#survival

library(survival)
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma
datapath="inflation rates.csv"
data1=read.csv("inflation rates.CSV")
data1
##     Year     Month Annual.Average.Inflation X12.Month.Inflation
## 1   2025     April                     3.74                4.11
## 2   2025     March                     3.81                3.62
## 3   2025  February                     3.98                3.45
## 4   2025   January                     4.21                3.28
## 5   2024  December                     4.50                2.99
## 6   2024  November                     4.81                2.75
## 7   2024   October                     5.14                2.72
## 8   2024 September                     5.50                3.56
## 9   2024    August                     5.77                4.36
## 10  2024      July                     5.97                4.31
## 11  2024      June                     4.64                6.22
## 12  2024       May                     6.49                5.10
## 13  2024     April                     6.73                5.00
## 14  2024     March                     6.97                5.70
## 15  2024  February                     7.26                6.31
## 16  2024   January                     7.50                6.85
## 17  2023  December                     7.67                6.63
## 18  2023  November                     7.87                6.80
## 19  2023   October                     8.10                6.92
## 20  2023 September                     8.32                6.78
## 21  2023    August                     8.52                6.73
## 22  2023      July                     8.68                7.28
## 23  2023      June                     8.77                7.88
## 24  2023       May                     8.78                8.03
## 25  2023     April                     8.71                7.90
## 26  2023     March                     8.59                9.19
## 27  2023  February                     8.30                9.23
## 28  2023   January                     7.95                8.98
## 29  2022  December                     7.66                9.06
## 30  2022  November                     7.38                9.48
## 31  2022   October                     7.48                9.59
## 32  2022 September                     6.81                9.18
## 33  2022    August                     6.61                8.53
## 34  2022      July                     6.45                8.32
## 35  2022      June                     6.29                7.91
## 36  2022       May                     6.16                7.08
## 37  2022     April                     6.05                6.47
## 38  2022     March                     6.29                5.56
## 39  2022  February                     6.23                5.08
## 40  2022   January                     6.08                5.39
## 41  2021  December                     5.62                5.73
## 42  2021  November                     6.10                5.80
## 43  2021   October                     6.07                6.45
## 44  2021 September                     5.35                6.91
## 45  2021    August                     5.71                6.57
## 46  2021      July                     5.53                6.55
## 47  2021      June                     5.35                6.32
## 48  2021       May                     5.20                5.87
## 49  2021     April                     4.66                5.76
## 50  2021     March                     5.17                5.90
## 51  2021  February                     5.16                5.78
## 52  2021   January                     5.74                5.69
## 53  2020  December                     5.41                5.62
## 54  2020  November                     5.53                5.33
## 55  2020   October                     5.67                4.84
## 56  2020 September                     5.79                4.20
## 57  2020    August                     5.87                4.36
## 58  2020      July                     6.01                4.36
## 59  2020      June                     6.16                4.59
## 60  2020       May                     6.18                5.33
## 61  2020     April                     6.03                6.01
## 62  2020     March                     5.84                5.84
## 63  2020  February                     5.72                7.17
## 64  2020   January                     5.29                5.78
## 65  2019  December                     5.20                5.82
## 66  2019  November                     5.19                5.56
## 67  2019   October                     5.19                4.95
## 68  2019 September                     5.24                3.83
## 69  2019    August                     5.40                5.00
## 70  2019      July                     5.32                6.27
## 71  2019      June                     5.16                5.70
## 72  2019       May                     5.04                4.49
## 73  2019     April                     4.91                6.58
## 74  2019     April                     4.91                6.58
## 75  2019     March                     4.67                4.35
## 76  2019  February                     4.65                4.14
## 77  2019   January                     4.68                4.70
## 78  2018  December                     4.69                5.71
## 79  2018  November                     4.59                5.58
## 80  2018   October                     4.53                5.53
## 81  2018 September                     4.53                5.70
## 82  2018    August                     4.63                4.04
## 83  2018      July                     4.95                4.35
## 84  2018      June                     5.20                4.28
## 85  2018       May                     5.61                3.95
## 86  2018     April                     6.24                3.73
## 87  2018     March                     6.89                4.18
## 88  2018  February                     7.40                4.46
## 89  2018   January                     7.79                4.83
## 90  2017  December                     7.98                4.50
## 91  2017  November                     8.15                4.73
## 92  2017   October                     8.33                5.72
## 93  2017 September                     8.40                7.06
## 94  2017    August                     8.36                8.04
## 95  2017      July                     8.21                7.47
## 96  2017      June                     8.13                9.21
## 97  2017       May                     7.84               11.70
## 98  2017     April                     7.20               11.48
## 99  2017     March                     6.76               10.28
## 100 2017  February                     6.43                9.04
## 101 2017   January                     6.26                6.99
## 102 2016  December                     6.30                6.35
## 103 2016  November                     6.43                6.68
## 104 2016   October                     6.48                6.47
## 105 2016 September                     6.50                6.34
## 106 2016    August                     6.47                6.26
## 107 2016      July                     6.44                6.40
## 108 2016      June                     6.46                5.80
## 109 2016       May                     6.59                5.00
## 110 2016     April                     6.72                5.27
## 111 2016     March                     6.88                6.45
## 112 2016  February                     6.87                6.84
## 113 2016   January                     6.77                7.78
## 114 2015  December                     6.58                8.01
## 115 2015  November                     6.42                7.32
## 116 2015   October                     6.31                6.72
## 117 2015 September                     6.29                5.97
## 118 2015    August                     6.34                5.84
## 119 2015      July                     6.54                6.62
D1=data1$X12.Month.Inflation;D1
##   [1]  4.11  3.62  3.45  3.28  2.99  2.75  2.72  3.56  4.36  4.31  6.22  5.10
##  [13]  5.00  5.70  6.31  6.85  6.63  6.80  6.92  6.78  6.73  7.28  7.88  8.03
##  [25]  7.90  9.19  9.23  8.98  9.06  9.48  9.59  9.18  8.53  8.32  7.91  7.08
##  [37]  6.47  5.56  5.08  5.39  5.73  5.80  6.45  6.91  6.57  6.55  6.32  5.87
##  [49]  5.76  5.90  5.78  5.69  5.62  5.33  4.84  4.20  4.36  4.36  4.59  5.33
##  [61]  6.01  5.84  7.17  5.78  5.82  5.56  4.95  3.83  5.00  6.27  5.70  4.49
##  [73]  6.58  6.58  4.35  4.14  4.70  5.71  5.58  5.53  5.70  4.04  4.35  4.28
##  [85]  3.95  3.73  4.18  4.46  4.83  4.50  4.73  5.72  7.06  8.04  7.47  9.21
##  [97] 11.70 11.48 10.28  9.04  6.99  6.35  6.68  6.47  6.34  6.26  6.40  5.80
## [109]  5.00  5.27  6.45  6.84  7.78  8.01  7.32  6.72  5.97  5.84  6.62
hist(D1)

