Prompt 1:

Please write R code to create a predictive model that predicts the probability of attrition. The goal is to help predict attrition for employees. I have also provided a glimpse of the dataset as well as a skim of the dataset.

attrition_raw_tbl %>% glimpse() Rows: 1,470 Columns: 35 $ Age 41, 49, 37, 33, 27, 32, 59, 30, 38, 36, 35, 29, 31,… $ Attrition “Yes”, “No”, “Yes”, “No”, “No”, “No”, “No”, “No”, “… $ BusinessTravel ”Travel_Rarely”, “Travel_Frequently”, “Travel_Rarel… $ DailyRate 1102, 279, 1373, 1392, 591, 1005, 1324, 1358, 216, … $ Department ”Sales”, “Research & Development”, “Research & Deve… $ DistanceFromHome 1, 8, 2, 3, 2, 2, 3, 24, 23, 27, 16, 15, 26, 19, 24… $ Education 2, 1, 2, 4, 1, 2, 3, 1, 3, 3, 3, 2, 1, 2, 3, 4, 2, … $ EducationField ”Life Sciences”, “Life Sciences”, “Other”, “Life Sc… $ EmployeeCount 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, … $ EmployeeNumber 1, 2, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 1… $ EnvironmentSatisfaction 2, 3, 4, 4, 1, 4, 3, 4, 4, 3, 1, 4, 1, 2, 3, 2, 1, … $ Gender ”Female”, “Male”, “Male”, “Female”, “Male”, “Male”,… $ HourlyRate 94, 61, 92, 56, 40, 79, 81, 67, 44, 94, 84, 49, 31,… $ JobInvolvement 3, 2, 2, 3, 3, 3, 4, 3, 2, 3, 4, 2, 3, 3, 2, 4, 4, … $ JobLevel 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 1, 3, 1, … $ JobRole “Sales Executive”, “Research Scientist”, “Laborator… $ JobSatisfaction 4, 2, 3, 3, 2, 4, 1, 3, 3, 3, 2, 3, 3, 4, 3, 1, 2, … $ MaritalStatus ”Single”, “Married”, “Single”, “Married”, “Married”… $ MonthlyIncome 5993, 5130, 2090, 2909, 3468, 3068, 2670, 2693, 952… $ MonthlyRate 19479, 24907, 2396, 23159, 16632, 11864, 9964, 1333… $ NumCompaniesWorked 8, 1, 6, 1, 9, 0, 4, 1, 0, 6, 0, 0, 1, 0, 5, 1, 0, … $ Over18 “Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “… $ OverTime ”Yes”, “No”, “Yes”, “Yes”, “No”, “No”, “Yes”, “No”,… $ PercentSalaryHike 11, 23, 15, 11, 12, 13, 20, 22, 21, 13, 13, 12, 17,… $ PerformanceRating 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, … $ RelationshipSatisfaction 1, 4, 2, 3, 4, 3, 1, 2, 2, 2, 3, 4, 4, 3, 2, 3, 4, … $ StandardHours 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80,… $ StockOptionLevel 0, 1, 0, 0, 1, 0, 3, 1, 0, 2, 1, 0, 1, 1, 0, 1, 2, … $ TotalWorkingYears 8, 10, 7, 8, 6, 8, 12, 1, 10, 17, 6, 10, 5, 3, 6, 1… $ TrainingTimesLastYear 0, 3, 3, 3, 3, 2, 3, 2, 2, 3, 5, 3, 1, 2, 4, 1, 5, … $ WorkLifeBalance 1, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, … $ YearsAtCompany 6, 10, 0, 8, 2, 7, 1, 1, 9, 7, 5, 9, 5, 2, 4, 10, 6… $ YearsInCurrentRole 4, 7, 0, 7, 2, 7, 0, 0, 7, 7, 4, 5, 2, 2, 2, 9, 2, … $ YearsSinceLastPromotion 0, 1, 0, 3, 2, 3, 0, 0, 1, 7, 0, 0, 4, 1, 0, 8, 0, … $ YearsWithCurrManager 5, 7, 0, 0, 2, 6, 0, 0, 8, 7, 3, 8, 3, 2, 3, 8, 5, …

