library(readxl)
## Warning: package 'readxl' was built under R version 4.4.2
veri <- read_excel("~/veri.xlsx")
View(veri)
head(veri)
## # A tibble: 6 × 9
##   tarih       TP      YP    mpt  mbyat mbode     ipt   iyat   iode
##   <chr>    <dbl>   <dbl>  <dbl>  <dbl> <dbl>   <dbl>  <dbl>  <dbl>
## 1 2015Q1 517271. 302968. 23667. 12929. 1069. 190773. 60141. 13003.
## 2 2015Q2 494022. 296201. 26321. 15650. 1090. 193837. 58244. 12411.
## 3 2015Q3 475094. 324223. 29773. 16947. 1225. 190433. 51039. 12436.
## 4 2015Q4 470660. 298681. 35794. 16809. 1422. 206470. 53427. 12875.
## 5 2016Q1 473664. 302281. 38033. 18271. 1885. 194120. 53134. 12946.
## 6 2016Q2 496848. 315387. 49274. 21587. 2011. 233575. 54026. 13517.
str(veri)
## tibble [40 × 9] (S3: tbl_df/tbl/data.frame)
##  $ tarih: chr [1:40] "2015Q1" "2015Q2" "2015Q3" "2015Q4" ...
##  $ TP   : num [1:40] 517271 494022 475094 470660 473664 ...
##  $ YP   : num [1:40] 302968 296201 324223 298681 302281 ...
##  $ mpt  : num [1:40] 23667 26321 29773 35794 38033 ...
##  $ mbyat: num [1:40] 12929 15650 16947 16809 18271 ...
##  $ mbode: num [1:40] 1069 1090 1225 1422 1885 ...
##  $ ipt  : num [1:40] 190773 193837 190433 206470 194120 ...
##  $ iyat : num [1:40] 60141 58244 51039 53427 53134 ...
##  $ iode : num [1:40] 13003 12411 12436 12875 12946 ...
library(tseries)
## Warning: package 'tseries' was built under R version 4.4.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
ts_veri <- ts(veri, start = c(2015, 1), frequency = 4)
library(urca)
## Warning: package 'urca' was built under R version 4.4.3
adf_results <- list()

ADF SONUÇLARI SABİT

columns_to_test <- colnames(ts_veri)

adf_results <- list()

columns_to_test <- colnames(ts_veri)[-1]  

for (col in columns_to_test) {
  # ts_veri'den ilgili sütunu al ve vektör olarak dönüştür
  ts_data <- as.vector(ts_veri[, col])
  adf_results[[col]] <- ur.df(ts_data, type = "drift", lags = 1)
}


for (col in names(adf_results)) {
  cat("### ADF Testi Sonucu:", col, "###\n")
  print(summary(adf_results[[col]]))
  cat("\n--------------------------\n")
}
## ### ADF Testi Sonucu: TP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -65878 -20089   2541  21829  49642 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.096e+05  4.769e+04   2.298   0.0276 *
## z.lag.1     -2.485e-01  1.078e-01  -2.305   0.0272 *
## z.diff.lag   2.113e-01  1.653e-01   1.278   0.2096  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32010 on 35 degrees of freedom
## Multiple R-squared:  0.1384, Adjusted R-squared:  0.08912 
## F-statistic:  2.81 on 2 and 35 DF,  p-value: 0.07383
## 
## 
## Value of test-statistic is: -2.3053 2.659 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: YP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49422 -17812  -4189   8967  81792 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.501e+05  5.722e+04   2.624   0.0128 *
## z.lag.1     -4.714e-01  1.788e-01  -2.637   0.0124 *
## z.diff.lag  -1.499e-01  1.712e-01  -0.876   0.3873  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27190 on 35 degrees of freedom
## Multiple R-squared:  0.2832, Adjusted R-squared:  0.2422 
## F-statistic: 6.913 on 2 and 35 DF,  p-value: 0.002949
## 
## 
## Value of test-statistic is: -2.6369 3.4792 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mpt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -90233  -9090   -832  15340  48897 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 2089.44489 7341.43956   0.285  0.77762   
## z.lag.1        0.09861    0.03086   3.196  0.00295 **
## z.diff.lag    -0.32867    0.17520  -1.876  0.06901 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28290 on 35 degrees of freedom
## Multiple R-squared:  0.2287, Adjusted R-squared:  0.1847 
## F-statistic:  5.19 on 2 and 35 DF,  p-value: 0.01062
## 
## 
## Value of test-statistic is: 3.1958 11.5346 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -58435  -8203  -1751   9155  74257 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  9.000e+03  7.793e+03   1.155   0.2560  
## z.lag.1     -7.784e-03  6.726e-02  -0.116   0.9085  
## z.diff.lag  -4.300e-01  1.585e-01  -2.713   0.0103 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26600 on 35 degrees of freedom
## Multiple R-squared:  0.1894, Adjusted R-squared:  0.1431 
## F-statistic: 4.088 on 2 and 35 DF,  p-value: 0.02537
## 
## 
## Value of test-statistic is: -0.1157 1.7693 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2439.90  -633.63    99.98   559.96  3075.90 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  15.90494  313.28992   0.051  0.95980   
## z.lag.1       0.10163    0.03056   3.326  0.00208 **
## z.diff.lag   -0.26533    0.17891  -1.483  0.14700   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1167 on 35 degrees of freedom
## Multiple R-squared:  0.2432, Adjusted R-squared:    0.2 
## F-statistic: 5.624 on 2 and 35 DF,  p-value: 0.007623
## 
## 
## Value of test-statistic is: 3.3257 11.4921 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: ipt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -42592 -11985   1801  12236  34887 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.518e+02  2.219e+04  -0.007    0.995
## z.lag.1      1.850e-02  1.086e-01   0.170    0.866
## z.diff.lag  -9.142e-02  1.938e-01  -0.472    0.640
## 
## Residual standard error: 19780 on 35 degrees of freedom
## Multiple R-squared:  0.00638,    Adjusted R-squared:  -0.0504 
## F-statistic: 0.1124 on 2 and 35 DF,  p-value: 0.894
## 
## 
## Value of test-statistic is: 0.1704 0.627 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -19399.8  -4303.2   -174.9   6341.6  17241.7 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  3.606e+04  1.112e+04   3.242  0.00261 **
## z.lag.1     -6.536e-01  2.017e-01  -3.241  0.00261 **
## z.diff.lag   1.914e-02  1.743e-01   0.110  0.91319   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8824 on 35 degrees of freedom
## Multiple R-squared:  0.3054, Adjusted R-squared:  0.2657 
## F-statistic: 7.693 on 2 and 35 DF,  p-value: 0.001701
## 
## 
## Value of test-statistic is: -3.2411 5.2761 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3017.2  -854.3   258.9   800.5  1709.0 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)  549.85550 1222.03635   0.450    0.656
## z.lag.1       -0.02993    0.09787  -0.306    0.762
## z.diff.lag     0.01133    0.18617   0.061    0.952
## 
## Residual standard error: 1273 on 35 degrees of freedom
## Multiple R-squared:  0.002795,   Adjusted R-squared:  -0.05419 
## F-statistic: 0.04906 on 2 and 35 DF,  p-value: 0.9522
## 
## 
## Value of test-statistic is: -0.3058 0.4294 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------