barplot(D1,col='RED',xlab = 'time',ylab = 'rates', main = 'inflation rates in kenya')

parmfrow=c(1,1)

#fGARCH

library(fGarch)
## NOTE: Packages 'fBasics', 'timeDate', and 'timeSeries' are no longer
## attached to the search() path when 'fGarch' is attached.
## 
## If needed attach them yourself in your R script by e.g.,
##         require("timeSeries")
library(timeSeries)
## Loading required package: timeDate
## 
## Attaching package: 'timeSeries'
## The following objects are masked from 'package:graphics':
## 
##     lines, points
import= read.csv("inflation rates.csv");import
##     Year     Month Annual.Average.Inflation X12.Month.Inflation
## 1   2025     April                     3.74                4.11
## 2   2025     March                     3.81                3.62
## 3   2025  February                     3.98                3.45
## 4   2025   January                     4.21                3.28
## 5   2024  December                     4.50                2.99
## 6   2024  November                     4.81                2.75
## 7   2024   October                     5.14                2.72
## 8   2024 September                     5.50                3.56
## 9   2024    August                     5.77                4.36
## 10  2024      July                     5.97                4.31
## 11  2024      June                     4.64                6.22
## 12  2024       May                     6.49                5.10
## 13  2024     April                     6.73                5.00
## 14  2024     March                     6.97                5.70
## 15  2024  February                     7.26                6.31
## 16  2024   January                     7.50                6.85
## 17  2023  December                     7.67                6.63
## 18  2023  November                     7.87                6.80
## 19  2023   October                     8.10                6.92
## 20  2023 September                     8.32                6.78
## 21  2023    August                     8.52                6.73
## 22  2023      July                     8.68                7.28
## 23  2023      June                     8.77                7.88
## 24  2023       May                     8.78                8.03
## 25  2023     April                     8.71                7.90
## 26  2023     March                     8.59                9.19
## 27  2023  February                     8.30                9.23
## 28  2023   January                     7.95                8.98
## 29  2022  December                     7.66                9.06
## 30  2022  November                     7.38                9.48
## 31  2022   October                     7.48                9.59
## 32  2022 September                     6.81                9.18
## 33  2022    August                     6.61                8.53
## 34  2022      July                     6.45                8.32
## 35  2022      June                     6.29                7.91
## 36  2022       May                     6.16                7.08
## 37  2022     April                     6.05                6.47
## 38  2022     March                     6.29                5.56
## 39  2022  February                     6.23                5.08
## 40  2022   January                     6.08                5.39
## 41  2021  December                     5.62                5.73
## 42  2021  November                     6.10                5.80
## 43  2021   October                     6.07                6.45
## 44  2021 September                     5.35                6.91
## 45  2021    August                     5.71                6.57
## 46  2021      July                     5.53                6.55
## 47  2021      June                     5.35                6.32
## 48  2021       May                     5.20                5.87
## 49  2021     April                     4.66                5.76
## 50  2021     March                     5.17                5.90
## 51  2021  February                     5.16                5.78
## 52  2021   January                     5.74                5.69
## 53  2020  December                     5.41                5.62
## 54  2020  November                     5.53                5.33
## 55  2020   October                     5.67                4.84
## 56  2020 September                     5.79                4.20
## 57  2020    August                     5.87                4.36
## 58  2020      July                     6.01                4.36
## 59  2020      June                     6.16                4.59
## 60  2020       May                     6.18                5.33
## 61  2020     April                     6.03                