Use of data from IPUMS PMA is subject to conditions including that users should cite the data appropriately. Use command `ipums_conditions()` for more details.
#visual of those who wanted another child that got pregnantlibrary(ggplot2)#calculate the rate of becoming pregnant by fertility preferencelibrary(stats)#model for becoming pregnant at wave 2 given wave 1 preferencetest<-glm(pregnant_2~wantanotherchildnpregnant_1+factor(MARSTAT_1)+ agegroups_1 +decidemedical_1, family=binomial, data=pmaugfilter)summary(test)
Call:
glm(formula = pregnant_2 ~ wantanotherchildnpregnant_1 + factor(MARSTAT_1) +
agegroups_1 + decidemedical_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.34160 0.37123 -3.614
wantanotherchildnpregnant_1no more children -0.81705 0.29343 -2.784
factor(MARSTAT_1)22 0.06754 0.18283 0.369
agegroups_120-25 -0.19695 0.31729 -0.621
agegroups_126-30 -0.47099 0.33053 -1.425
agegroups_131-35 -0.81404 0.36622 -2.223
agegroups_136-40 -0.82431 0.40491 -2.036
agegroups_141-44 -2.03540 0.80704 -2.522
agegroups_145-49 -15.59226 450.48912 -0.035
decidemedical_1husband/partner 0.27547 0.22635 1.217
decidemedical_1someone else -0.09850 0.25896 -0.380
Pr(>|z|)
(Intercept) 0.000302 ***
wantanotherchildnpregnant_1no more children 0.005361 **
factor(MARSTAT_1)22 0.711832
agegroups_120-25 0.534786
agegroups_126-30 0.154170
agegroups_131-35 0.026226 *
agegroups_136-40 0.041773 *
agegroups_141-44 0.011667 *
agegroups_145-49 0.972389
decidemedical_1husband/partner 0.223606
decidemedical_1someone else 0.703660
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 959.08 on 1288 degrees of freedom
Residual deviance: 881.00 on 1278 degrees of freedom
(733 observations deleted due to missingness)
AIC: 903
Number of Fisher Scoring iterations: 16
#model for becoming pregnant at wave 3 given wave 1 preferencetest2<-glm(pregnant_3~wantanotherchildnpregnant_1+factor(MARSTAT_1)+ agegroups_1+decidemedical_1, family=binomial, data=pmaugfilter)summary(test2)
Call:
glm(formula = pregnant_3 ~ wantanotherchildnpregnant_1 + factor(MARSTAT_1) +
agegroups_1 + decidemedical_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.80932 0.45237 -4.000
wantanotherchildnpregnant_1no more children -0.28295 0.29286 -0.966
factor(MARSTAT_1)22 -0.07808 0.19937 -0.392
agegroups_120-25 0.29457 0.41215 0.715
agegroups_126-30 0.20275 0.41828 0.485
agegroups_131-35 -0.21874 0.44909 -0.487
agegroups_136-40 -0.91550 0.52861 -1.732
agegroups_141-44 -2.55621 1.10777 -2.308
agegroups_145-49 -15.35272 450.02501 -0.034
decidemedical_1husband/partner -0.28652 0.24210 -1.183
decidemedical_1someone else -0.03969 0.25710 -0.154
Pr(>|z|)
(Intercept) 6.34e-05 ***
wantanotherchildnpregnant_1no more children 0.3340
factor(MARSTAT_1)22 0.6953
agegroups_120-25 0.4748
agegroups_126-30 0.6279
agegroups_131-35 0.6262
agegroups_136-40 0.0833 .