ADF SONUÇLARI TREND

columns_to_test <- colnames(ts_veri)

adf_results <- list()

columns_to_test <- colnames(ts_veri)[-1]  

for (col in columns_to_test) {
  # ts_veri'den ilgili sütunu al ve vektör olarak dönüştür
  ts_data <- as.vector(ts_veri[, col])
  adf_results[[col]] <- ur.df(ts_data, type = "trend", lags = 1)
}


for (col in names(adf_results)) {
  cat("### ADF Testi Sonucu:", col, "###\n")
  print(summary(adf_results[[col]]))
  cat("\n--------------------------\n")
}
## ### ADF Testi Sonucu: TP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -64872 -20421   3030  23457  51471 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.003e+05  5.307e+04   1.890   0.0673 .
## z.lag.1     -2.373e-01  1.123e-01  -2.113   0.0420 *
## tt           2.121e+02  5.050e+02   0.420   0.6771  
## z.diff.lag   1.906e-01  1.744e-01   1.093   0.2820  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32390 on 34 degrees of freedom
## Multiple R-squared:  0.1428, Adjusted R-squared:  0.06717 
## F-statistic: 1.888 on 3 and 34 DF,  p-value: 0.1502
## 
## 
## Value of test-statistic is: -2.113 1.7898 2.6829 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: YP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -43179 -16232  -3523   5588  77929 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.684e+05  5.934e+04   2.838  0.00761 **
## z.lag.1     -4.997e-01  1.800e-01  -2.777  0.00887 **
## tt          -4.506e+02  4.050e+02  -1.112  0.27373   
## z.diff.lag  -1.399e-01  1.708e-01  -0.819  0.41857   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27100 on 34 degrees of freedom
## Multiple R-squared:  0.3084, Adjusted R-squared:  0.2473 
## F-statistic: 5.053 on 3 and 34 DF,  p-value: 0.005304
## 
## 
## Value of test-statistic is: -2.7767 2.7478 4.1191 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mpt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -92637 -11199   2432  13894  46294 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.111e+03  1.168e+04  -0.352    0.727
## z.lag.1      4.817e-02  7.981e-02   0.603    0.550
## tt           8.014e+02  1.168e+03   0.686    0.497
## z.diff.lag  -3.036e-01  1.803e-01  -1.684    0.101
## 
## Residual standard error: 28510 on 34 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.1722 
## F-statistic: 3.565 on 3 and 34 DF,  p-value: 0.02408
## 
## 
## Value of test-statistic is: 0.6035 7.7306 5.2648 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -53153 -13680   3555  11939  51558 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -8974.6932  8982.7624  -0.999  0.32480   
## z.lag.1        -0.6238     0.2040  -3.058  0.00432 **
## tt           3780.1781  1196.2946   3.160  0.00331 **
## z.diff.lag     -0.1317     0.1700  -0.774  0.44405   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23720 on 34 degrees of freedom
## Multiple R-squared:  0.3734, Adjusted R-squared:  0.3181 
## F-statistic: 6.753 on 3 and 34 DF,  p-value: 0.001074
## 
## 
## Value of test-statistic is: -3.0583 4.8107 5.0009 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2438.7  -634.6   100.0   559.9  3074.3 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  13.04970  503.68481   0.026    0.979
## z.lag.1       0.10099    0.09324   1.083    0.286
## tt            0.42532   58.20257   0.007    0.994
## z.diff.lag   -0.26481    0.19525  -1.356    0.184
## 
## Residual standard error: 1184 on 34 degrees of freedom
## Multiple R-squared:  0.2432, Adjusted R-squared:  0.1764 
## F-statistic: 3.642 on 3 and 34 DF,  p-value: 0.0222
## 
## 
## Value of test-statistic is: 1.0831 7.4425 5.372 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: ipt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -40590  -9105   1110  12903  41465 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.883e+03  2.208e+04  -0.312    0.757
## z.lag.1      4.399e-03  1.065e-01   0.041    0.967
## tt           4.744e+02  2.923e+02   1.623    0.114
## z.diff.lag  -1.334e-01  1.911e-01  -0.698    0.490
## 
## Residual standard error: 19330 on 34 degrees of freedom
## Multiple R-squared:  0.07783,    Adjusted R-squared:  -0.003543 
## F-statistic: 0.9565 on 3 and 34 DF,  p-value: 0.4244
## 
## 
## Value of test-statistic is: 0.0413 1.3156 1.3323 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -19859.9  -3857.5    957.9   6372.0  16050.4 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  3.422e+04  1.161e+04   2.948  0.00575 **
## z.lag.1     -6.506e-01  2.035e-01  -3.196  0.00300 **
## tt           8.139e+01  1.320e+02   0.616  0.54170   
## z.diff.lag   1.185e-02  1.763e-01   0.067  0.94682   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8903 on 34 degrees of freedom
## Multiple R-squared:  0.313,  Adjusted R-squared:  0.2524 
## F-statistic: 5.164 on 3 and 34 DF,  p-value: 0.004756
## 
## 
## Value of test-statistic is: -3.1963 3.5817 5.3494 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3089.8  -785.4   305.5   963.2  1533.2 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)  265.70523 1205.05060   0.220    0.827
## z.lag.1       -0.05912    0.09714  -0.609    0.547
## tt            31.79381   19.20963   1.655    0.107
## z.diff.lag    -0.03289    0.18367  -0.179    0.859
## 
## Residual standard error: 1242 on 34 degrees of freedom
## Multiple R-squared:  0.07715,    Adjusted R-squared:  -0.004279 
## F-statistic: 0.9474 on 3 and 34 DF,  p-value: 0.4286
## 
## 
## Value of test-statistic is: -0.6086 1.2136 1.4187 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------

BİRİNCİ FARKLARI

for (col in columns_to_test) {
  # ts_veri'den ilgili sütunu al, birinci farkını hesapla ve vektör olarak dönüştür
  diff_data <- diff(as.vector(ts_veri[, col]))
  adf_results[[col]] <- ur.df(diff_data, type = "drift", lags = 1)
}