6.01
## 62  2020     March                     5.84                5.84
## 63  2020  February                     5.72                7.17
## 64  2020   January                     5.29                5.78
## 65  2019  December                     5.20                5.82
## 66  2019  November                     5.19                5.56
## 67  2019   October                     5.19                4.95
## 68  2019 September                     5.24                3.83
## 69  2019    August                     5.40                5.00
## 70  2019      July                     5.32                6.27
## 71  2019      June                     5.16                5.70
## 72  2019       May                     5.04                4.49
## 73  2019     April                     4.91                6.58
## 74  2019     April                     4.91                6.58
## 75  2019     March                     4.67                4.35
## 76  2019  February                     4.65                4.14
## 77  2019   January                     4.68                4.70
## 78  2018  December                     4.69                5.71
## 79  2018  November                     4.59                5.58
## 80  2018   October                     4.53                5.53
## 81  2018 September                     4.53                5.70
## 82  2018    August                     4.63                4.04
## 83  2018      July                     4.95                4.35
## 84  2018      June                     5.20                4.28
## 85  2018       May                     5.61                3.95
## 86  2018     April                     6.24                3.73
## 87  2018     March                     6.89                4.18
## 88  2018  February                     7.40                4.46
## 89  2018   January                     7.79                4.83
## 90  2017  December                     7.98                4.50
## 91  2017  November                     8.15                4.73
## 92  2017   October                     8.33                5.72
## 93  2017 September                     8.40                7.06
## 94  2017    August                     8.36                8.04
## 95  2017      July                     8.21                7.47
## 96  2017      June                     8.13                9.21
## 97  2017       May                     7.84               11.70
## 98  2017     April                     7.20               11.48
## 99  2017     March                     6.76               10.28
## 100 2017  February                     6.43                9.04
## 101 2017   January                     6.26                6.99
## 102 2016  December                     6.30                6.35
## 103 2016  November                     6.43                6.68
## 104 2016   October                     6.48                6.47
## 105 2016 September                     6.50                6.34
## 106 2016    August                     6.47                6.26
## 107 2016      July                     6.44                6.40
## 108 2016      June                     6.46                5.80
## 109 2016       May                     6.59                5.00
## 110 2016     April                     6.72                5.27
## 111 2016     March                     6.88                6.45
## 112 2016  February                     6.87                6.84
## 113 2016   January                     6.77                7.78
## 114 2015  December                     6.58                8.01
## 115 2015  November                     6.42                7.32
## 116 2015   October                     6.31                6.72
## 117 2015 September                     6.29                5.97
## 118 2015    August                     6.34                5.84
## 119 2015      July                     6.54                6.62
D2=import$X12.Month.Inflation;D2
##   [1]  4.11  3.62  3.45  3.28  2.99  2.75  2.72  3.56  4.36  4.31  6.22  5.10
##  [13]  5.00  5.70  6.31  6.85  6.63  6.80  6.92  6.78  6.73  7.28  7.88  8.03
##  [25]  7.90  9.19  9.23  8.98  9.06  9.48  9.59  9.18  8.53  8.32  7.91  7.08
##  [37]  6.47  5.56  5.08  5.39  5.73  5.80  6.45  6.91  6.57  6.55  6.32  5.87
##  [49]  5.76  5.90  5.78  5.69  5.62  5.33  4.84  4.20  4.36  4.36  4.59  5.33
##  [61]  6.01  5.84  7.17  5.78  5.82  5.56  4.95  3.83  5.00  6.27  5.70  4.49
##  [73]  6.58  6.58  4.35  4.14  4.70  5.71  5.58  5.53  5.70  4.04  4.35  4.28
##  [85]  3.95  3.73  4.18  4.46  4.83  4.50  4.73  5.72  7.06  8.04  7.47  9.21
##  [97] 11.70 11.48 10.28  9.04  6.99  6.35  6.68  6.47  6.34  6.26  6.40  5.80
## [109]  5.00  5.27  6.45  6.84  7.78  8.01  7.32  6.72  5.97  5.84  6.62
plot(D2)