agegroups_141-44 0.0210 *
agegroups_145-49 0.9728
decidemedical_1husband/partner 0.2366
decidemedical_1someone else 0.8773
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 817.53 on 1294 degrees of freedom
Residual deviance: 762.00 on 1284 degrees of freedom
(727 observations deleted due to missingness)
AIC: 784
Number of Fisher Scoring iterations: 16
#model for having a birth between wave 1 and 2testa<-glm(birthbet1and2~wantanotherchildnpregnant_1+factor(MARSTAT_1)+ agegroups_1+decidemedical_1, family=binomial, data=pmaugfilter)summary(testa)
Call:
glm(formula = birthbet1and2 ~ wantanotherchildnpregnant_1 + factor(MARSTAT_1) +
agegroups_1 + decidemedical_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.040472 0.330857 -3.145
wantanotherchildnpregnant_1no more children -0.176208 0.183835 -0.959
factor(MARSTAT_1)22 -0.147040 0.139321 -1.055
agegroups_120-25 -0.168682 0.313900 -0.537
agegroups_126-30 -0.099096 0.315774 -0.314
agegroups_131-35 0.002958 0.325231 0.009
agegroups_136-40 0.024132 0.343081 0.070
agegroups_141-44 -0.465347 0.422618 -1.101
agegroups_145-49 -0.142337 0.439228 -0.324
decidemedical_1husband/partner 0.022820 0.167914 0.136
decidemedical_1someone else -0.083076 0.183567 -0.453
Pr(>|z|)
(Intercept) 0.00166 **
wantanotherchildnpregnant_1no more children 0.33780
factor(MARSTAT_1)22 0.29124
agegroups_120-25 0.59101
agegroups_126-30 0.75366
agegroups_131-35 0.99274
agegroups_136-40 0.94392
agegroups_141-44 0.27085
agegroups_145-49 0.74589
decidemedical_1husband/partner 0.89190
decidemedical_1someone else 0.65086
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1366.7 on 1308 degrees of freedom
Residual deviance: 1360.0 on 1298 degrees of freedom
(713 observations deleted due to missingness)
AIC: 1382
Number of Fisher Scoring iterations: 4
#model for having a birth between wave 1 and 3testb<-glm(birthbet1and3~wantanotherchildnpregnant_1+factor(MARSTAT_1)+ agegroups_1+decidemedical_1, family=binomial, data=pmaugfilter)summary(testb)
Call:
glm(formula = birthbet1and3 ~ wantanotherchildnpregnant_1 + factor(MARSTAT_1) +
agegroups_1 + decidemedical_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) 0.32247 0.28585 1.128
wantanotherchildnpregnant_1no more children -0.36139 0.15926 -2.269
factor(MARSTAT_1)22 -0.20295 0.12006 -1.690
agegroups_120-25 -0.36736 0.26783 -1.372
agegroups_126-30 -0.41191 0.27060 -1.522
agegroups_131-35 -0.59840 0.28103 -2.129
agegroups_136-40 -0.82765 0.29912 -2.767
agegroups_141-44 -1.21473 0.36409 -3.336
agegroups_145-49 -0.86154 0.38188 -2.256
decidemedical_1husband/partner 0.16741 0.14456 1.158
decidemedical_1someone else -0.08556 0.15811 -0.541
Pr(>|z|)
(Intercept) 0.259274
wantanotherchildnpregnant_1no more children 0.023254 *
factor(MARSTAT_1)22 0.090959 .
agegroups_120-25 0.170182
agegroups_126-30 0.127954
agegroups_131-35 0.033227 *
agegroups_136-40 0.005658 **
agegroups_141-44 0.000849 ***
agegroups_145-49 0.024068 *
decidemedical_1husband/partner 0.246841
decidemedical_1someone else 0.588436
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1758.1 on 1308 degrees of freedom
Residual deviance: 1704.2 on 1298 degrees of freedom
(713 observations deleted due to missingness)
AIC: 1726.2
Number of Fisher Scoring iterations: 4
#descriptive analysis: maybe group by age, wealth index, religion at first wave#how many women were pregnant at the first wave, how many children on average did women by age group have at the first wave#how many pregnant at the second/third wave, how many children on average did women by age group have at the second/third wave#how many women that indicated they want another child at the first wave acutally have a child, how many women that indicated they did not want anotehr child actually have a child by the second/third wave
#logistic regression#binomial outcome: had another child between first and second/third wave#predictors: did want a child, did not want a child, decision making, age
#model for having a birth between wave 1 and 2testx<-glm(birthbet1and2~wantanotherchildnpregnant_1+agegroups_1 +partnerchangedecisionbet1and2+educationlevel_1, family=binomial, data=pmaugfilter)summary(testx)
Call:
glm(formula = birthbet1and2 ~ wantanotherchildnpregnant_1 + agegroups_1 +
partnerchangedecisionbet1and2 + educationlevel_1, family = binomial,
data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.4368 0.7438 -1.932
wantanotherchildnpregnant_1no more children -0.2577 0.3131 -0.823
agegroups_120-25 -0.3361 0.6207 -0.542
agegroups_126-30 0.1554 0.5964 0.261
agegroups_131-35 0.6058 0.6019 1.007
agegroups_136-40 0.4320 0.6467 0.668
agegroups_141-44 0.1022 0.7336 0.139
agegroups_145-49 0.8322 0.7366 1.130
partnerchangedecisionbet1and21 0.2531 0.2348 1.078
educationlevel_1primary/middle school -0.4461 0.5034 -0.886
educationlevel_1secondary/post-primary -0.7437 0.5549 -1.340
educationlevel_1tertiary/ post-secondary -0.2190 0.6263 -0.350
Pr(>|z|)
(Intercept) 0.0534 .