# Sonuçları yazdır
for (col in names(adf_results)) {
  cat("### ADF Testi Sonucu:", col, "###\n")
  print(summary(adf_results[[col]]))
  cat("\n--------------------------\n")
}
## ### ADF Testi Sonucu: TP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -62312 -25802   2552  19335  67297 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.862e+02  5.710e+03   0.138 0.891293    
## z.lag.1     -9.238e-01  2.305e-01  -4.008 0.000316 ***
## z.diff.lag   2.468e-04  1.712e-01   0.001 0.998858    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34720 on 34 degrees of freedom
## Multiple R-squared:  0.463,  Adjusted R-squared:  0.4315 
## F-statistic: 14.66 on 2 and 34 DF,  p-value: 2.564e-05
## 
## 
## Value of test-statistic is: -4.0083 8.0414 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: YP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -54589 -20726  -3770  13328  84029 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.001e+03  4.900e+03  -0.204    0.839    
## z.lag.1     -1.472e+00  2.855e-01  -5.157 1.08e-05 ***
## z.diff.lag   6.894e-02  1.731e-01   0.398    0.693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29800 on 34 degrees of freedom
## Multiple R-squared:  0.6847, Adjusted R-squared:  0.6662 
## F-statistic: 36.92 on 2 and 34 DF,  p-value: 3.005e-09
## 
## 
## Value of test-statistic is: -5.1566 13.3368 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mpt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -92715 -14885  -9970  19178  65151 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 16332.3859  6850.5357   2.384  0.02285 * 
## z.lag.1        -0.8713     0.2901  -3.004  0.00498 **
## z.diff.lag     -0.1675     0.1953  -0.858  0.39707   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32170 on 34 degrees of freedom
## Multiple R-squared:  0.5258, Adjusted R-squared:  0.4979 
## F-statistic: 18.85 on 2 and 34 DF,  p-value: 3.101e-06
## 
## 
## Value of test-statistic is: -3.0039 4.7034 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -52352 -12100  -1299  11615  55782 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 10757.4326  4489.7159   2.396   0.0222 *  
## z.lag.1        -1.8727     0.2784  -6.727 9.94e-08 ***
## z.diff.lag      0.3039     0.1643   1.850   0.0730 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25710 on 34 degrees of freedom
## Multiple R-squared:  0.7434, Adjusted R-squared:  0.7283 
## F-statistic: 49.26 on 2 and 34 DF,  p-value: 9.051e-11
## 
## 
## Value of test-statistic is: -6.7275 22.6384 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2452.1  -694.0   -47.3   590.4  3168.1 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 661.6217   286.0963   2.313  0.02693 * 
## z.lag.1      -0.7611     0.2586  -2.943  0.00582 **
## z.diff.lag   -0.1790     0.1903  -0.940  0.35371   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1337 on 34 degrees of freedom
## Multiple R-squared:  0.4785, Adjusted R-squared:  0.4478 
## F-statistic:  15.6 on 2 and 34 DF,  p-value: 1.56e-05
## 
## 
## Value of test-statistic is: -2.9432 4.4899 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: ipt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -40656  -9327   3771  11639  32723 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 3404.7946  3311.8922   1.028  0.31118   
## z.lag.1       -0.8849     0.2719  -3.254  0.00257 **
## z.diff.lag    -0.1673     0.1830  -0.914  0.36708   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19800 on 34 degrees of freedom
## Multiple R-squared:  0.5366, Adjusted R-squared:  0.5094 
## F-statistic: 19.69 on 2 and 34 DF,  p-value: 2.092e-06
## 
## 
## Value of test-statistic is: -3.2544 5.394 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22397.7  -3807.0    779.7   5979.4  16395.1 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  492.1421  1615.6681   0.305    0.763    
## z.lag.1       -1.6345     0.2746  -5.952 9.95e-07 ***
## z.diff.lag     0.2398     0.1696   1.414    0.167    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9825 on 34 degrees of freedom
## Multiple R-squared:  0.6791, Adjusted R-squared:  0.6603 
## F-statistic: 35.98 on 2 and 34 DF,  p-value: 4.051e-09
## 
## 
## Value of test-statistic is: -5.9515 17.7673 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2983.2  -931.6   266.0   857.2  1768.0 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 185.07818  214.94749   0.861 0.395248    
## z.lag.1      -1.00221    0.24916  -4.022 0.000304 ***
## z.diff.lag   -0.01125    0.17381  -0.065 0.948754    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1293 on 34 degrees of freedom
## Multiple R-squared:  0.4998, Adjusted R-squared:  0.4704 
## F-statistic: 16.99 on 2 and 34 DF,  p-value: 7.676e-06
## 
## 
## Value of test-statistic is: -4.0223 8.1253 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
## 
## 
## --------------------------

TRENDLİ

for (col in columns_to_test) {
  # ts_veri'den ilgili sütunu al, birinci farkını hesapla ve vektör olarak dönüştür
  diff_data <- diff(as.vector(ts_veri[, col]))
  adf_results[[col]] <- ur.df(diff_data, type = "trend", lags = 1)
}