ts.plot(D2)

log.D2=diff(D2);log.D2
##   [1] -0.49 -0.17 -0.17 -0.29 -0.24 -0.03  0.84  0.80 -0.05  1.91 -1.12 -0.10
##  [13]  0.70  0.61  0.54 -0.22  0.17  0.12 -0.14 -0.05  0.55  0.60  0.15 -0.13
##  [25]  1.29  0.04 -0.25  0.08  0.42  0.11 -0.41 -0.65 -0.21 -0.41 -0.83 -0.61
##  [37] -0.91 -0.48  0.31  0.34  0.07  0.65  0.46 -0.34 -0.02 -0.23 -0.45 -0.11
##  [49]  0.14 -0.12 -0.09 -0.07 -0.29 -0.49 -0.64  0.16  0.00  0.23  0.74  0.68
##  [61] -0.17  1.33 -1.39  0.04 -0.26 -0.61 -1.12  1.17  1.27 -0.57 -1.21  2.09
##  [73]  0.00 -2.23 -0.21  0.56  1.01 -0.13 -0.05  0.17 -1.66  0.31 -0.07 -0.33
##  [85] -0.22  0.45  0.28  0.37 -0.33  0.23  0.99  1.34  0.98 -0.57  1.74  2.49
##  [97] -0.22 -1.20 -1.24 -2.05 -0.64  0.33 -0.21 -0.13 -0.08  0.14 -0.60 -0.80
## [109]  0.27  1.18  0.39  0.94  0.23 -0.69 -0.60 -0.75 -0.13  0.78
plot(log.D2)

ts.plot(log.D2)

acf(log.D2)

pacf(log.D2)

s=log.D2^2;s
##   [1] 0.2401 0.0289 0.0289 0.0841 0.0576 0.0009 0.7056 0.6400 0.0025 3.6481
##  [11] 1.2544 0.0100 0.4900 0.3721 0.2916 0.0484 0.0289 0.0144 0.0196 0.0025
##  [21] 0.3025 0.3600 0.0225 0.0169 1.6641 0.0016 0.0625 0.0064 0.1764 0.0121
##  [31] 0.1681 0.4225 0.0441 0.1681 0.6889 0.3721 0.8281 0.2304 0.0961 0.1156
##  [41] 0.0049 0.4225 0.2116 0.1156 0.0004 0.0529 0.2025 0.0121 0.0196 0.0144
##  [51] 0.0081 0.0049 0.0841 0.2401 0.4096 0.0256 0.0000 0.0529 0.5476 0.4624
##  [61] 0.0289 1.7689 1.9321 0.0016 0.0676 0.3721 1.2544 1.3689 1.6129 0.3249
##  [71] 1.4641 4.3681 0.0000 4.9729 0.0441 0.3136 1.0201 0.0169 0.0025 0.0289
##  [81] 2.7556 0.0961 0.0049 0.1089 0.0484 0.2025 0.0784 0.1369 0.1089 0.0529
##  [91] 0.9801 1.7956 0.9604 0.3249 3.0276 6.2001 0.0484 1.4400 1.5376 4.2025
## [101] 0.4096 0.1089 0.0441 0.0169 0.0064 0.0196 0.3600 0.6400 0.0729 1.3924
## [111] 0.1521 0.8836 0.0529 0.4761 0.3600 0.5625 0.0169 0.6084
plot(s)

ts.plot(s)