wantanotherchildnpregnant_1no more children 0.4104
agegroups_120-25 0.5881
agegroups_126-30 0.7944
agegroups_131-35 0.3142
agegroups_136-40 0.5041
agegroups_141-44 0.8892
agegroups_145-49 0.2586
partnerchangedecisionbet1and21 0.2810
educationlevel_1primary/middle school 0.3755
educationlevel_1secondary/post-primary 0.1802
educationlevel_1tertiary/ post-secondary 0.7265
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 501.95 on 573 degrees of freedom
Residual deviance: 489.40 on 562 degrees of freedom
(1448 observations deleted due to missingness)
AIC: 513.4
Number of Fisher Scoring iterations: 4
#model for having a birth between wave 1 and 3testy<-glm(birthbet1and3~wantanotherchildnpregnant_1+agegroups_1+decidefp_1 +partnerchangedecisionbet1and3+educationlevel_1, family=binomial, data=pmaugfilter)summary(testy)
Call:
glm(formula = birthbet1and3 ~ wantanotherchildnpregnant_1 + agegroups_1 +
decidefp_1 + partnerchangedecisionbet1and3 + educationlevel_1,
family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) 0.41895 0.65967 0.635
wantanotherchildnpregnant_1no more children -0.30624 0.29278 -1.046
agegroups_120-25 -0.74536 0.41492 -1.796
agegroups_126-30 -0.52652 0.40815 -1.290
agegroups_131-35 -0.69546 0.44493 -1.563
agegroups_136-40 -1.30863 0.48309 -2.709
agegroups_141-44 -1.66527 0.58074 -2.868
agegroups_145-49 -0.71258 0.58456 -1.219
decidefp_1husband/partner 0.09538 0.31844 0.300
decidefp_1joint decision -0.31702 0.23042 -1.376
partnerchangedecisionbet1and31 -0.17604 0.22542 -0.781
educationlevel_1primary/middle school 0.06492 0.56820 0.114
educationlevel_1secondary/post-primary -0.04748 0.60277 -0.079
educationlevel_1tertiary/ post-secondary 0.43092 0.66865 0.644
Pr(>|z|)
(Intercept) 0.52537
wantanotherchildnpregnant_1no more children 0.29559
agegroups_120-25 0.07243 .
agegroups_126-30 0.19704
agegroups_131-35 0.11804
agegroups_136-40 0.00675 **
agegroups_141-44 0.00414 **
agegroups_145-49 0.22285
decidefp_1husband/partner 0.76455
decidefp_1joint decision 0.16887
partnerchangedecisionbet1and31 0.43485
educationlevel_1primary/middle school 0.90903
educationlevel_1secondary/post-primary 0.93721
educationlevel_1tertiary/ post-secondary 0.51928
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 584.57 on 455 degrees of freedom
Residual deviance: 553.41 on 442 degrees of freedom
(1566 observations deleted due to missingness)
AIC: 581.41
Number of Fisher Scoring iterations: 4
t
#model for having a birth between wave 1 and 2testw<-glm(birthbet1and2~wantanotherchildnpregnant_1+agegroups_1+partnerchangedecisionbet1and2med, family=binomial, data=pmaugfilter)summary(testw)
Call:
glm(formula = birthbet1and2 ~ wantanotherchildnpregnant_1 + agegroups_1 +
partnerchangedecisionbet1and2med, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.09126 0.28565 -3.820
wantanotherchildnpregnant_1no more children -0.16665 0.18798 -0.887
agegroups_120-25 -0.19513 0.31728 -0.615
agegroups_126-30 -0.12221 0.31581 -0.387
agegroups_131-35 -0.04989 0.32511 -0.153
agegroups_136-40 -0.00778 0.34280 -0.023
agegroups_141-44 -0.53117 0.42244 -1.257
agegroups_145-49 -0.25089 0.45040 -0.557