# Sonuçları yazdır
for (col in names(adf_results)) {
  cat("### ADF Testi Sonucu:", col, "###\n")
  print(summary(adf_results[[col]]))
  cat("\n--------------------------\n")
}
## ### ADF Testi Sonucu: TP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -62643 -21781   5841  19818  67782 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -8.000e+03  1.253e+04  -0.639 0.527468    
## z.lag.1     -9.731e-01  2.400e-01  -4.054 0.000289 ***
## tt           4.394e+02  5.568e+02   0.789 0.435625    
## z.diff.lag   2.507e-02  1.750e-01   0.143 0.886963    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34910 on 33 degrees of freedom
## Multiple R-squared:  0.473,  Adjusted R-squared:  0.4251 
## F-statistic: 9.873 on 3 and 33 DF,  p-value: 8.54e-05
## 
## 
## Value of test-statistic is: -4.054 5.5091 8.2555 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: YP ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -55989 -19165  -5888  14100  82193 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.271e+03  1.056e+04   0.310    0.759    
## z.lag.1     -1.483e+00  2.898e-01  -5.117 1.31e-05 ***
## tt          -2.135e+02  4.657e+02  -0.458    0.650    
## z.diff.lag   7.472e-02  1.756e-01   0.426    0.673    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30150 on 33 degrees of freedom
## Multiple R-squared:  0.6867, Adjusted R-squared:  0.6582 
## F-statistic: 24.11 on 3 and 33 DF,  p-value: 1.896e-08
## 
## 
## Value of test-statistic is: -5.1167 8.7547 13.0913 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mpt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -92865 -14085   4158  12429  47923 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -7.747e+03  1.017e+04  -0.762 0.451496    
## z.lag.1     -1.356e+00  3.077e-01  -4.405 0.000105 ***
## tt           1.569e+03  5.266e+02   2.980 0.005372 ** 
## z.diff.lag   6.777e-02  1.929e-01   0.351 0.727572    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28990 on 33 degrees of freedom
## Multiple R-squared:  0.6264, Adjusted R-squared:  0.5924 
## F-statistic: 18.44 on 3 and 33 DF,  p-value: 3.327e-07
## 
## 
## Value of test-statistic is: -4.4049 6.8232 9.9986 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -53478 -12895    751  11479  52333 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 3850.9592  9023.4307   0.427   0.6723    
## z.lag.1       -1.9016     0.2812  -6.763 1.04e-07 ***
## tt           353.2175   399.8766   0.883   0.3835    
## z.diff.lag     0.3177     0.1655   1.919   0.0637 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25790 on 33 degrees of freedom
## Multiple R-squared:  0.7493, Adjusted R-squared:  0.7266 
## F-statistic: 32.89 on 3 and 33 DF,  p-value: 4.977e-10
## 
## 
## Value of test-statistic is: -6.7629 15.2548 22.8732 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: mbode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2318.4  -846.2   242.5   597.1  2870.6 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -287.06782  428.88897  -0.669 0.507942    
## z.lag.1       -1.19144    0.28207  -4.224 0.000177 ***
## tt            62.79367   22.51440   2.789 0.008710 ** 
## z.diff.lag     0.02965    0.18919   0.157 0.876426    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1221 on 33 degrees of freedom
## Multiple R-squared:  0.578,  Adjusted R-squared:  0.5396 
## F-statistic: 15.07 on 3 and 33 DF,  p-value: 2.391e-06
## 
## 
## Value of test-statistic is: -4.2239 6.183 9.084 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: ipt ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -39430  -8107   1208  14601  39683 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -5406.3581  6863.4927  -0.788  0.43650   
## z.lag.1        -0.9830     0.2758  -3.564  0.00114 **
## tt            451.8280   309.7656   1.459  0.15412   
## z.diff.lag     -0.1262     0.1822  -0.692  0.49364   