M2=garchFit(~garch(1,1),data = log.D2,trace = F);M2
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = log.D2, trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x00000294a396a968>
##  [data = log.D2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##        mu      omega     alpha1      beta1  
## 0.0098779  0.1003311  0.3098247  0.5376797  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)   
## mu      0.009878    0.064824    0.152  0.87889   
## omega   0.100331    0.065814    1.524  0.12739   
## alpha1  0.309825    0.130679    2.371  0.01775 * 
## beta1   0.537680    0.173927    3.091  0.00199 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -125.9211    normalized:  -1.067128 
## 
## Description:
##  Tue May  6 19:44:36 2025 by user: SILVENUS
summary(M2)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = log.D2, trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x00000294a396a968>
##  [data = log.D2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##        mu      omega     alpha1      beta1  
## 0.0098779  0.1003311  0.3098247  0.5376797  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)   
## mu      0.009878    0.064824    0.152  0.87889   
## omega   0.100331    0.065814    1.524  0.12739   
## alpha1  0.309825    0.130679    2.371  0.01775 * 
## beta1   0.537680    0.173927    3.091  0.00199 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -125.9211    normalized:  -1.067128 
## 
## Description:
##  Tue May  6 19:44:36 2025 by user: SILVENUS 
## 
## 
## Standardised Residuals Tests:
##                                  Statistic    p-Value
##  Jarque-Bera Test   R    Chi^2   3.7865334 0.15057911
##  Shapiro-Wilk Test  R    W       0.9814011 0.10184708
##  Ljung-Box Test     R    Q(10)  13.8932515 0.17791666
##  Ljung-Box Test     R    Q(15)  23.9652562 0.06568585
##  Ljung-Box Test     R    Q(20)  30.9612364 0.05570428
##  Ljung-Box Test     R^2  Q(10)   6.6272829 0.76010062
##  Ljung-Box Test     R^2  Q(15)  17.2107609 0.30642205
##  Ljung-Box Test     R^2  Q(20)  26.7987106 0.14102270
##  LM Arch Test       R    TR^2    7.3020377 0.83702530
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 2.202053 2.295975 2.199854 2.240188
plot(M2, which=2)

plot(M2, which=8)

plot(M2,which=10)

#gjrGARCH

D1=read.csv("inflation rates.csv");D1
##     Year     Month Annual.Average.Inflation X12.Month.Inflation
## 1   2025     April                     3.74                4.11
## 2   2025     March                     3.81                3.62
## 3   2025  February                     3.98                3.45
## 4   2025   January                     4.21                3.28
## 5   2024  December                     4.50                2.99
## 6   2024  November                     4.81                2.75
## 7   2024   October                     5.14                2.72
## 8   2024 September                     5.50                3.56
## 9   2024    August                     5.77                4.36
## 10  2024      July                     5.97                4.31
## 11  2024      June                     4.64                6.22
## 12  2024       May                     6.49                5.10
## 13  2024     April                     6.73                5.00
## 14  2024     March                     6.97                5.70
## 15  2024  February                     7.26                6.31
## 16  2024   January                     7.50                6.85
## 17  2023  December                     7.67                6.63
## 18  2023  November                     7.87                6.80
## 19  2023   October                     8.10                6.92
## 20  2023 September                     8.32                6.78
## 21  2023    August                     8.52                6.73
## 22  2023      July                     8.68                7.28
## 23  2023      June                     8.77                7.88
## 24  2023       May                     8.78                8.03
## 25  2023     April                     8.71                7.90
## 26  2023     March                     8.59                9.19
## 27  2023  February                     8.30                9.23
## 28  2023   January                     7.95                8.98
## 29  2022  December                     7.66                9.06
## 30  2022  November                     7.38                9.48
## 31  2022   October                     7.48                9.59
## 32  2022 September                     6.81                9.18
## 33  2022    August                     6.61                8.53
## 34  2022      July                     6.45                8.32
## 35  2022      June                     6.29                7.91
## 36  2022       May                     6.16                7.08
## 37  2022     April                     6.05                6.47
## 38  2022     March                     6.29                5.56
## 39  2022  February                     6.23                5.08
## 40  2022   January                     6.08                5.39
## 41  2021  December                     5.62                5.73
## 42  2021  November                     6.10                5.80
## 43  2021   October                     6.07                6.45
## 44  2021 September                     5.35                6.91
## 45  2021    August                     5.71                6.57
## 46  2021      July                     5.53                6.55
## 47  2021      June                     5.35                6.32
## 48  2021       May                     5.20                5.87
## 49  2021     April                     4.66                5.76
## 50  2021     March                     5.17                5.90
## 51  2021  February                     5.16                5.78
## 52  2021   January                     5.74                5.69
## 53  2020  December                     5.41                5.62
## 54  2020  November                     5.53                5.33
## 55  2020   October                     5.67                4.84
## 56  2020 September                     5.79                4.20
## 57  2020    August                     5.87                4.36
## 58  2020      July                     6.01                4.36
## 59  2020      June                     6.16                4.59
## 60  2020       May                     6.18                5.33
## 61  2020     April                     6.03                6.01
## 62  2020     March                     5.84                5.84
## 63  2020  February                     5.72                7.17
## 64  2020   January                     5.29                5.78
## 65  2019  December                     5.20                5.82
## 66  2019  November                     5.19                5.56
## 67  2019   October                     5.19                4.95
## 68  2019 September                     5.24                3.83
## 69  2019    August                     5.40                5.00
## 70  2019      July                     5.32                6.27
## 71  2019      June                     5.16                5.70
## 72  2019       May                     5.04                4.49
## 73  2019     April                     4.91                6.58
## 74  2019     April                     4.91                6.58
## 75  2019     March                     4.67                4.35
## 76  2019  February                     4.65                4.14
## 77  2019   January                     4.68                4.70
## 78  2018  December                     4.69                5.71
## 79  2018  November                     4.59                5.58
## 80  2018   October                     4.53                5.53
## 81  2018 September                     4.53                5.70
## 82  2018    August                     4.63                4.04
## 83  2018      July                     4.95                4.35
## 84  2018      June                     5.20                4.28
## 85  2018       May                     5.61                3.95
## 86  2018     April                     6.24                3.73
## 87  2018     March                     6.89                4.18
## 88  2018  February                     7.40                4.46
## 89  2018   January                     7.79                4.83
## 90  2017  December                     7.98                4.50
## 91  2017  November                     8.15                4.73
## 92  2017   October                     8.33                5.72
## 93  2017 September                     8.40                7.06
## 94  2017    August                     8.36                8.04
## 95  2017      July                     8.21                7.47
## 96  2017      June                     8.13                9.21
## 97  2017       May                     7.84               11.70
## 98  2017     April                     7.20               11.48
## 99  2017     March                     6.76               10.28
## 100 2017  February                     6.43                9.04
## 101 2017   January                     6.26                6.99
## 102 2016  December                     6.30                6.35
## 103 2016  November                     6.43                6.68
## 104 2016   October                     6.48                6.47
## 105 2016 September                     6.50                6.34
## 106 2016    August                     6.47                6.26
## 107 2016      July                     6.44                6.40
## 108 2016      June                     6.46                5.80
## 109 2016       May                     6.59                5.00
## 110 2016     April                     6.72                5.27
## 111 2016     March                     6.88                6.45
## 112 2016  February                     6.87                6.84
## 113 2016   January                     6.77                7.78
## 114 2015  December                     6.58                8.01
## 115 2015  November                     6.42                7.32
## 116 2015   October                     6.31                6.72
## 117 2015 September                     6.29                5.97
## 118 2015    August                     6.34                5.84
## 119 2015      July                     6.54                6.62
D2=D1$X12.Month.Inflation;D2
##   [1]  4.11  3.62  3.45  3.28  2.99  2.75  2.72  3.56  4.36  4.31  6.22  5.10
##  [13]  5.00  5.70  6.31  6.85  6.63  6.80  6.92  6.78  6.73  7.28  7.88  8.03
##  [25]  7.90  9.19  9.23  8.98  9.06  9.48  9.59  9.18  8.53  8.32  7.91  7.08
##  [37]  6.47  5.56  5.08  5.39  5.73  5.80  6.45  6.91  6.57  6.55  6.32  5.87
##  [49]  5.76  5.90  5.78  5.69  5.62  5.33  4.84  4.20  4.36  4.36  4.59  5.33
##  [61]  6.01  5.84  7.17  5.78  5.82  5.56  4.95  3.83  5.00  6.27  5.70  4.49
##  [73]  6.58  6.58  4.35  4.14  4.70  5.71  5.58  5.53  5.70  4.04  4.35  4.28
##  [85]  3.95  3.73  4.18  4.46  4.83  4.50  4.73  5.72  7.06  8.04  7.47  9.21
##  [97] 11.70 11.48 10.28  9.04  6.99  6.35  6.68  6.47  6.34  6.26  6.40  5.80
## [109]  5.00  5.27  6.45  6.84  7.78  8.01  7.32  6.72  5.97  5.84  6.62
D3=diff(D2);D3
##   [1] -0.49 -0.17 -0.17 -0.29 -0.24 -0.03  0.84  0.80 -0.05  1.91 -1.12 -0.10
##  [13]  0.70  0.61  0.54 -0.22  0.17  0.12 -0.14 -0.05  0.55  0.60  0.15 -0.13
##  [25]  1.29  0.04 -0.25  0.08  0.42  0.11 -0.41 -0.65 -0.21 -0.41 -0.83 -0.61
##  [37] -0.91 -0.48  0.31  0.34  0.07  0.65  0.46 -0.34 -0.02 -0.23 -0.45 -0.11
##  [49]  0.14 -0.12 -0.09 -0.07 -0.29 -0.49 -0.64  0.16  0.00  0.23  0.74  0.68
##  [61] -0.17  1.33 -1.39  0.04 -0.26 -0.61 -1.12  1.17  1.27 -0.57 -1.21  2.09
##  [73]  0.00 -2.23 -0.21  0.56  1.01 -0.13 -0.05  0.17 -1.66  0.31 -0.07 -0.33
##  [85] -0.22  0.45  0.28  0.37 -0.33  0.23  0.99  1.34  0.98 -0.57  1.74  2.49
##  [97] -0.22 -1.20 -1.24 -2.05 -0.64  0.33 -0.21 -0.13 -0.08  0.14 -0.60 -0.80
## [109]  0.27  1.18  0.39  0.94  0.23 -0.69 -0.60 -0.75 -0.13  0.78
library(rugarch)
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## 
## Attaching package: 'forecast'
## The following object is masked from 'package:ggpubr':
## 
##     gghistogram
M2=ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,2)),mean.model=list(armaOrder=c(0,0),include.mean=T),distribution.model="norm");M2
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : gjrGARCH(1,2)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(0,0,0)
## Include Mean     : TRUE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
M2fit=ugarchfit(D3,spec=M2);M2fit
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : gjrGARCH(1,2)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.033639    0.062744  0.53613 0.591871
## omega   0.079890    0.043309  1.84466 0.065087
## alpha1  0.423376    0.157776  2.68340 0.007288
## beta1   0.652211    0.446723  1.45999 0.144293
## beta2   0.000000    0.395932  0.00000 1.000000
## gamma1 -0.413546    0.176984 -2.33663 0.019459
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.033639    0.079899  0.42102 0.673743
## omega   0.079890    0.046496  1.71821 0.085758
## alpha1  0.423376    0.232610  1.82011 0.068742
## beta1   0.652211    0.612163  1.06542 0.286686
## beta2   0.000000    0.487702  0.00000 1.000000
## gamma1 -0.413546    0.247628 -1.67003 0.094914
## 
## LogLikelihood : -123.6012 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       2.1966
## Bayes        2.3375
## Shibata      2.1918
## Hannan-Quinn 2.2538
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      5.146 0.02330
## Lag[2*(p+q)+(p+q)-1][2]     5.257 0.03473
## Lag[4*(p+q)+(p+q)-1][5]     7.043 0.05063
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                     0.00107  0.9739
## Lag[2*(p+q)+(p+q)-1][8]    1.40363  0.9381
## Lag[4*(p+q)+(p+q)-1][14]   3.70391  0.9067
## d.o.f=3
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[4]     0.470 0.500 2.000  0.4930
## ARCH Lag[6]     1.742 1.461 1.711  0.5502
## ARCH Lag[8]     2.646 2.368 1.583  0.6116
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.6532
## Individual Statistics:              
## mu     0.10759
## omega  0.11776
## alpha1 0.06855
## beta1  0.13947
## beta2  0.15586
## gamma1 0.07836
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.49 1.68 2.12
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.3320 0.7405    
## Negative Sign Bias  0.4984 0.6192    
## Positive Sign Bias  0.3367 0.7370    
## Joint Effect        1.6058 0.6581    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     18.27       0.5044
## 2    30     38.61       0.1094
## 3    40     43.36       0.2909
## 4    50     46.41       0.5789
## 
## 
## Elapsed time : 2.837727
plot(M2fit, which=8)