partnerchangedecisionbet1and2med1 0.03947 0.13831 0.285
Pr(>|z|)
(Intercept) 0.000133 ***
wantanotherchildnpregnant_1no more children 0.375345
agegroups_120-25 0.538552
agegroups_126-30 0.698772
agegroups_131-35 0.878043
agegroups_136-40 0.981892
agegroups_141-44 0.208616
agegroups_145-49 0.577502
partnerchangedecisionbet1and2med1 0.775342
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1310.8 on 1241 degrees of freedom
Residual deviance: 1304.7 on 1233 degrees of freedom
(780 observations deleted due to missingness)
AIC: 1322.7
Number of Fisher Scoring iterations: 4
#model for having a birth between wave 1 and 3testv<-glm(birthbet1and3~wantanotherchildnpregnant_1+agegroups_1 +partnerchangedecisionbet1and3med, family=binomial, data=pmaugfilter)summary(testv)
Call:
glm(formula = birthbet1and3 ~ wantanotherchildnpregnant_1 + agegroups_1 +
partnerchangedecisionbet1and3med, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) 0.24401 0.25155 0.970
wantanotherchildnpregnant_1no more children -0.33172 0.16247 -2.042
agegroups_120-25 -0.33244 0.27647 -1.202
agegroups_126-30 -0.34480 0.27721 -1.244
agegroups_131-35 -0.58451 0.28714 -2.036
agegroups_136-40 -0.80105 0.30314 -2.643
agegroups_141-44 -1.25303 0.37297 -3.360
agegroups_145-49 -0.93132 0.39448 -2.361
partnerchangedecisionbet1and3med1 0.01348 0.11983 0.113
Pr(>|z|)
(Intercept) 0.332038
wantanotherchildnpregnant_1no more children 0.041183 *
agegroups_120-25 0.229191
agegroups_126-30 0.213561
agegroups_131-35 0.041788 *
agegroups_136-40 0.008229 **
agegroups_141-44 0.000781 ***
agegroups_145-49 0.018232 *
partnerchangedecisionbet1and3med1 0.910427
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1653.3 on 1226 degrees of freedom
Residual deviance: 1605.0 on 1218 degrees of freedom
(795 observations deleted due to missingness)
AIC: 1623
Number of Fisher Scoring iterations: 4
Call:
glm(formula = realizedpreferencebet1and2 ~ agegroups_1 + marital_1 +
educationlevel_1 + BIRTHEVENT_1 + urbanrec + moderncon_1,
family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.852147 0.309476 -5.985 2.17e-09
agegroups_120-25 0.172519 0.225812 0.764 0.444872
agegroups_126-30 0.330998 0.252293 1.312 0.189533
agegroups_131-35 0.499809 0.275610 1.813 0.069761
agegroups_136-40 1.052458 0.296308 3.552 0.000382
agegroups_141-44 1.734691 0.336933 5.148 2.63e-07
agegroups_145-49 1.869438 0.376886 4.960 7.04e-07
marital_1never married -0.416850 0.226392 -1.841 0.065581
marital_1currently living with partner -0.019281 0.125369 -0.154 0.877774
marital_1widow or widower 0.881354 0.376333 2.342 0.019183
educationlevel_1primary/middle school 0.430995 0.208254 2.070 0.038493
educationlevel_1secondary/post-primary 0.233486 0.232619 1.004 0.315511
educationlevel_1tertiary/ post-secondary 0.192912 0.297828 0.648 0.517159
BIRTHEVENT_1 0.132026 0.034540 3.822 0.000132
urbanrecurban 0.119500 0.125328 0.954 0.340337
moderncon_1yes 0.008108 0.116158 0.070 0.944349
(Intercept) ***
agegroups_120-25
agegroups_126-30
agegroups_131-35 .
agegroups_136-40 ***
agegroups_141-44 ***
agegroups_145-49 ***
marital_1never married .
marital_1currently living with partner
marital_1widow or widower *
educationlevel_1primary/middle school *
educationlevel_1secondary/post-primary
educationlevel_1tertiary/ post-secondary
BIRTHEVENT_1 ***
urbanrecurban
moderncon_1yes
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2343.2 on 1769 degrees of freedom
Residual deviance: 1973.2 on 1754 degrees of freedom
(252 observations deleted due to missingness)
AIC: 2005.2
Number of Fisher Scoring iterations: 4
tbl_regression(testz, exponentiate =TRUE)
Characteristic
OR1
95% CI1
p-value
agegroups_1
15-19
—
—
20-25
1.19
0.76, 1.86
0.4
26-30
1.39
0.85, 2.29
0.2
31-35
1.65
0.96, 2.84
0.070
36-40
2.86
1.61, 5.14
<0.001
41-44
5.67
2.95, 11.1
<0.001
45-49
6.48
3.13, 13.8
<0.001
marital_1
currently married
—
—
never married
0.66
0.42, 1.02
0.066
currently living with partner
0.98
0.77, 1.26
0.9
widow or widower
2.41
1.19, 5.26
0.019
educationlevel_1
none
—
—
primary/middle school
1.54
1.03, 2.32
0.038
secondary/post-primary
1.26
0.80, 2.00
0.3
tertiary/ post-secondary
1.21
0.67, 2.17
0.5
Number of birth events
1.14
1.07, 1.22
<0.001
urbanrec
rural
—
—
urban
1.13
0.88, 1.44
0.3
moderncon_1
no
—
—
yes
1.01
0.80, 1.27
>0.9
1 OR = Odds Ratio, CI = Confidence Interval
#model for having a birth between wave 1 and 3testq<-glm(realizedpreferencebet1and3~agegroups_1+marital_1+educationlevel_1+BIRTHEVENT_1+urbanrec+moderncon_1, family=binomial, data=pmaugfilter)summary(testq)
Call:
glm(formula = realizedpreferencebet1and3 ~ agegroups_1 + marital_1 +
educationlevel_1 + BIRTHEVENT_1 + urbanrec + moderncon_1,
family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.72995 0.27630 -2.642 0.00824
agegroups_120-25 -0.21070 0.19357 -1.088 0.27638
agegroups_126-30 -0.10442 0.22451 -0.465 0.64186
agegroups_131-35 0.12598 0.25218 0.500 0.61737
agegroups_136-40 0.39767 0.28010 1.420 0.15569
agegroups_141-44 0.99796 0.33741 2.958 0.00310
agegroups_145-49 0.73583 0.35602 2.067 0.03875
marital_1never married 1.36331 0.20610 6.615 3.72e-11
marital_1currently living with partner 0.20485 0.12109 1.692 0.09071
marital_1widow or widower 0.64461 0.36744 1.754 0.07937
educationlevel_1primary/middle school 0.44267 0.19223 2.303 0.02129
educationlevel_1secondary/post-primary 0.62337 0.21420 2.910 0.00361
educationlevel_1tertiary/ post-secondary 0.70537 0.27632 2.553 0.01069
BIRTHEVENT_1 0.05382 0.03361 1.601 0.10938
urbanrecurban 0.35578 0.11924 2.984 0.00285
moderncon_1yes 0.26284 0.11156 2.356 0.01847
(Intercept) **
agegroups_120-25
agegroups_126-30
agegroups_131-35
agegroups_136-40
agegroups_141-44 **
agegroups_145-49 *
marital_1never married ***
marital_1currently living with partner .
marital_1widow or widower .
