install.packages(c(“dplyr”, “gt”, “tidymodels”, “stringr”))
library(dplyr) library(gt) library(tidymodels) library(stringr)
mtcars for
illustration)data <- mtcars
am to
factor)data <- data %>% mutate(am = factor(am, labels = c(“Automatic”, “Manual”)))
set.seed(42) data_split <- initial_split(data, prop = 0.8) train_data <- training(data_split) test_data <- testing(data_split)
log_model <- logistic_reg() %>% set_engine(“glm”) %>% set_mode(“classification”)
workflow <- workflow() %>% add_model(log_model) %>% add_formula(am ~ mpg + hp + wt) %>% fit(train_data)
predictions <- predict(workflow, test_data) %>% bind_cols(test_data)
gtsummary_table <- predictions %>% select(am, .pred_class) %>% count(am, .pred_class) %>% gt()
summary_table