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(skimr)
library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## 
## Attaching package: 'h2o'
## 
## The following objects are masked from 'package:lubridate':
## 
##     day, hour, month, week, year
## 
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## 
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(xgboost)
## 
## Attaching package: 'xgboost'
## 
## The following object is masked from 'package:dplyr':
## 
##     slice
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.6     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.2
## ✔ recipes      1.1.1     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ xgboost::slice()  masks dplyr::slice()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
attrition_raw_tbl <- read_csv("../00_data/WA_Fn-UseC_-HR-Employee-Attrition.csv")
## Rows: 1470 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (9): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (26): Age, DailyRate, DistanceFromHome, Education, EmployeeCount, Employ...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# If data is not sensitive:
attrition_raw_tbl %>% glimpse()
## Rows: 1,470
## Columns: 35
## $ Age                      <dbl> 41, 49, 37, 33, 27, 32, 59, 30, 38, 36, 35, 2…
## $ Attrition                <chr> "Yes", "No", "Yes", "No", "No", "No", "No", "…
## $ BusinessTravel           <chr> "Travel_Rarely", "Travel_Frequently", "Travel…
## $ DailyRate                <dbl> 1102, 279, 1373, 1392, 591, 1005, 1324, 1358,…
## $ Department               <chr> "Sales", "Research & Development", "Research …
## $ DistanceFromHome         <dbl> 1, 8, 2, 3, 2, 2, 3, 24, 23, 27, 16, 15, 26, …
## $ Education                <dbl> 2, 1, 2, 4, 1, 2, 3, 1, 3, 3, 3, 2, 1, 2, 3, …
## $ EducationField           <chr> "Life Sciences", "Life Sciences", "Other", "L…
## $ EmployeeCount            <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ EmployeeNumber           <dbl> 1, 2, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16,…
## $ EnvironmentSatisfaction  <dbl> 2, 3, 4, 4, 1, 4, 3, 4, 4, 3, 1, 4, 1, 2, 3, …
## $ Gender                   <chr> "Female", "Male", "Male", "Female", "Male", "…
## $ HourlyRate               <dbl> 94, 61, 92, 56, 40, 79, 81, 67, 44, 94, 84, 4…
## $ JobInvolvement           <dbl> 3, 2, 2, 3, 3, 3, 4, 3, 2, 3, 4, 2, 3, 3, 2, …
## $ JobLevel                 <dbl> 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 1, …
## $ JobRole                  <chr> "Sales Executive", "Research Scientist", "Lab…
## $ JobSatisfaction          <dbl> 4, 2, 3, 3, 2, 4, 1, 3, 3, 3, 2, 3, 3, 4, 3, …
## $ MaritalStatus            <chr> "Single", "Married", "Single", "Married", "Ma…
## $ MonthlyIncome            <dbl> 5993, 5130, 2090, 2909, 3468, 3068, 2670, 269…
## $ MonthlyRate              <dbl> 19479, 24907, 2396, 23159, 16632, 11864, 9964…
## $ NumCompaniesWorked       <dbl> 8, 1, 6, 1, 9, 0, 4, 1, 0, 6, 0, 0, 1, 0, 5, …
## $ Over18                   <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", …
## $ OverTime                 <chr> "Yes", "No", "Yes", "Yes", "No", "No", "Yes",…
## $ PercentSalaryHike        <dbl> 11, 23, 15, 11, 12, 13, 20, 22, 21, 13, 13, 1…
## $ PerformanceRating        <dbl> 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, …
## $ RelationshipSatisfaction <dbl> 1, 4, 2, 3, 4, 3, 1, 2, 2, 2, 3, 4, 4, 3, 2, …
## $ StandardHours            <dbl> 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 8…
## $ StockOptionLevel         <dbl> 0, 1, 0, 0, 1, 0, 3, 1, 0, 2, 1, 0, 1, 1, 0, …
## $ TotalWorkingYears        <dbl> 8, 10, 7, 8, 6, 8, 12, 1, 10, 17, 6, 10, 5, 3…
## $ TrainingTimesLastYear    <dbl> 0, 3, 3, 3, 3, 2, 3, 2, 2, 3, 5, 3, 1, 2, 4, …
## $ WorkLifeBalance          <dbl> 1, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, …
## $ YearsAtCompany           <dbl> 6, 10, 0, 8, 2, 7, 1, 1, 9, 7, 5, 9, 5, 2, 4,…
## $ YearsInCurrentRole       <dbl> 4, 7, 0, 7, 2, 7, 0, 0, 7, 7, 4, 5, 2, 2, 2, …
## $ YearsSinceLastPromotion  <dbl> 0, 1, 0, 3, 2, 3, 0, 0, 1, 7, 0, 0, 4, 1, 0, …
## $ YearsWithCurrManager     <dbl> 5, 7, 0, 0, 2, 6, 0, 0, 8, 7, 3, 8, 3, 2, 3, …
# Load libraries