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19480 on 33 degrees of freedom
## Multiple R-squared:  0.5647, Adjusted R-squared:  0.5251 
## F-statistic: 14.27 on 3 and 33 DF,  p-value: 3.944e-06
## 
## 
## Value of test-statistic is: -3.5637 4.4245 6.5348 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iyat ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -23339  -3535   1021   6100  15893 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -925.0689  3476.6118  -0.266    0.792    
## z.lag.1       -1.6428     0.2784  -5.900  1.3e-06 ***
## tt            70.8690   153.4346   0.462    0.647    
## z.diff.lag     0.2428     0.1717   1.414    0.167    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9941 on 33 degrees of freedom
## Multiple R-squared:  0.6812, Adjusted R-squared:  0.6522 
## F-statistic:  23.5 on 3 and 33 DF,  p-value: 2.52e-08
## 
## 
## Value of test-statistic is: -5.8998 11.6419 17.4072 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------
## ### ADF Testi Sonucu: iode ###
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2936.4  -900.3   192.7   919.1  1544.6 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -449.86749  451.27467  -0.997 0.326076    
## z.lag.1       -1.12787    0.25623  -4.402 0.000106 ***
## tt            32.55032   20.46961   1.590 0.121331    
## z.diff.lag     0.05198    0.17461   0.298 0.767820    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1265 on 33 degrees of freedom
## Multiple R-squared:  0.5354, Adjusted R-squared:  0.4932 
## F-statistic: 12.68 on 3 and 33 DF,  p-value: 1.128e-05
## 
## 
## Value of test-statistic is: -4.4018 6.5033 9.7176 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61
## 
## 
## --------------------------

PHİLLİPS PERON TESTİ

cat("Phillips-Perron Testi (Drift - Seviye):\n")
## Phillips-Perron Testi (Drift - Seviye):
for (col in columns_to_test) {
  result <- ur.pp(as.vector(ts_veri[, col]), type = "Z-tau", model = "constant")
  p_value <- pnorm(abs(result@teststat), lower.tail = FALSE) * 2  # Yaklasik p-degeri
  cat(col, ": PP Istatistigi =", round(result@teststat, 4), 
      ", P-Degeri =", round(p_value, 4), 
      ", Sonuc =", ifelse(p_value < 0.05, "Duragan", "Duragan Degil"), "\n")
}
## TP : PP Istatistigi = -2.3241 , P-Degeri = 0.0201 , Sonuc = Duragan 
## YP : PP Istatistigi = -3.6933 , P-Degeri = 2e-04 , Sonuc = Duragan 
## mpt : PP Istatistigi = 3.9139 , P-Degeri = 1e-04 , Sonuc = Duragan 
## mbyat : PP Istatistigi = -0.1458 , P-Degeri = 0.8841 , Sonuc = Duragan Degil 
## mbode : PP Istatistigi = 4.6814 , P-Degeri = 0 , Sonuc = Duragan 
## ipt : PP Istatistigi = 0.0482 , P-Degeri = 0.9615 , Sonuc = Duragan Degil 
## iyat : PP Istatistigi = -4.0536 , P-Degeri = 1e-04 , Sonuc = Duragan 
## iode : PP Istatistigi = -0.2968 , P-Degeri = 0.7667 , Sonuc = Duragan Degil
cat("\nPhillips-Perron Testi (Drift - Birinci Fark):\n")
## 
## Phillips-Perron Testi (Drift - Birinci Fark):
for (col in columns_to_test) {
  diff_data <- diff(as.vector(ts_veri[, col]))
  result_diff <- ur.pp(diff_data, type = "Z-tau", model = "constant")
  p_value <- pnorm(abs(result_diff@teststat), lower.tail = FALSE) * 2
  cat(col, ": PP Istatistigi =", round(result_diff@teststat, 4), 
      ", P-Degeri =", round(p_value, 4), 
      ", Sonuc =", ifelse(p_value < 0.05, "Duragan", "Duragan Degil"), "\n")
}
## TP : PP Istatistigi = -5.5055 , P-Degeri = 0 , Sonuc = Duragan 
## YP : PP Istatistigi = -9.0327 , P-Degeri = 0 , Sonuc = Duragan 
## mpt : PP Istatistigi = -6.169 , P-Degeri = 0 , Sonuc = Duragan 
## mbyat : PP Istatistigi = -11.1433 , P-Degeri = 0 , Sonuc = Duragan 
## mbode : PP Istatistigi = -5.5882 , P-Degeri = 0 , Sonuc = Duragan 
## ipt : PP Istatistigi = -6.2997 , P-Degeri = 0 , Sonuc = Duragan 
## iyat : PP Istatistigi = -8.8195 , P-Degeri = 0 , Sonuc = Duragan 
## iode : PP Istatistigi = -6.01 , P-Degeri = 0 , Sonuc = Duragan

Trend modeli için PP testi (Seviye ve Birinci Fark)

cat("\nPhillips-Perron Testi (Trend - Seviye):\n")
## 
## Phillips-Perron Testi (Trend - Seviye):
for (col in columns_to_test) {
  result_trend <- ur.pp(as.vector(ts_veri[, col]), type = "Z-tau", model = "trend")
  p_value <- pnorm(abs(result_trend@teststat), lower.tail = FALSE) * 2
  cat(col, ": PP Istatistigi =", round(result_trend@teststat, 4), 
      ", P-Degeri =", round(p_value, 4), 
      ", Sonuc =", ifelse(p_value < 0.05, "Duragan", "Duragan Degil"), "\n")
}
## TP : PP Istatistigi = -2.0703 , P-Degeri = 0.0384 , Sonuc = Duragan 
## YP : PP Istatistigi = -3.7378 , P-Degeri = 2e-04 , Sonuc = Duragan 
## mpt : PP Istatistigi = 0.683 , P-Degeri = 0.4946 , Sonuc = Duragan Degil 
## mbyat : PP Istatistigi = -4.4082 , P-Degeri = 0 , Sonuc = Duragan 
## mbode : PP Istatistigi = 1.3186 , P-Degeri = 0.1873 , Sonuc = Duragan Degil 
## ipt : PP Istatistigi = -0.0911 , P-Degeri = 0.9274 , Sonuc = Duragan Degil 
## iyat : PP Istatistigi = -4.0066 , P-Degeri = 1e-04 , Sonuc = Duragan 
## iode : PP Istatistigi = -0.5888 , P-Degeri = 0.556 , Sonuc = Duragan Degil
cat("\nPhillips-Perron Testi (Trend - Birinci Fark):\n")
## 
## Phillips-Perron Testi (Trend - Birinci Fark):
for (col in columns_to_test) {
  diff_data <- diff(as.vector(ts_veri[, col]))
  result_trend_diff <- ur.pp(diff_data, type = "Z-tau", model = "trend")
  p_value <- pnorm(abs(result_trend_diff@teststat), lower.tail = FALSE) * 2
  cat(col, ": PP Istatistigi =", round(result_trend_diff@teststat, 4), 
      ", P-Degeri =", round(p_value, 4), 
      ", Sonuc =", ifelse(p_value < 0.05, "Duragan", "Duragan Degil"), "\n")
}
## TP : PP Istatistigi = -5.5547 , P-Degeri = 0 , Sonuc = Duragan 
## YP : PP Istatistigi = -9.0182 , P-Degeri = 0 , Sonuc = Duragan 
## mpt : PP Istatistigi = -7.7604 , P-Degeri = 0 , Sonuc = Duragan 
## mbyat : PP Istatistigi = -11.367 , P-Degeri = 0 , Sonuc = Duragan 
## mbode : PP Istatistigi = -6.9746 , P-Degeri = 0 , Sonuc = Duragan 
## ipt : PP Istatistigi = -6.6586 , P-Degeri = 0 , Sonuc = Duragan 
## iyat : PP Istatistigi = -8.7658 , P-Degeri = 0 , Sonuc = Duragan 
## iode : PP Istatistigi = -6.3873 , P-Degeri = 0 , Sonuc = Duragan
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.2
library(reshape2)
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
## 
##     smiths
# Gerekli kütüphaneleri yükleme
library(ggplot2)
library(tidyr)

