = 6.1787, df = 49, p-value = 1.24e-07
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
 0.2091755 0.4108245
sample estimates:
mean in group 1 mean in group 2 
           3.31            3.00 
t_output2

    Welch Two Sample t-test

data:  d$survey1 by d$survey2
t = -2.1207, df = 18.306, p-value = 0.04786
alternative hypothesis: true difference in means between group Between 18 and 30 and group Older than 30 is not equal to 0
95 percent confidence interval:
 -0.446279426 -0.002353242
sample estimates:
mean in group Between 18 and 30     mean in group Older than 30 
                       3.121212                        3.345528 

Calculate Cohen’s d

# once again, we use our formula to calculate cohen's d
d_output <- cohen.d(d$survey1~d$survey2)
d_output2 <- cohen.d(d$survey1~d$condition)

View Effect Size

  • Trivial: < .2
  • Small: between .2 and .5
  • Medium: between .5 and .8
  • Large: > .8
d_output

Cohen's d

d estimate: -0.6521474 (medium)
95 percent confidence interval:
      lower       upper 
-1.34615829  0.04186344 
d_output2

Cohen's d

d estimate: 0.8826772 (large)
95 percent confidence interval:
     lower      upper 
-0.5761114  2.3414658 

Write Up

I tested my hypotheses that participants with more social media use will have lower life satisfaction, and that younger participants (18-30 years old) will have lower life satisfaction than older participants (older than 30 years old). Since age was already converted into a categorical variable, we did not need to combine or drop any variables for this test. I confirmed significant homogeneity of variance using Levene’s Test (p = .23) for survey1 and condition, and (p = .49) for survey1 and survey2. I also confirmed that my dependent variable is normally distributed (skew and kurtosis between -2 and +2). I then conducted the Welch’s Two-Sample T-test. Our data met all of the assumptions of a t-test, but we did not find a significant difference between survey1 and condition…

survey1 and survey2: t(49) = 6.179, p = .00000024, d = -.652, 95% [-1.35, .042]. My effect size was medium according to Cohen (1988).

survey1 and condition: t(18.306) = -2.121, p = .048, d = .883, 95% [-.576, 2.341]. My effect size was large according to Cohen (1988).

References

Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic.