R Markdown

Install necessary packages

install.packages(c(“dplyr”, “gt”, “tidymodels”, “stringr”))

Load required libraries

library(dplyr) library(gt) library(tidymodels) library(stringr)

Load dataset (Example: Using mtcars for illustration)

data <- mtcars

Prepare data for classification (Example: Convert am to factor)

data <- data %>% mutate(am = factor(am, labels = c(“Automatic”, “Manual”)))

Split data into training and testing sets

set.seed(42) data_split <- initial_split(data, prop = 0.8) train_data <- training(data_split) test_data <- testing(data_split)

Define a logistic regression model

log_model <- logistic_reg() %>% set_engine(“glm”) %>% set_mode(“classification”)

Create a workflow

workflow <- workflow() %>% add_model(log_model) %>% add_formula(am ~ mpg + hp + wt) %>% fit(train_data)

Generate predictions

predictions <- predict(workflow, test_data) %>% bind_cols(test_data)

Create summary tables using gt

summary_table <- predictions %>% select(am, .pred_class) %>% count(am, .pred_class) %>% gt()

Display the table

summary_table