# Set seed for reproducibility
set.seed(123)

# Step 1: Prepare the data
attrition_tbl <- attrition_raw_tbl %>%
  mutate(Attrition = as.factor(Attrition))  # Ensure target is a factor

# Step 2: Split the data
attrition_split <- initial_split(attrition_tbl, prop = 0.8, strata = Attrition)
attrition_train <- training(attrition_split)
attrition_test <- testing(attrition_split)

# Step 3: Preprocessing recipe
attrition_recipe <- recipe(Attrition ~ ., data = attrition_train) %>%
  update_role(EmployeeNumber, new_role = "ID") %>%  # Don't use ID in modeling
  step_rm(EmployeeCount, Over18, StandardHours) %>% # Remove constant/uninformative features
  step_dummy(all_nominal_predictors()) %>%          # Convert categorical to dummies
  step_zv(all_predictors()) %>%                     # Remove zero variance predictors
  step_normalize(all_numeric_predictors())          # Normalize numeric features

# Step 4: Define the model (logistic regression)
log_reg_spec <- logistic_reg() %>%
  set_engine("glm") %>%
  set_mode("classification")

# Step 5: Create the workflow
attrition_workflow <- workflow() %>%
  add_model(log_reg_spec) %>%
  add_recipe(attrition_recipe)

# Step 6: Train the model
attrition_fit <- fit(attrition_workflow, data = attrition_train)

# Step 7: Predict probabilities on the test set
attrition_predictions <- predict(attrition_fit, attrition_test, type = "prob") %>%
  bind_cols(attrition_test %>% select(Attrition))

# Step 8: View performance (ROC AUC)
roc_auc(attrition_predictions, truth = Attrition, .pred_Yes)
## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 roc_auc binary         0.112

Prompt 2

Please also create an h2o model

# Load libraries
library(tidyverse)
library(tidymodels)
library(h2o)

# Initialize H2O
h2o.init()
## 
## H2O is not running yet, starting it now...
## 
## Note:  In case of errors look at the following log files:
##     /var/folders/4c/kdd2fy0s48v8h8jvs3y0drph0000gn/T//Rtmpd0ogcI/file2bdf17fe3213/h2o_bradymartin_started_from_r.out
##     /var/folders/4c/kdd2fy0s48v8h8jvs3y0drph0000gn/T//Rtmpd0ogcI/file2bdf318989b3/h2o_bradymartin_started_from_r.err
## 
## 
## Starting H2O JVM and connecting: .. Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 seconds 879 milliseconds 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    1 year, 4 months and 16 days 
##     H2O cluster name:           H2O_started_from_R_bradymartin_ggl822 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.54 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.4.2 (2024-10-31)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (1 year, 4 months and 16 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
# Set seed for reproducibility
set.seed(123)

# Step 1: Prepare the data
attrition_tbl <- attrition_raw_tbl %>%
  mutate(Attrition = as.factor(Attrition))  # Ensure target is a factor

# Step 2: Split the data
attrition_split <- initial_split(attrition_tbl, prop = 0.8, strata = Attrition)
attrition_train <- training(attrition_split)
attrition_test <- testing(attrition_split)