educationlevel_1primary/middle school *
educationlevel_1secondary/post-primary **
educationlevel_1tertiary/ post-secondary *
BIRTHEVENT_1
urbanrecurban **
moderncon_1yes *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2296.3 on 1769 degrees of freedom
Residual deviance: 2163.7 on 1754 degrees of freedom
(252 observations deleted due to missingness)
AIC: 2195.7
Number of Fisher Scoring iterations: 4
tbl_regression(testq, exponentiate =TRUE)
Characteristic
OR1
95% CI1
p-value
agegroups_1
15-19
—
—
20-25
0.81
0.55, 1.19
0.3
26-30
0.90
0.58, 1.40
0.6
31-35
1.13
0.69, 1.86
0.6
36-40
1.49
0.86, 2.58
0.2
41-44
2.71
1.41, 5.31
0.003
45-49
2.09
1.05, 4.24
0.039
marital_1
currently married
—
—
never married
3.91
2.62, 5.88
<0.001
currently living with partner
1.23
0.97, 1.56
0.091
widow or widower
1.91
0.96, 4.09
0.079
educationlevel_1
none
—
—
primary/middle school
1.56
1.07, 2.27
0.021
secondary/post-primary
1.87
1.23, 2.84
0.004
tertiary/ post-secondary
2.02
1.18, 3.49
0.011
Number of birth events
1.06
0.99, 1.13
0.11
urbanrec
rural
—
—
urban
1.43
1.13, 1.81
0.003
moderncon_1
no
—
—
yes
1.30
1.05, 1.62
0.018
1 OR = Odds Ratio, CI = Confidence Interval
#final analysis#model for having a birth between wave 1 and 2testu<-glm(birthbet1and2~wantanotherchildnpregnant_1+agegroups_1 +marital_1+educationlevel_1+BIRTHEVENT_1+ urbanrec+moderncon_1, family=binomial, data=pmaugfilter)summary(testu)
Call:
glm(formula = birthbet1and2 ~ wantanotherchildnpregnant_1 + agegroups_1 +
marital_1 + educationlevel_1 + BIRTHEVENT_1 + urbanrec +
moderncon_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -0.91630 0.33503 -2.735
wantanotherchildnpregnant_1no more children -0.15388 0.18629 -0.826
agegroups_120-25 0.34398 0.25627 1.342
agegroups_126-30 0.38080 0.28684 1.328
agegroups_131-35 0.53258 0.31299 1.702
agegroups_136-40 0.59116 0.34164 1.730
agegroups_141-44 -0.06771 0.41819 -0.162
agegroups_145-49 0.16138 0.44197 0.365
marital_1never married -1.18269 0.26960 -4.387
marital_1currently living with partner -0.16428 0.14028 -1.171
marital_1widow or widower -0.74960 0.46130 -1.625
educationlevel_1primary/middle school -0.14807 0.22006 -0.673
educationlevel_1secondary/post-primary -0.33946 0.25007 -1.357
educationlevel_1tertiary/ post-secondary -0.52112 0.33760 -1.544
BIRTHEVENT_1 -0.04500 0.04088 -1.101
urbanrecurban -0.25100 0.14628 -1.716
moderncon_1yes -0.34705 0.13553 -2.561
Pr(>|z|)
(Intercept) 0.00624 **
wantanotherchildnpregnant_1no more children 0.40881
agegroups_120-25 0.17951
agegroups_126-30 0.18432
agegroups_131-35 0.08883 .
agegroups_136-40 0.08357 .
agegroups_141-44 0.87138
agegroups_145-49 0.71500
marital_1never married 1.15e-05 ***
marital_1currently living with partner 0.24154
marital_1widow or widower 0.10417
educationlevel_1primary/middle school 0.50102
educationlevel_1secondary/post-primary 0.17464
educationlevel_1tertiary/ post-secondary 0.12268
BIRTHEVENT_1 0.27100
urbanrecurban 0.08618 .
moderncon_1yes 0.01045 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1693.9 on 1769 degrees of freedom
Residual deviance: 1622.6 on 1753 degrees of freedom
(252 observations deleted due to missingness)
AIC: 1656.6
Number of Fisher Scoring iterations: 5
tbl_regression(testu, exponentiate =TRUE)
Characteristic
OR1
95% CI1
p-value
wantanotherchildnpregnant_1
have another child
—
—
no more children
0.86
0.59, 1.23
0.4
agegroups_1
15-19
—
—
20-25
1.41
0.86, 2.35
0.2
26-30
1.46
0.84, 2.58
0.2
31-35
1.70
0.93, 3.16
0.089
36-40
1.81
0.93, 3.54
0.084
41-44
0.93
0.41, 2.10
0.9
45-49
1.18
0.49, 2.77
0.7
marital_1
currently married
—
—
never married
0.31
0.18, 0.52
<0.001
currently living with partner
0.85
0.64, 1.12
0.2
widow or widower
0.47
0.17, 1.09
0.10
educationlevel_1
none
—
—
primary/middle school
0.86
0.57, 1.34
0.5
secondary/post-primary
0.71
0.44, 1.17
0.2
tertiary/ post-secondary
0.59
0.30, 1.14
0.12
Number of birth events
0.96
0.88, 1.04
0.3
urbanrec
rural
—
—
urban
0.78
0.58, 1.03
0.086
moderncon_1
no
—
—
yes
0.71
0.54, 0.92
0.010
1 OR = Odds Ratio, CI = Confidence Interval