plot(M2fit, which=11)

plot(M2fit, which=1)

summary(M2fit, which=8)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=11)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=1)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
#plotting the forecast
forc=ugarchforecast(fitORspec=M2fit,n.ahead = 12);forc
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: gjrGARCH
## Horizon: 12
## Roll Steps: 0
## Out of Sample: 0
## 
## 0-roll forecast [T0=1970-04-29]:
##       Series  Sigma
## T+1  0.03364 0.7218
## T+2  0.03364 0.7297
## T+3  0.03364 0.7366
## T+4  0.03364 0.7425
## T+5  0.03364 0.7476
## T+6  0.03364 0.7519
## T+7  0.03364 0.7557
## T+8  0.03364 0.7590
## T+9  0.03364 0.7618
## T+10 0.03364 0.7643
## T+11 0.03364 0.7664
## T+12 0.03364 0.7683
plot(forc, which=1)

plot(forc, which=3)

#eGARCH

library(rugarch)
library(forecast)
M2=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=T),distribution.model="norm");M2
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : eGARCH(1,1)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(0,0,0)
## Include Mean     : TRUE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
M2fit=ugarchfit(D3,spec=M2);M2fit
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.034182    0.062702  0.54516 0.585645
## omega  -0.086525    0.062787 -1.37806 0.168185
## alpha1  0.198839    0.087104  2.28278 0.022443
## beta1   0.861708    0.070697 12.18877 0.000000
## gamma1  0.356108    0.151604  2.34894 0.018827
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.034182    0.083456  0.40958 0.682111
## omega  -0.086525    0.065826 -1.31444 0.188698
## alpha1  0.198839    0.079781  2.49231 0.012691
## beta1   0.861708    0.056702 15.19712 0.000000
## gamma1  0.356108    0.148456  2.39874 0.016451
## 
## LogLikelihood : -123.7458 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       2.1821
## Bayes        2.2995
## Shibata      2.1787
## Hannan-Quinn 2.2298
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      5.829 0.01577
## Lag[2*(p+q)+(p+q)-1][2]     5.903 0.02335
## Lag[4*(p+q)+(p+q)-1][5]     7.705 0.03486
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.01954  0.8888
## Lag[2*(p+q)+(p+q)-1][5]   0.35040  0.9781
## Lag[4*(p+q)+(p+q)-1][9]   1.89869  0.9168
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1150 0.500 2.000  0.7346
## ARCH Lag[5]    0.3428 1.440 1.667  0.9287
## ARCH Lag[7]    1.7925 2.315 1.543  0.7611
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.5286
## Individual Statistics:              
## mu     0.15247
## omega  0.11697
## alpha1 0.15776
## beta1  0.06495
## gamma1 0.05869
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.28 1.47 1.88
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.6039 0.5471    
## Negative Sign Bias  0.1936 0.8468    
## Positive Sign Bias  0.1958 0.8451    
## Joint Effect        1.4827 0.6863    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     19.29       0.4385
## 2    30     34.54       0.2200
## 3    40     39.29       0.4570
## 4    50     48.95       0.4752
## 
## 
## Elapsed time : 0.514575
plot(M2fit, which=9)

plot(M2fit, which=8)

plot(M2fit, which=2)
## 
## please wait...calculating quantiles...

summary(M2fit, which=9)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=8)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=2)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
#plotting the forecast
forc=ugarchforecast(fitORspec=M2fit,n.ahead = 12);forc
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: eGARCH
## Horizon: 12
## Roll Steps: 0
## Out of Sample: 0
## 
## 0-roll forecast [T0=1970-04-29]:
##       Series  Sigma
## T+1  0.03418 0.7574
## T+2  0.03418 0.7538
## T+3  0.03418 0.7506
## T+4  0.03418 0.7479
## T+5  0.03418 0.7456
## T+6  0.03418 0.7436
## T+7  0.03418 0.7419
## T+8  0.03418 0.7405
## T+9  0.03418 0.7392
## T+10 0.03418 0.7381
## T+11 0.03418 0.7372
## T+12 0.03418 0.7364
plot(forc, which=1)

plot(forc, which=3)

#kaplan meier

library(survival)
library(survminer)
d1=data.frame(time=c(2,11,14,18,3),event=c(1,1,0,1,0))
kmc=with(d1,Surv(time,event));
kmc
## [1]  2  11  14+ 18   3+
plot(kmc)

plot(kmc,fun="cumhaz")

kmc2=survfit(Surv(time,event)~1,data=d1);kmc2
## Call: survfit(formula = Surv(time, event) ~ 1, data = d1)
## 
##      n events median 0.95LCL 0.95UCL
## [1,] 5      3     18      11      NA
summary(kmc2)
## Call: survfit(formula = Surv(time, event) ~ 1, data = d1)
## 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     2      5       1    0.800   0.179        0.516            1
##    11      3       1    0.533   0.248        0.214            1
##    18      1       1    0.000     NaN           NA           NA