# Veri setini oluÅŸturma
data <- data.frame(
  Zaman = c("2015Q1", "2015Q2", "2015Q3", "2015Q4", "2016Q1", "2016Q2", "2016Q3", "2016Q4",
            "2017Q1", "2017Q2", "2017Q3", "2017Q4", "2018Q1", "2018Q2", "2018Q3", "2018Q4",
            "2019Q1", "2019Q2", "2019Q3", "2019Q4", "2020Q1", "2020Q2", "2020Q3", "2020Q4",
            "2021Q1", "2021Q2", "2021Q3", "2021Q4", "2022Q1", "2022Q2", "2022Q3", "2022Q4",
            "2023Q1", "2023Q2", "2023Q3", "2023Q4", "2024Q1", "2024Q2", "2024Q3", "2024Q4"),
  TP = c(517270.7864, 494022.3545, 475093.5708, 470659.8765, 473663.6273, 496847.5114, 496420.754, 471366.5254,
         444389.4509, 487480.2678, 507361.1497, 497824.3205, 440785.9335, 402763.8895, 338346.0486, 333842.1971,
         401596.5664, 375475.0211, 404596.6907, 417125.7733, 426607.0742, 436370.1877, 443709.215, 420058.1094,
         461311.5519, 418558.7537, 435401.2489, 378130.1938, 342648.1827, 359756.6648, 362236.5942, 413578.9707,
         478732.1422, 501581.8121, 446200.1633, 469510.7296, 469658.3913, 496989.8771, 518716.414, 506077.2505),
  YP = c(302967.8508, 296201.1354, 324223.2254, 298681.0496, 302280.8733, 315387.2749, 318228.4563, 320391.653,
         294288.5632, 302564.0191, 318627.024, 317615.0892, 399944.156, 394775.5981, 377107.8318, 329000.6039,
         326911.0773, 304150.3706, 302578.2184, 309179.9232, 318952.9752, 290892.1274, 328960.4675, 300344.3833,
         353458.8756, 324809.9226, 328043.5995, 382495.9393, 327689.2889, 319284.5205, 304726.6289, 291596.8217,
         288810.7034, 344394.42, 274403.0155, 285527.2396, 297056.4854, 301204.9346, 318787.2312, 278199.3753),
  mpt = c(23667.00313, 26321.48841, 29773.42733, 35794.38195, 38032.92085, 49273.64874, 52321.3435, 60163.07932,
          79912.80358, 74640.09955, 85355.4178, 98077.53785, 99256.80049, 103004.8718, 93983.81545, 100240.6569,
          101686.2134, 104125.5269, 127383.0007, 152125.9665, 154666.237, 154298.8828, 206591.0226, 198723.9163,
          213301.1158, 217779.8437, 255558.4023, 292746.4923, 221249.1875, 287930.7625, 295300.7217, 372023.2288,
          434479.5505, 501706.5972, 474063.0842, 503830.2905, 544622.3701, 538060.0219, 626632.7517, 696946.1672),
  mbyat = c(12929.11751, 15649.75271, 16947.36805, 16809.4529, 18270.81739, 21586.94284, 22737.76681, 28232.28949,
            39625.18205, 36315.53792, 42577.72369, 52565.74522, 54440.1785, 73224.14163, 76303.1795, 49077.26476,
            54641.28053, 56648.1737, 64315.59277, 79020.1369, 110889.259, 106710.8163, 121775.3658, 149714.5142,
            153651.5277, 101328.0903, 98046.24451, 181951.4408, 101116.425, 107877.0516, 118807.0261, 165885.7811,
            177481.0068, 163440.5238, 234442.0164, 196981.4734, 233623.8582, 206630.5439, 224550.7398, 237292.262),
  mbode = c(1069.442849, 1089.68628, 1225.2544, 1422.107273, 1884.611319, 2010.55455, 2383.297814, 2520.927259,
            3170.133611, 3201.317747, 3933.66983, 4169.793208, 5121.590242, 4580.876754, 4161.64429, 4741.891896,
            5889.486582, 5262.799425, 6840.878731, 7820.829713, 8887.172229, 7336.011863, 9866.684081, 10411.17937,
            12545.09663, 11583.53263, 12866.34127, 12302.48833, 11933.20423, 12605.45638, 13831.70169, 15836.30652,
            20005.72268, 19254.40251, 18986.65187, 21272.29112, 24210.01136, 25335.82218, 29514.00331, 31752.81502),
  ipt = c(190772.6376, 193837.2711, 190432.674, 206470.4767, 194119.9119, 233575.2411, 221074.1353, 236016.3773,
          199879.0805, 219309.3448, 225890.8439, 252256.6514, 250737.5545, 221765.8867, 185773.8205, 190912.0689,
          179644.4294, 159289.7578, 167397.686, 184230.8226, 167718.2824, 146378.9391, 167176.1742, 167955.7414,
          182165.9295, 176470.0335, 188230.2448, 185724.6378, 162003.462, 179275.456, 180896.423, 216952.2687,
          222516.7009, 232620.2292, 227100.9883, 243825.3612, 253553.3566, 257353.7283, 292196.3003, 322412.4889),
  iyat = c(60140.50252, 58244.25288, 51038.52594, 53427.00004, 53133.78934, 54025.51392, 50429.02537, 56675.57309,
           60163.59259, 59519.6649, 57361.02303, 65529.67323, 63796.16523, 67937.84962, 55528.51565, 45989.08497,
           49420.66955, 39878.48167, 41190.18112, 49432.31302, 59732.35311, 56764.0963, 52721.05847, 60420.05785,
           60048.25548, 41579.25973, 37289.55732, 60299.16491, 37983.43161, 40294.58378, 59876.42915, 66351.22605,
           68053.83495, 55981.40607, 72457.78427, 46943.85452, 54335.19726, 52388.78668, 63745.60659, 68935.27009),
  iode = c(13002.85707, 12411.01885, 12435.91154, 12875.48071, 12945.87291, 13517.09344, 12763.65631, 13087.42645,
           11415.63797, 12880.8379, 13884.55457, 15050.00191, 14546.80813, 12903.03232, 10445.54336, 10911.17708,
           10108.7818, 8715.738889, 9673.005536, 10678.12633, 10666.49163, 7879.848843, 9850.513557, 11193.61072,
           11928.32163, 10514.29556, 11139.96209, 10662.11088, 9118.89568, 11087.34617, 11439.57873, 13334.76828,
           13950.24052, 15399.72935, 15499.98993, 16163.3032, 15325.31205, 17060.41457, 17820.06638, 19256.63414)
)