#model for having a birth between wave 1 and 3testi<-glm(birthbet1and3~wantanotherchildnpregnant_1+agegroups_1+marital_1++educationlevel_1+BIRTHEVENT_1+ urbanrec+ moderncon_1, family=binomial, data=pmaugfilter)summary(testi)
Call:
glm(formula = birthbet1and3 ~ wantanotherchildnpregnant_1 + agegroups_1 +
marital_1 + +educationlevel_1 + BIRTHEVENT_1 + urbanrec +
moderncon_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) 0.70067 0.27686 2.531
wantanotherchildnpregnant_1no more children -0.36936 0.15944 -2.317
agegroups_120-25 0.19200 0.19377 0.991
agegroups_126-30 0.09293 0.22469 0.414
agegroups_131-35 -0.09839 0.25250 -0.390
agegroups_136-40 -0.31881 0.28213 -1.130
agegroups_141-44 -0.83298 0.34513 -2.414
agegroups_145-49 -0.55750 0.36539 -1.526
marital_1never married -1.32461 0.20677 -6.406
marital_1currently living with partner -0.20985 0.12139 -1.729
marital_1widow or widower -0.56481 0.36877 -1.532
educationlevel_1primary/middle school -0.42972 0.19275 -2.229
educationlevel_1secondary/post-primary -0.62078 0.21466 -2.892
educationlevel_1tertiary/ post-secondary -0.69508 0.27690 -2.510
BIRTHEVENT_1 -0.02956 0.03521 -0.839
urbanrecurban -0.35013 0.11946 -2.931
moderncon_1yes -0.24272 0.11205 -2.166
Pr(>|z|)
(Intercept) 0.01138 *
wantanotherchildnpregnant_1no more children 0.02053 *
agegroups_120-25 0.32175
agegroups_126-30 0.67918
agegroups_131-35 0.69678
agegroups_136-40 0.25847
agegroups_141-44 0.01580 *
agegroups_145-49 0.12707
marital_1never married 1.49e-10 ***
marital_1currently living with partner 0.08385 .
marital_1widow or widower 0.12562
educationlevel_1primary/middle school 0.02578 *
educationlevel_1secondary/post-primary 0.00383 **
educationlevel_1tertiary/ post-secondary 0.01207 *
BIRTHEVENT_1 0.40124
urbanrecurban 0.00338 **
moderncon_1yes 0.03030 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2296.3 on 1769 degrees of freedom
Residual deviance: 2158.3 on 1753 degrees of freedom
(252 observations deleted due to missingness)
AIC: 2192.3
Number of Fisher Scoring iterations: 4
tbl_regression(testi, exponentiate =TRUE)
Characteristic
OR1
95% CI1
p-value
wantanotherchildnpregnant_1
have another child
—
—
no more children
0.69
0.50, 0.94
0.021
agegroups_1
15-19
—
—
20-25
1.21
0.83, 1.77
0.3
26-30
1.10
0.71, 1.70
0.7
31-35
0.91
0.55, 1.49
0.7
36-40
0.73
0.42, 1.26
0.3
41-44
0.43
0.22, 0.85
0.016
45-49
0.57
0.28, 1.16
0.13
marital_1
currently married
—
—
never married
0.27
0.18, 0.40
<0.001
currently living with partner
0.81
0.64, 1.03
0.084
widow or widower
0.57
0.26, 1.14
0.13
educationlevel_1
none
—
—
primary/middle school
0.65
0.45, 0.95
0.026
secondary/post-primary
0.54
0.35, 0.82
0.004
tertiary/ post-secondary
0.50
0.29, 0.86
0.012
Number of birth events
0.97
0.91, 1.04
0.4
urbanrec
rural
—
—
urban
0.70
0.56, 0.89
0.003
moderncon_1
no
—
—
yes
0.78
0.63, 0.98
0.030
1 OR = Odds Ratio, CI = Confidence Interval
#final analysis: becoming pregnant#model for becoming pregnant at wave 2 given wave 1 preferencetest11<-glm(pregnant_2~wantanotherchildnpregnant_1+agegroups_1 +marital_1+educationlevel_1, family=binomial, data=pmaugfilter)summary(test11)
Call:
glm(formula = pregnant_2 ~ wantanotherchildnpregnant_1 + agegroups_1 +
marital_1 + educationlevel_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.25335 0.38552 -3.251
wantanotherchildnpregnant_1no more children -0.72179 0.27371 -2.637
agegroups_120-25 0.12290 0.25268 0.486
agegroups_126-30 -0.22241 0.28683 -0.775
agegroups_131-35 -0.60549 0.32737 -1.850
agegroups_136-40 -0.73206 0.37085 -1.974
agegroups_141-44 -2.08917 0.78237 -2.670
agegroups_145-49 -15.40686 395.92850 -0.039
marital_1never married -0.75349 0.28112 -2.680
marital_1currently living with partner 0.05889 0.18195 0.324
marital_1widow or widower -0.79015 1.04270 -0.758
educationlevel_1primary/middle school -0.11956 0.29559 -0.404
educationlevel_1secondary/post-primary -0.50562 0.32252 -1.568
educationlevel_1tertiary/ post-secondary -0.30418 0.39872 -0.763
Pr(>|z|)
(Intercept) 0.00115 **
wantanotherchildnpregnant_1no more children 0.00836 **
agegroups_120-25 0.62670
agegroups_126-30 0.43809
agegroups_131-35 0.06438 .