# Step 3: Preprocessing recipe
attrition_recipe <- recipe(Attrition ~ ., data = attrition_train) %>%
  update_role(EmployeeNumber, new_role = "ID") %>%  # Exclude ID
  step_rm(EmployeeCount, Over18, StandardHours) %>%  # Remove constant features
  step_dummy(all_nominal_predictors()) %>%           # Convert categorical to dummies
  step_zv(all_predictors()) %>%                      # Remove zero variance predictors
  step_normalize(all_numeric_predictors())           # Normalize numeric features

# Step 4: Prepare the training and testing data
prepped_data <- prep(attrition_recipe, training = attrition_train)
train_data <- bake(prepped_data, new_data = NULL)
test_data <- bake(prepped_data, new_data = attrition_test)

# Convert data to H2O format
train_h2o <- as.h2o(train_data)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
test_h2o <- as.h2o(test_data)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
# Define target and predictors
target <- "Attrition"
predictors <- setdiff(names(train_h2o), target)

Prompt 3

I recieved the following error please adjust the code to fix this error “Error in automl(max_runtime_secs = 300, seed = 123, nfolds = 5) : could not find function”automl”

I recived the response “The error occurs because the function automl() does not exist in H2O. The correct function is h2o.automl().”

# Step 5: Train the H2O model (AutoML for best model selection)
h2o_automl_model <- h2o.automl(
  x = predictors,
  y = target,
  training_frame = train_h2o,
  max_models = 10,
  seed = 123,
  stopping_metric = "AUC"
)
##   |                                                                              |                                                                      |   0%  |                                                                              |==                                                                    |   3%
## 21:39:42.597: AutoML: XGBoost is not available; skipping it.  |                                                                              |==========                                                            |  15%  |                                                                              |================                                                      |  24%  |                                                                              |=================================                                     |  47%  |                                                                              |======================================================================| 100%
# View the leaderboard
print(h2o_automl_model@leaderboard)
##                                                  model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_1_AutoML_1_20250506_213942 0.8267276 0.3264250
## 2                          GLM_1_AutoML_1_20250506_213942 0.8249353 0.3305197
## 3    StackedEnsemble_AllModels_1_AutoML_1_20250506_213942 0.8186140 0.3281250
## 4                          GBM_1_AutoML_1_20250506_213942 0.7903828 0.3574247
## 5                          GBM_2_AutoML_1_20250506_213942 0.7841662 0.3588757
## 6             GBM_grid_1_AutoML_1_20250506_213942_model_1 0.7805682 0.3593458
##       aucpr mean_per_class_error      rmse        mse
## 1 0.6229002            0.2344409 0.3069755 0.09423394
## 2 0.6115539            0.2608718 0.3097773 0.09596200
## 3 0.6087349            0.2603647 0.3085749 0.09521849
## 4 0.5335186            0.3051611 0.3264897 0.10659551
## 5 0.5238853            0.2921107 0.3247969 0.10549304
## 6 0.5125909            0.2988130 0.3267623 0.10677362
## 
## [12 rows x 7 columns]
# Best model
best_model <- h2o_automl_model@leader

# Step 6: Predict on test set
h2o_predictions <- h2o.predict(best_model, test_h2o)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
# View predictions
head(h2o_predictions)
##   predict        No         Yes
## 1      No 0.9713438 0.028656247
## 2      No 0.9076311 0.092368926
## 3      No 0.9397981 0.060201878
## 4      No 0.9505561 0.049443921
## 5     Yes 0.7018224 0.298177635
## 6      No 0.9981058 0.001894184
# Step 7: Predict on new data (optional)
# Example using the first 5 rows from test data
new_data_h2o <- as.h2o(test_data[1:5, ])
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
new_data_predictions <- h2o.predict(best_model, new_data_h2o)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
print(new_data_predictions)
##   predict        No        Yes
## 1      No 0.9713438 0.02865625
## 2      No 0.9076311 0.09236893
## 3      No 0.9397981 0.06020188
## 4      No 0.9505561 0.04944392
## 5     Yes 0.7018224 0.29817763
## 
## [5 rows x 3 columns]
# Shutdown H2O (optional, after all processes are complete)
h2o.shutdown(prompt = FALSE)