# Veriyi uzun formata çevirme (pivot_longer ile)
data_long <- pivot_longer(data, 
                          cols = c("TP", "YP", "mpt", "mbyat", "mbode", "ipt", "iyat", "iode"),
                          names_to = "Degisken", 
                          values_to = "Deger")
# Gerekli kütüphane (zoo) yükleme
library(zoo)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
# Zamanı tarih formatına çevirme
data$Zaman_Tarih <- as.Date(as.yearqtr(data$Zaman, format = "%YQ%q"))

# data_long’a tarih sütununu ekleme
# Önce data_long’u yeniden oluşturalım, çünkü Zaman_Tarih sütununu eklememiz gerekiyor
data_long <- pivot_longer(data, 
                          cols = c("TP", "YP", "mpt", "mbyat", "mbode", "ipt", "iyat", "iode"),
                          names_to = "Degisken", 
                          values_to = "Deger")

# Zaman_Tarih sütununu data_long’a eklemek için birleştirme
data_long$Zaman_Tarih <- rep(data$Zaman_Tarih, times = 8)  # Her değişken için Zaman_Tarih tekrarlanır

# Çizgi grafik oluşturma (tarih ekseni ile düzenlenmiş)
ggplot(data_long, aes(x = Zaman_Tarih, y = Deger, color = Degisken, group = Degisken)) +
  geom_line(size = 1) +
  geom_point(size = 0.5) +
  labs(title = "Zaman Serisi GrafiÄŸi (2015Q1 - 2024Q4)", 
       x = "Zaman", 
       y = "Deger", 
       color = "Degisken") +
  theme_minimal() +
  scale_color_brewer(palette = "Set1") +
  scale_x_date(date_breaks = "1 year", date_labels = "%Y") +  # Sadece yılları göster
  theme(axis.text.x = element_text(angle = 45, hjust = 1))  # X ekseni etiketlerini eÄŸme
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

# Çizgi grafik oluşturma (etiketleri seyreltme)
ggplot(data_long, aes(x = Zaman, y = Deger, color = Degisken, group = Degisken)) +
  geom_line(size = 1) +
  geom_point(size = 0.5) +
  labs(title = "Zaman Serisi GrafiÄŸi (2015Q1 - 2024Q4)", 
       x = "Zaman", 
       y = "Deger", 
       color = "Degisken") +
  theme_minimal() +
  scale_color_brewer(palette = "Set1") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  scale_x_discrete(breaks = data$Zaman[seq(1, length(data$Zaman), by = 4)])  # Her 4. etiketi göster

Normalleştirilmiş grafik (daha önce önerdiğim gibi normalizasyon yaparak tüm değişkenleri aynı grafikte gösterelim)

Değerleri normalizasyon (0-1 aralığına ölçeklendirme)

data_normalized <- data
for (col in c("TP", "YP", "mpt", "mbyat", "mbode", "ipt", "iyat", "iode")) {
  data_normalized[[col]] <- (data[[col]] - min(data[[col]])) / (max(data[[col]]) - min(data[[col]]))
}

# Veriyi uzun formata çevirme
data_long_normalized <- pivot_longer(data_normalized, 
                                     cols = c("TP", "YP", "mpt", "mbyat", "mbode", "ipt", "iyat", "iode"),
                                     names_to = "Degisken", 
                                     values_to = "Deger")

# Grafik çizimi (etiketleri seyreltme)
ggplot(data_long_normalized, aes(x = Zaman, y = Deger, color = Degisken, group = Degisken)) +
  geom_line(size = 1) +
  geom_point(size = 1.5) +
  labs(title = "NormalleÅŸtirilmiÅŸ Zaman Serisi GrafiÄŸi (2015Q1 - 2024Q4)", 
       x = "Zaman", 
       y = "Normallestirilmis Deger (0-1)", 
       color = "Degisken") +
  theme_minimal() +
  scale_color_brewer(palette = "Set1") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  scale_x_discrete(breaks = data$Zaman[seq(1, length(data$Zaman), by = 4)])  # Her 4. etiketi göster