agegroups_136-40 0.04838 *
agegroups_141-44 0.00758 **
agegroups_145-49 0.96896
marital_1never married 0.00735 **
marital_1currently living with partner 0.74620
marital_1widow or widower 0.44857
educationlevel_1primary/middle school 0.68587
educationlevel_1secondary/post-primary 0.11695
educationlevel_1tertiary/ post-secondary 0.44552
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1226.0 on 1761 degrees of freedom
Residual deviance: 1135.1 on 1748 degrees of freedom
(260 observations deleted due to missingness)
AIC: 1163.1
Number of Fisher Scoring iterations: 16
#model for becoming pregnant at wave 3 given wave 1 preferencetest12<-glm(pregnant_3~wantanotherchildnpregnant_1+agegroups_1 +marital_1+educationlevel_1, family=binomial, data=pmaugfilter)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(test12)
Call:
glm(formula = pregnant_3 ~ wantanotherchildnpregnant_1 + agegroups_1 +
marital_1 + educationlevel_1, family = binomial, data = pmaugfilter)
Coefficients:
Estimate Std. Error z value
(Intercept) -1.75558 0.42736 -4.108
wantanotherchildnpregnant_1no more children -0.34516 0.27511 -1.255
agegroups_120-25 0.35549 0.28278 1.257
agegroups_126-30 0.23104 0.31524 0.733
agegroups_131-35 -0.15337 0.35423 -0.433
agegroups_136-40 -0.90773 0.44777 -2.027
agegroups_141-44 -2.54728 1.06401 -2.394
agegroups_145-49 -16.07775 634.12244 -0.025
marital_1never married -0.49856 0.30261 -1.648
marital_1currently living with partner -0.02557 0.19688 -0.130
marital_1widow or widower -15.07703 800.53862 -0.019
educationlevel_1primary/middle school -0.10448 0.32225 -0.324
educationlevel_1secondary/post-primary -0.56347 0.35320 -1.595
educationlevel_1tertiary/ post-secondary -0.53322 0.44533 -1.197
Pr(>|z|)
(Intercept) 3.99e-05 ***
wantanotherchildnpregnant_1no more children 0.2096
agegroups_120-25 0.2087
agegroups_126-30 0.4636
agegroups_131-35 0.6650
agegroups_136-40 0.0426 *
agegroups_141-44 0.0167 *
agegroups_145-49 0.9798
marital_1never married 0.0994 .
marital_1currently living with partner 0.8967
marital_1widow or widower 0.9850
educationlevel_1primary/middle school 0.7458
educationlevel_1secondary/post-primary 0.1106
educationlevel_1tertiary/ post-secondary 0.2312
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1069.41 on 1768 degrees of freedom
Residual deviance: 992.82 on 1755 degrees of freedom
(253 observations deleted due to missingness)
AIC: 1020.8
Number of Fisher Scoring iterations: 17
! Column(s) "BIRTHEVENT_1" are class "haven_labelled".
ℹ This is an intermediate datastructure not meant for analysis.
ℹ Convert columns with `haven::as_factor()`, `labelled::to_factor()`,
`labelled::unlabelled()`, and `unclass()`. Failure to convert may have
unintended consequences or result in error.
<https://haven.tidyverse.org/articles/semantics.html>
<https://larmarange.github.io/labelled/articles/intro_labelled.html#unlabelled>
# 2.5.2025 updates#create code for change in status between waves: had a birth*, marital status, contraceptive use#add polygamy variable to the mix: already in the dataset